Drugs

, Volume 63, Issue 4, pp 389–406 | Cite as

Antimicrobial Peptides

Current Status and Therapeutic Potential
  • Andreas R. Koczulla
  • Robert Bals
Review Article

Abstract

Antimicrobial peptides (AMPs) are effector molecules of the innate immune system. A variety of AMPs have been isolated from species of all kingdoms and are classified based on their structure and amino acid motifs. AMPs have a broad antimicrobial spectrum and lyse microbial cells by interaction with biomembranes. Besides their direct antimicrobial function, they have multiple roles as mediators of inflammation with impact on epithelial and inflammatory cells influencing diverse processes such as cell proliferation, immune induction, wound healing, cytokine release, chemotaxis and protease-antiprotease balance. AMPs qualify as prototypes of innovative drugs that may be used as antimicrobials, anti-lipopolysaccharide drugs or modifiers of inflammation. Several strategies have been followed to identify lead candidates for drug development, to modify the peptides’ structures, and to produce sufficient amounts for pre-clinical and clinical studies. This review summarises the current knowledge about the basic and applied biology of AMPs.

References

  1. 1.
    Zasloff M. Antimicrobial peptides of multicellular organisms. Nature 2002; 415(6870): 389–95PubMedCrossRefGoogle Scholar
  2. 2.
    Tossi A, Sandri L, Giangaspero A. Amphipathic, alpha-helical antimicrobial peptides. Biopolymers 2000; 55(1): 4–30PubMedCrossRefGoogle Scholar
  3. 3.
    Huttner KM, Bevins CL. Antimicrobial peptides as mediators of epithelial host defense. Pediatr Res 1999; 45(6): 785–94PubMedCrossRefGoogle Scholar
  4. 4.
    Lehrer RI, Ganz T. Antimicrobial peptides in mammalian and insect host defence. Curr Opin Immunol 1999; 11(1): 23–7PubMedCrossRefGoogle Scholar
  5. 5.
    Stein T, Vater J, Kraft V, et al. The multiple carrier model of nonribosomal peptide biosynthesis at modular multienzymatic templates. J Biol Chem 1996; 271(26): 15428–35PubMedCrossRefGoogle Scholar
  6. 6.
    Beringer P. The clinical use of colistin in patients with cystic fibrosis. Curr Opin Pulm Med 2001; 7(6): 434–40PubMedCrossRefGoogle Scholar
  7. 7.
    Evans ME, Feola DJ, Rapp RP. Polymyxin B sulfate and colistin: old antibiotics for emerging multiresistant gram-negative bacteria. Ann Pharmacother 1999; 33(9): 960–7PubMedCrossRefGoogle Scholar
  8. 8.
    Stachelhaus T, Marahiel MA. Modular structure of genes encoding multifunctional peptide synthetases required for nonribosomal peptide synthesis. FEMS Microbiol Lett 1995; 125(1): 3–14PubMedCrossRefGoogle Scholar
  9. 9.
    Zhang J, Demain AL. ACV synthetase. Crit Rev Biotechnol 1992; 12(3): 245–60PubMedCrossRefGoogle Scholar
  10. 10.
    Bals R, Wattler S, Nehls M, et al. Mouse beta-defensin 3 is a regulated antimicrobial peptide expressed in mucousal organs. Infect Immun 1999; 67: 3542–7PubMedGoogle Scholar
  11. 11.
    Harder J, Meyer-Hoffert U, Teran LM, et al. Mucoid pseudomonas aeruginosa, TNF-alpha, and IL-1beta, but not IL-6, induce human beta-defensin-2 in respiratory epithelia. Am J Respir Cell Mol Biol 2000; 22(6): 714–21PubMedGoogle Scholar
  12. 12.
    O’Neil DA, Porter EM, Elewaut D, et al. Expression and regulation of the human beta-defensins hBD-1 and hBD-2 in intestinal epithelium. J Immunol 1999; 163(12): 6718–24PubMedGoogle Scholar
  13. 13.
    Tsutsumi-Ishii Y, Nagaoka I. NF-kappa B-mediated transcriptional regulation of human beta-defensin-2 gene following lipopolysaccharide stimulation. J Leukoc Biol 2002; 71(1): 154–62PubMedGoogle Scholar
  14. 14.
    Krisanaprakornkit S, Kimball JR, Dale BA. Regulation of human beta-defensin-2 in gingival epithelial cells: the involvement of mitogen-activated protein kinase pathways, but not the NF-kappaB transcription factor family. J Immunol 2002; 168(1): 316–24PubMedGoogle Scholar
  15. 15.
    Takahashi A, Wada A, Ogushi K, et al. Production of beta-defensin-2 by human colonie epithelial cells induced by Salmonella enteritidis flagella filament structural protein. FEBS Lett 2001; 508(3): 484–8PubMedCrossRefGoogle Scholar
  16. 16.
    Garcia JR, Jaumann F, Schulz S, etal. Identification of a novel, multifunctional beta-defensin (human beta-defensin 3) with specific antimicrobial activity: its interaction with plasma membranes of Xenopus oocytes and the induction of macrophage chemoattraction. Cell Tissue Res 2001; 306(2): 257–64PubMedCrossRefGoogle Scholar
  17. 17.
    Hiratsuka T, Nakazato M, Date Y, etal. Identification of human beta-defensin-2 in respiratory tract and plasma and its increase in bacterial pneumonia. Biochem Biophys Res Commun 1998; 249(3): 943–7PubMedCrossRefGoogle Scholar
  18. 18.
    Bals R, Weiner DJ, Meegalla RL, et al. Salt-independent abnormality of antimicrobial activity in cystic fibrosis airway surface fluid. Am J Respir Cell Mol Biol 2001; 25(1): 21–5PubMedGoogle Scholar
  19. 19.
    Dorschner RA, Pestonjamasp VK, Tamakuwala S, et al. Cutaneous injury induces the release of cathelicidin anti-microbial peptides active against group A Streptococcus. J Invest Dermatol 2001; 117(1): 91–7PubMedCrossRefGoogle Scholar
  20. 20.
    Birchler T, Seibl R, Buchner K, et al. Human Toll-like receptor 2 mediates induction of the antimicrobial peptide human beta-defensin 2 in response to bacterial lipoprotein. Eur J Immunol 2001; 31(11): 3131–7PubMedCrossRefGoogle Scholar
  21. 21.
    Meister M, Lemaitre B, Hoffmann JA. Antimicrobial peptide defense in Drosophila. Bioessays 1997; 19(11): 1019–26PubMedCrossRefGoogle Scholar
  22. 22.
    Imler JL, Hoffmann JA. Signaling mechanisms in the antimicrobial host defense of Drosophila. Curr Opin Microbiol 2000; 3(1): 16–22PubMedCrossRefGoogle Scholar
  23. 23.
    Tzou P, Ohresser S, Ferrandon D, et al. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 2000; 13(5): 737–48PubMedCrossRefGoogle Scholar
  24. 24.
    Lemaitre B, Reichhart JM, Hoffmann JA. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci U S A 1997; 94(26): 14614–9PubMedCrossRefGoogle Scholar
  25. 25.
    Levashina EA, Ohresser S, Lemaitre B, et al. Two distinct pathways can control expression of the gene encoding the Drosophila antimicrobial peptide metchnikowin. J Mol Biol 1998; 278(3): 515–27PubMedCrossRefGoogle Scholar
  26. 26.
    Manfruelli P, Reichhart JM, Steward R, et al. A mosaic analysis in Drosophila fat body cells of the control of antimicrobial peptide genes by the Rel proteins Dorsal and DIF. EMBO J 1999; 18(12): 3380–91PubMedCrossRefGoogle Scholar
  27. 27.
    Tauszig S, Jouanguy E, Hoffmann JA, et al. Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. Proc Natl Acad Sci U S A 2000; 97(19): 10520–5PubMedCrossRefGoogle Scholar
  28. 28.
    Onfelt Tingvall T, Roos E, Engstrom Y. The imd gene is required for local Cecropin expression in Drosophila barrier epithelia. EMBO Rep 2001; 2(3): 239–43PubMedCrossRefGoogle Scholar
  29. 29.
    van’t Hof W, Veerman EC, Heimerhorst EJ, et al. Antimicrobial peptides: properties and applicability. Biol Chem 2001; 382(4): 597–619CrossRefGoogle Scholar
  30. 30.
    Hancock RE. Peptide antibiotics. Lancet 1997; 349(9049): 418–22PubMedCrossRefGoogle Scholar
  31. 31.
    Andreu D, Rivas L. Animal antimicrobial peptides: an overview. Biopolymers 1998; 47(6): 415–33PubMedCrossRefGoogle Scholar
  32. 32.
    Brogden KA, Ackermann MR, McCray Jr PB, et al. Differences in the concentrations of small, anionic, antimicrobial peptides in bronchoalveolar lavage fluid and in respiratory epithelia of patients with and without cystic fibrosis. Infect Immun 1999; 67(8): 4256–9PubMedGoogle Scholar
  33. 33.
    Lai R, Liu H, Hui Lee W, et al. An anionic antimicrobial peptide from toad Bombina maxima. Biochem Biophys Res Commun 2002; 295(4): 796–9PubMedCrossRefGoogle Scholar
  34. 34.
    Orlov DS, Nguyen T, Lehrer RI. Potassium release, a useful tool for studying antimicrobial peptides. J Microbiol Methods 2002; 49(3): 325–8PubMedCrossRefGoogle Scholar
  35. 35.
    Singh P, Jia H, Wiles K, et al. Production of beta-defensins by human airway epithelia. Proc Natl Acad Sci U S A 1998; 95: 14961–6PubMedCrossRefGoogle Scholar
  36. 36.
    Steinberg DA, Lehrer RI. Designer assays for antimicrobial peptides. In: Shafer WM, editor. Antimicrobial peptide protocols. Totowa (NJ): Humana Press, 1997: 169–86CrossRefGoogle Scholar
  37. 37.
    Steinberg DA, Hurst MA, Fujii CA, et al. Protegrin-1: a broad-spectrum, rapidly microbicidal peptide with in vivo activity. Antimicrob Agents Chemother 1997; 41(8): 1738–42PubMedGoogle Scholar
  38. 38.
    Bals R, Lang C, Weiner D, et al. Rhesus monkey (Macaca mulatta) mucosal antimicrobial peptides are close homologues of human molecules. Clin Diagn Lab Immunol 2001; 8(2): 370–5PubMedGoogle Scholar
  39. 39.
    Li P, Chan HC, He B, et al. An antimicrobial peptide gene found in the male reproductive system of rats. Science 2001; 291(5509): 1783–5PubMedCrossRefGoogle Scholar
  40. 40.
    Tossi A, Scocchi M, Zanetti M, et al. An approach combining rapid cDNA amplification and chemical synthesis for the identification of novel, cathelicidin-derived, antimicrobial peptides. Methods Mol Biol 1997; 78: 133–50PubMedGoogle Scholar
  41. 41.
    Conejo Garcia J-R, Jaumann F, Schulz S, et al. Human b-defensin 3 is an inducible antimicrobial peptide expressed in epithelial and non-epithelial tissues. Cell Tissue Res 2001; 306: 257–64CrossRefGoogle Scholar
  42. 42.
    Garcia JR, Krause A, Schulz S, et al. Human beta-defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity. FASEB J 2001; 15(10): 1819–21PubMedGoogle Scholar
  43. 43.
    Jia HP, Schutte BC, Schudy A, et al. Discovery of new human beta-defensins using a genomics-based approach. Gene 2001; 263(1–2): 211–8PubMedGoogle Scholar
  44. 44.
    Schutte BC, Mitros JP, Bartlett JA, et al. Discovery of five conserved beta-defensin gene clusters using a computational search strategy. Proc Natl Acad Sci U S A 2002; 99(4): 2129–33PubMedCrossRefGoogle Scholar
  45. 45.
    Lehrer R, Ganz T, Selsted M. Defesins: endogenous antibiotic peptides of animal cells. Cell 1991; 64: 229–30PubMedCrossRefGoogle Scholar
  46. 46.
    Garcia-Olmedo F, Molina A, Alamillo JM, et al. Plant defense peptides. Biopolymers 1998; 47(6): 479–91PubMedCrossRefGoogle Scholar
  47. 47.
    Ganz T, Selsted ME, Szklarek D, et al. Defensins: natural peptide antibiotics of human neutrophils. J Clin Invest 1985; 76(4): 1427–35PubMedCrossRefGoogle Scholar
  48. 48.
    Selsted ME, Harwig SS, Ganz T, et al. Primary structures of three human neutrophil defensins. J Clin Invest 1985; 76(4): 1436–9PubMedCrossRefGoogle Scholar
  49. 49.
    Linzmeier R, Ho CH, Hoang BV, et al. A 450-kb contig of defensin genes on human chromosome 8p23. Gene 1999; 233(1–2): 205–11PubMedCrossRefGoogle Scholar
  50. 50.
    Wilson CL, Ouellette AJ, Satchell DP, et al. Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 1999; 286(5437): 113–7PubMedCrossRefGoogle Scholar
  51. 51.
    Diamond G, Zasloff M, Eck H, et al. Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA. Proc Natl Acad Sci USA 1991; 88: 3952–6PubMedCrossRefGoogle Scholar
  52. 52.
    Bensch K, Raida M, Magert H-J, et al. hBD-1: a novel β-defensin from human plasma. FEBS Lett 1995; 368: 331–5PubMedCrossRefGoogle Scholar
  53. 53.
    McCray Jr P, Bentley L. Human airway epithelia express a beta-defensin. Am J Respir Cell Mol Biol 1997; 16(3): 343–9PubMedGoogle Scholar
  54. 54.
    Goldman MJ, Anderson GM, Stolzenberg ED, et al. Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 1997; 88(4): 553–60PubMedCrossRefGoogle Scholar
  55. 55.
    Valore EV, Park CH, Quayle AJ, et al. Human beta-defensin-1: an antimicrobial peptide of urogenital tissues. J Clin Invest 1998; 101(8): 1633–42PubMedCrossRefGoogle Scholar
  56. 56.
    Harder J, Bartels J, Christophers E, et al. A peptide antibiotic from human skin [letter]. Nature 1997; 387: 861PubMedCrossRefGoogle Scholar
  57. 57.
    Bals R, Wang X, Wu Z, et al. Human beta-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. J Clin Invest 1998; 102: 874–80PubMedCrossRefGoogle Scholar
  58. 58.
    Harder J, Bartels J, Christophers E, et al. Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 2001; 276(8): 5707–13PubMedCrossRefGoogle Scholar
  59. 59.
    Tang Y-Q, Yaun J, Osapay G, et al. A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins. Science 1999; 286: 498–502PubMedCrossRefGoogle Scholar
  60. 60.
    Leonova L, Kokryakov VN, Aleshina G, et al. Circular minidefensins and posttranslational generation of molecular diversity. J Leukoc Biol 2001; 70(3): 461–4PubMedGoogle Scholar
  61. 61.
    Zanetti M, Gennaro R, Romeo D. Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett 1995; 374: 1–5PubMedCrossRefGoogle Scholar
  62. 62.
    Lehrer RI, Ganz T. Cathelicidins: a family of endogenous antimicrobial peptides. Curr Opin Hematol 2002; 9(1): 18–22PubMedCrossRefGoogle Scholar
  63. 63.
    Gudmundsson GH, Agerberth B, Odeberg J, et al. The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur J Biochem 1996; 238(2): 325–32PubMedCrossRefGoogle Scholar
  64. 64.
    Cowland J, Johnsen A, Borregaard N. hCAP-18, a cathelin/probactenecin-like protein of human neutrophil specific granules. FEBS Lett 1995; 368(1): 173–6PubMedCrossRefGoogle Scholar
  65. 65.
    Larrick J, Hirata M, Balint R, et al. Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. Infect Immun 1995; 63: 1291–7PubMedGoogle Scholar
  66. 66.
    Agerberth B, Gunne H, Odeberg J, et al. FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bane marrow and testis. Proc Natl Acad Sci USA 1995; 92: 195–9PubMedCrossRefGoogle Scholar
  67. 67.
    Bals R, Wang X, Zasloff M, et al. The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc Natl Acad Sci U S A 1998; 95(16): 9541–6PubMedCrossRefGoogle Scholar
  68. 68.
    Agerberth B, Grunewald J, Castanos-Velez E, et al. Antibacterial components in bronchoalveolar lavage fluid from healthy individuals and sarcoidosis patients. Am J Respir Crit Care Med 1999; 160(1): 283–90PubMedGoogle Scholar
  69. 69.
    Sorensen OE, Follin P, Johnsen AH, et al. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 2001; 97(12): 3951–9PubMedCrossRefGoogle Scholar
  70. 70.
    Zhao C, Nguyen T, Boo LM, et al. RL-37, an alpha-helical antimicrobial peptide of the rhesus monkey. Antimicrob Agents Chemother 2001; 45(10): 2695–702PubMedCrossRefGoogle Scholar
  71. 71.
    Nizet V, Ohtake T, Lauth X, et al. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 2001; 414(6862): 454–7PubMedCrossRefGoogle Scholar
  72. 72.
    Krensky AM. Granulysin: a novel antimicrobial peptide of cytolytic T lymphocytes and natural killer cells. Biochem Pharmacol 2000; 59(4): 317–20PubMedCrossRefGoogle Scholar
  73. 73.
    Ochoa MT, Stenger S, Sieling PA, et al. T-cell release of granulysin contributes to host defense in leprosy. Nat Med 2001; 7(2): 174–9PubMedCrossRefGoogle Scholar
  74. 74.
    Stenger S, Hanson DA, Teitelbaum R, et al. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 1998; 282(5386): 121–5PubMedCrossRefGoogle Scholar
  75. 75.
    Daw MA, Falkiner FR. Bacteriocins: nature, function and structure. Micron 1996; 27(6): 467–79PubMedCrossRefGoogle Scholar
  76. 76.
    Guder A, Wiedemann I, Sahl HG. Posttranslationally modified bacteriocins: the lantibiotics. Biopolymers 2000; 55(1): 62–73PubMedCrossRefGoogle Scholar
  77. 77.
    McAuliffe O, Ross RP, Hill C. Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol Rev 2001; 25(3): 285–308PubMedCrossRefGoogle Scholar
  78. 78.
    Delves-Broughton J, Blackburn P, Evans RJ, et al. Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoek 1996; 69(2): 193–202PubMedCrossRefGoogle Scholar
  79. 79.
    Breukink E, Wiedemann I, van Kraaij C, et al. Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 1999; 286(5448): 2361–4PubMedCrossRefGoogle Scholar
  80. 80.
    Wiedemann I, Breukink E, van Kraaij C, et al. Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J Biol Chem 2001; 276(3): 1772–9PubMedGoogle Scholar
  81. 81.
    Schittek B, Hipfel R, Sauer B, et al. Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nat Immunol 2001; 2(12): 1133–7PubMedCrossRefGoogle Scholar
  82. 82.
    Hoffmann JA, Reichhart JM. Drosophila innate immunity: an evolutionary perspective. Nat Immunol 2002; 3(2): 121–6PubMedCrossRefGoogle Scholar
  83. 83.
    Ladokhin AS, Selsted ME, White SH. Bilayer interactions of indolicidin, a small antimicrobial peptide rich in tryptophan, proline, and basic amino acids. Biophys J 1997; 72 (2 Pt 1): 794–805PubMedCrossRefGoogle Scholar
  84. 84.
    Matsuzaki K, Sugishita K, Miyajima K. Interactions of an antimicrobial peptide, magainin 2, with lipopolysaccharide-containing liposomes as a model for outer membranes of gram-negative bacteria. FEBS Lett 1999; 449(2–3): 221–4PubMedCrossRefGoogle Scholar
  85. 85.
    Epand RF, Epand RM, Monaco V, et al. The antimicrobial peptide trichogin and its interaction with phospholipid membranes. Eur J Biochem 1999; 266(3): 1021–8PubMedCrossRefGoogle Scholar
  86. 86.
    Rozek A, Friedrich CL, Hancock RE. Structure of the bovine antimicrobial peptide indolicidin bound to dodecyl-phosphocholine and sodium dodecyl sulfate micelles. Biochemistry 2000; 39(51): 15765–74PubMedCrossRefGoogle Scholar
  87. 87.
    Falla TJ, Karunaratne DN, Hancock RE. Mode of action of the antimicrobial peptide indolicidin. J Biol Chem 1996; 271(32): 19298–303PubMedCrossRefGoogle Scholar
  88. 88.
    Sokolov Y, Mirzabekov T, Martin DW, et al. Membrane channel formation by antimicrobial protegrins. Biochim Biophys Acta 1999; 1420(1–2): 23–9PubMedGoogle Scholar
  89. 89.
    Boheim G. Statistical analysis of alamethicin channels in black lipid membranes. J Membr Biol 1974; 19(3): 277–303PubMedGoogle Scholar
  90. 90.
    Wu M, Maier E, Benz R, et al. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 1999; 38(22): 7235–42PubMedCrossRefGoogle Scholar
  91. 91.
    Heller WT, Waring AJ, Lehrer RI, et al. Membrane thinning effect of the beta-sheet antimicrobial protegrin. Biochemistry 2000; 39(1): 139–45PubMedCrossRefGoogle Scholar
  92. 92.
    He K, Ludtke SJ, Heller WT, et al. Mechanism of alamethicin insertion into lipid bilayers. Biophys J 1996; 71(5): 2669–79PubMedCrossRefGoogle Scholar
  93. 93.
    Skerlavaj B, Romeo D, Gennaro R. Rapid membrane per-meabilization and inhibition of vital functions of gram-negative bacteria by bactenecins. Infect Immun 1990; 58(11): 3724–30PubMedGoogle Scholar
  94. 94.
    Cabiaux V, Agerberth B, Johansson J, et al. Secondary structure and membrane interaction of PR-39, a Pro+Arg-rich antibacterial peptide. Eur J Biochem 1994; 224(3): 1019–27PubMedCrossRefGoogle Scholar
  95. 95.
    Moser C, Weiner DJ, Lysenko E, et al. β-Defensin 1 contributes to pulmonary innate immunity in mice. Infect Immun 2002; 70(6): 3068–72PubMedCrossRefGoogle Scholar
  96. 96.
    Lemaitre B, Nicolas E, Michaut L, et al. The dorsoventral regulatory gene cassette spätzle/Toil/cactus controls the potent antifungal response in Drosophila adults. Cell 1996; 86: 973–83PubMedCrossRefGoogle Scholar
  97. 97.
    Tzou P, Reichhart JM, Lemaitre B. Constitutive expression of a single antimicrobial peptide can restore wild-type resistance to infection in immunodeficient Drosophila mutants. Proc Natl Acad Sci U S A 2002; 99(4): 2152–7PubMedCrossRefGoogle Scholar
  98. 98.
    Bals R, Weiner D, Moscioni A, et al. Augmentation of innate host defense by expression of a cathelicidin antimicrobial peptide. Infect Immun 1999; 67: 6084–9PubMedGoogle Scholar
  99. 99.
    Bals R, Weiner DJ, Meegalla RL, et al. Transfer of a cathelicidin peptide antibiotic gene restores bacterial killing in a cystic fibrosis xenograft model. J Clin Invest 1998; 103: 1113–7CrossRefGoogle Scholar
  100. 100.
    David SA. Towards a rational development of anti-endotoxin agents: novel approaches to sequestration of bacterial endotoxins with small molecules. J Mol Recognit 2001; 14(6): 370–87PubMedCrossRefGoogle Scholar
  101. 101.
    Kirikae T, Hirata M, Yamasu H, et al. Protective effects of a human 18-kilodalton cationic antimicrobial protein (CAP18)-derived peptide against murine endotoxemia. Infect Immun 1998; 66(5): 1861–8PubMedGoogle Scholar
  102. 102.
    Peschel A. How do bacteria resist human antimicrobial peptides? Trends Microbiol 2002; 10(4): 179–86PubMedCrossRefGoogle Scholar
  103. 103.
    Shafer WM, Qu X, Waring AJ, et al. Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. Proc Nat Acad Sci U S A 1998; 95(4): 1829–33CrossRefGoogle Scholar
  104. 104.
    Lysenko ES, Gould J, Bals R, et al. Bacterial phosphorylcholine decreases susceptibility to the antimicrobial peptide LL-37/hCAP18 expressed in the upper respiratory tract. Infect Immun 2000; 68(3): 1664–71PubMedCrossRefGoogle Scholar
  105. 105.
    Peschel A, Otto M, Jack R, et al. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 1999; 274: 8405–10PubMedCrossRefGoogle Scholar
  106. 106.
    Ernst RK, Yi EC, Guo L, et al. Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. Science 1999; 286(5444): 1561–5PubMedCrossRefGoogle Scholar
  107. 107.
    Islam D, Bandholtz L, Nilsson J, et al. Downregulation of bactericidal peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulator. Nat Med 2001;7(2): 180–5PubMedCrossRefGoogle Scholar
  108. 108.
    Soong L, Ganz T, Ellison A, et al. Purification and characterization of defensins from cystic fibrosis sputum. Inflamm Res 1997; 46: 98–102PubMedCrossRefGoogle Scholar
  109. 109.
    Panyutich AV, Panyutich EA, Krapivin VA, et al. Plasma defensin concentrations are elevated in patients with septicemia or bacterial meningitis. J Lab Clin Med 1993; 122(2): 202–7PubMedGoogle Scholar
  110. 110.
    Van Wetering S, Mannesse-Lazeroms SP, Van Sterkenburg MA, et al. Effect of defensins on interleukin-8 synthesis in airway epithelial cells. Am J Physiol 1997; 272 (5 Pt 1): L888–96PubMedGoogle Scholar
  111. 111.
    Van Wetering S, Mannesse-Lazeroms SP, Dijkman JH, et al. Effect of neutrophil serine proteinases and defensins on lung epithelial cells: modulation of cytotoxicity and IL-8 production. J Leukoc Biol 1997; 62(2): 217–26PubMedGoogle Scholar
  112. 112.
    Panyutich AV, Hiemstra PS, van Wetering S, et al. Human neutrophil defensin and serpins form complexes and inactivate each other. Am J Respir Cell Mol Biol 1995; 12(3): 351–7PubMedGoogle Scholar
  113. 113.
    Chertov O, Michiel DF, Xu L, et al. Identification of defensin-1, defensin-2, and CAP37/azurocidin as T-cell chemoattractant proteins released from interleukin-8-stimulated neutrophils. J Biol Chem 1996; 271(6): 2935–40PubMedCrossRefGoogle Scholar
  114. 114.
    Yang D, Chen Q, Chertov O, et al. Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells. J Leukoc Biol 2000; 68(1): 9–14PubMedGoogle Scholar
  115. 115.
    Yang D, Chen Q, Schmidt AP, et al. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T-cells. J Exp Med 2000; 192(7): 1069–74PubMedCrossRefGoogle Scholar
  116. 116.
    Lillard Jr JW, Boyaka PN, Chertov O, et al. Mechanisms for induction of acquired host immunity by neutrophil peptide defensins. Proc Natl Acad Sci U S A 1999; 96(2): 651–6PubMedCrossRefGoogle Scholar
  117. 117.
    Zhu QZ, Hu J, Mulay S, et al. Isolation and structure of corticostatin peptides from rabbit fetal and adult lung. Proc Natl Acad Sci U S A 1988; 85(2): 592–6PubMedCrossRefGoogle Scholar
  118. 118.
    Yang D, Chertov O, Bykovskaia S, et al. Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 1999; 286: 525–8PubMedCrossRefGoogle Scholar
  119. 119.
    Niyonsaba F, Someya A, Hirata M, et al. Evaluation of the effects of peptide antibiotics human beta-defensins-l/-2 and LL-37 on histamine release and prostaglandin D (2) production from mast cells. Eur J Immunol 2001; 31(4): 1066–75PubMedCrossRefGoogle Scholar
  120. 120.
    Wang Y, Agerberth B, Lothgren A, et al. Apolipoprotein A-I binds and inhibits the human antibacterial/cytotoxic peptide LL-37. J Biol Chem 1998; 273(50): 33115–8PubMedCrossRefGoogle Scholar
  121. 121.
    Gallo R, Ono M, Povsic T, et al. Syndecans, cell surface heparan sulfate proteoglycans, are induces by a proline-rich antimicrobial peptide from wounds. Proc Natl Acad Sci U S A 1994; 91: 11035–9PubMedCrossRefGoogle Scholar
  122. 122.
    Chan YR, Gallo RL. PR-39, a syndecan-inducing antimicrobial peptide, binds and affects pl30 (Cas). J Biol Chem 1998; 273(44): 28978–85PubMedCrossRefGoogle Scholar
  123. 123.
    Li J, Post M, Volk R, et al. PR39, a peptide regulator of angiogenesis. Nat Med 2000; 6(1): 49–55PubMedCrossRefGoogle Scholar
  124. 124.
    Gao Y, Lecker S, Post MJ, et al. Inhibition of ubiquitin-proteasome pathway-mediated I kappa B alpha degradation by a naturally occurring antibacterial peptide. J Clin Invest 2000; 106(3): 439–48PubMedCrossRefGoogle Scholar
  125. 125.
    Hoffmeyer MR, Scalia R, Ross CR, et al. PR-39, a potent neutrophil inhibitor, attenuates myocardial ischemia-reperfusion injury in mice. Am J Physiol Heart Circ Physiol 2000; 279(6): H2824–8PubMedGoogle Scholar
  126. 126.
    Ikeda Y, Young LH, Scalia R, et al. PR-39, a proline/argininerich antimicrobial peptide, exerts cardioprotective effects in myocardial ischemia-reperfusion. Cardiovasc Res 2001; 49(1): 69–77PubMedCrossRefGoogle Scholar
  127. 127.
    Cole AM, Ganz T, Liese AM, et al. Cutting edge: IFN-inducible ELR-CXC chemokines display defensin-like antimicrobial activity. J Immunol 2001; 167(2): 623–7PubMedGoogle Scholar
  128. 128.
    Giangaspero A, Sandri L, Tossi A. Amphipathic alpha helical antimicrobial peptides. Eur J Biochem 2001; 268(21): 5589–600PubMedCrossRefGoogle Scholar
  129. 129.
    Situ H, Balasubramanian SV, Bobek LA. Role of alpha-helical conformation of histatin-5 in candidacidal activity examined by proline variants. Biochim Biophys Acta 2000; 1475(3): 377–82PubMedCrossRefGoogle Scholar
  130. 130.
    Wieprecht T, Dathe M, Schumann M, et al. Conformational and functional study of magainin 2 in model membrane environments using the new approach of systematic double-D-amino acid replacement. Biochemistry 1996; 35(33): 10844–53PubMedCrossRefGoogle Scholar
  131. 131.
    Wieprecht T, Dathe M, Beyermann M, et al. Peptide hydrophobicity controls the activity and selectivity of magainin 2 amide in interaction with membranes. Biochemistry 1997; 36(20): 6124–32PubMedCrossRefGoogle Scholar
  132. 132.
    Dathe M, Wieprecht T. Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta 1999; 1462(1-2): 71–87PubMedCrossRefGoogle Scholar
  133. 133.
    Wieprecht T, Dathe M, Epand RM, et al. Influence of the angle subtended by the positively charged helix face on the membrane activity of amphipathic, antibacterial peptides. Biochemistry 1997; 36(42): 12869–80PubMedCrossRefGoogle Scholar
  134. 134.
    Dathe M, Wieprecht T, Nikolenko H, et al. Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate antibacterial and haemolytic activity of amphipathic helical peptides. FEBS Lett 1997; 403(2): 208–12PubMedCrossRefGoogle Scholar
  135. 135.
    Oh JE, Hong SY, Lee KH. Structure-activity relationship study: short antimicrobial peptides. J Pept Res 1999; 53(1): 41–6PubMedCrossRefGoogle Scholar
  136. 136.
    Oh JE, Lee KH. Synthesis of novel unnatural amino acid as a building block and its incorporation into an antimicrobial peptide. Bioorg Med Chem 1999; 7(12): 2985–90PubMedCrossRefGoogle Scholar
  137. 137.
    Lee KH, Oh JE. Design and synthesis of novel antimicrobial pseudopeptides with selective membrane-perturbation activity. Bioorg Med Chem 2000; 8(4): 833–9PubMedCrossRefGoogle Scholar
  138. 138.
    Blondelle SE, Takahashi E, Houghten RA, et al. Rapid identification of compounds with enhanced antimicrobial activity by using conformationally defined combinatorial libraries. Biochem J 1996; 313 (Pt 1): 141–7PubMedGoogle Scholar
  139. 139.
    Hong SY, Oh JE, Kwon M, et al. Identification and characterization of novel antimicrobial decapeptides generated by combinatorial chemistry. Antimicrob Agents Chemother 1998; 42(10): 2534–41PubMedGoogle Scholar
  140. 140.
    Lee KH. Development of short antimicrobial peptides derived from host defense peptides or by combinatorial libraries. Curr Pharm Des 2002; 8(9): 795–813PubMedCrossRefGoogle Scholar
  141. 141.
    Yu Q, Lehrer RI, Tarn JP. Engineered salt-insensitive alpha-defensins with end-to-end circularized structures. J Biol Chem 2000; 275(6): 3943–9PubMedCrossRefGoogle Scholar
  142. 142.
    Fernandez-Lopez S, Kim HS, Choi EC, et al. Antibacterial agents based on the cyclic D,L-alpha-peptide architecture. Nature 2001; 412(6845): 452–5PubMedCrossRefGoogle Scholar
  143. 143.
    De Bolle MF, Osborn RW, Goderis U, et al. Antimicrobial peptides from Mirabilis jalapa and Amaranthus caudatus: expression, processing, localization and biological activity in transgenic tobacco. Plant Mol Biol 1996; 31(5): 993–1008PubMedCrossRefGoogle Scholar
  144. 144.
    Okamoto M, Mitsuhara I, Ohshima M, et al. Enhanced expression of an antimicrobial peptide sarcotoxin IA by GUS fusion in transgenic tobacco plants. Plant Cell Physiol 1998; 39(1): 57–63PubMedCrossRefGoogle Scholar
  145. 145.
    Cary JW, Rajasekaran K, Jaynes JM, et al. Transgenic expression of a gene encoding a synthetic antimicrobial peptide results in inhibition of fungal growth in vitro and in planta. Plant Science 2000; 154(2): 171–81PubMedCrossRefGoogle Scholar
  146. 146.
    Piers KL, Brown MH, Hancock RE. Recombinant DNA procedures for producing small antimicrobial cationic peptides in bacteria. Gene 1993; 134(1): 7–13PubMedCrossRefGoogle Scholar
  147. 147.
    Harrison SJ, McManus AM, Marcus JP, et al. Purification and characterization of a plant antimicrobial peptide expressed in Escherichia coli. Protein Expr Purif 1999; 15(2): 171–7PubMedCrossRefGoogle Scholar
  148. 148.
    Yarus S, Rosen JM, Cole AM, et al. Production of active bovine tracheal antimicrobial peptide in milk of transgenic mice. Proc Natl Acad Sci U S A 1996; 93(24): 14118–21PubMedCrossRefGoogle Scholar
  149. 149.
    O’Connell BC, Xu T, Walsh TJ, et al. Transfer of a gene encoding the anticandidal protein histatin 3 to salivary glands. Hum Gene Ther 1996; 7(18): 2255–61PubMedCrossRefGoogle Scholar
  150. 150.
    Fehlbaum P, Rao M, Zasloff M, et al. An essential amino acid induces epithelial beta-defensin expression. Proc Natl Acad Sci U S A 2000; 97(23): 12723–8PubMedCrossRefGoogle Scholar
  151. 151.
    Loury D, Embree JR, Steinberg DA, et al. Effect of local application of the antimicrobial peptide IB-367 on the incidence and severity of oral mucositis in hamsters. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1999; 87(5): 544–51PubMedCrossRefGoogle Scholar
  152. 152.
    Gough M, Hancock RE, Kelly NM. Antiendotoxin activity of cationic peptide antimicrobial agents. Infect Immun 1996; 64(12): 4922–7PubMedGoogle Scholar
  153. 153.
    Ahmad I, Perkins WR, Lupan DM, et al. Liposomal entrapment of the neutrophil-derived peptide indolicidin endows it with in vivo antifungal activity. Biochim Biophys Acta 1995; 1237(2): 109–14PubMedCrossRefGoogle Scholar
  154. 154.
    Biragyn A, Surenhu M, Yang D, et al. Mediators of innate immunity that target immature, but not mature, dendritic cells induce antitumor immunity when genetically fused with nonimmunogenic tumor antigens. J Immunol 2001; 167(11): 6644–53PubMedGoogle Scholar
  155. 155.
    Nibbering PH, Welling MM, van den Broek PJ, et al. Radiolabelled antimicrobial peptides for imaging of infections: a review. Nucl Med Commun 1998; 19(12): 1117–21PubMedCrossRefGoogle Scholar
  156. 156.
    Welling MM, Paulusma-Annema A, Balter HS, et al. Technetium-99m labelled antimicrobial peptides discriminate between bacterial infections and sterile inflammations. Eur J Nucl Med 2000; 27(3): 292–301PubMedCrossRefGoogle Scholar
  157. 157.
    Welling MM, Lupetti A, Balter HS, et al. 99mTc-labeled antimicrobial peptides for detection of bacterial and Candida al-bicans infections. J Nucl Med 2001; 42(5): 788–94PubMedGoogle Scholar
  158. 158.
    Jacob L, Zasloff M. Potential therapeutic applications of mag-ainins and other antimicrobial agents of animal origin. Ciba Found Symp 1994; 186: 197–216PubMedGoogle Scholar

Copyright information

© Adis International Limited 2003

Authors and Affiliations

  • Andreas R. Koczulla
    • 1
  • Robert Bals
    • 1
  1. 1.Department of Internal Medicine, Division of PulmonologyHospital of the University of Marburg, Philipps-University Marburg, BaldingerstrasseMarburgGermany

Personalised recommendations