, Volume 62, Issue 10, pp 1481–1502 | Cite as

Food-Drug Interactions

  • Lars E. Schmidt
  • Kim Dalhoff
Review Article


Interactions between food and drugs may inadvertently reduce or increase the drug effect. The majority of clinically relevant food-drug interactions are caused by food-induced changes in the bioavailability of the drug. Since the bioavailability and clinical effect of most drugs are correlated, the bioavailability is an important pharmacokinetic effect parameter. However, in order to evaluate the clinical relevance of a food-drug interaction, the impact of food intake on the clinical effect of the drug has to be quantified as well. As a result of quality review in healthcare systems, healthcare providers are increasingly required to develop methods for identifying and preventing adverse food-drug interactions. In this review of original literature, we have tried to provide both pharmacokinetic and clinical effect parameters of clinically relevant food-drug interactions.

The most important interactions are those associated with a high risk of treatment failure arising from a significantly reduced bioavailability in the fed state. Such interactions are frequently caused by chelation with components in food (as occurs with alendronic acid, clodronic acid, didanosine, etidronic acid, penicillamine and tetracycline) or dairy products (ciprofloxacin and norfloxacin), or by other direct interactions between the drug and certain food components (avitriptan, indinavir, itraconazole solution, levodopa, melphalan, mercaptopurine and perindopril). In addition, the physiological response to food intake, in particular gastric acid secretion, may reduce the bioavailability of certain drugs (ampicillin, azithromycin capsules, didanosine, erythromycin stearate or enteric coated, and isoniazid). For other drugs, concomitant food intake may result in an increase in drug bioavailability either because of a food-induced increase in drug solubility (albendazole, atovaquone, griseofulvin, isotretinoin, lovastatin, mefloquine, saquinavir and tacrolimus) or because of the secretion of gastric acid (itraconazole capsules) or bile (griseofulvin and halofantrine) in response to food intake. For most drugs, such an increase results in a desired increase in drug effect, but in others it may result in serious toxicity (halofantrine).


Isotretinoin Terfenadine Saquinavir Griseofulvin Grapefruit Juice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



No sources of funding or conflicts of interest are relevant to the contents of this manuscript.


  1. 1.
    Gauthier I, Malone M. Drug-food interactions in hospitalised patients. Methods of prevention. Drug Saf 1998; 18(6): 383–93PubMedCrossRefGoogle Scholar
  2. 2.
    Harbour R, Miller J, on behalf of the Scottish Intercollegiate Guidelines Network Grading Review Group. A new system for grading recommendations in evidence based guidelines. BMJ 2001; 323: 334–6PubMedCrossRefGoogle Scholar
  3. 3.
    Ray K, Dorman S, Watson R. Severe hyperkalaemia due to the concomitant use of salt substitutes and ACE inhibitors in hypertension: a potentially life threatening interaction. J Hum Hypertens 1999; 13(10): 717–20PubMedCrossRefGoogle Scholar
  4. 4.
    Reardon LC, Macpherson DS. Hyperkalemia in outpatients using angiotensin-converting enzyme inhibitors. How much should we worry? Arch Intern Med 1998; 158(1): 26–32Google Scholar
  5. 5.
    McNamara PJ, Jewell RC, Jensen BK, et al. Food increases the bioavailability of acitretin. J Clin Pharmacol 1988; 28(11): 1051–5PubMedGoogle Scholar
  6. 6.
    Gertz BJ, Holland SD, Kline WF, et al. Studies of the oral bioavailability of alendronate. Clin Pharmacol Ther 1995; 58(3): 288–98PubMedCrossRefGoogle Scholar
  7. 7.
    Awadzi K, Hero M, Opoku NO, et al. The chemotherapy of onchocerciasis XVII. A clinical evaluation of albendazole in patients with onchocerciasis; effects of food and pretreatment with ivermectin on drug response and pharmacokinetics. Trop Med Parasitol 1994; 45(3): 203–8PubMedGoogle Scholar
  8. 8.
    Lange H, Eggers R, Bircher J. Increased systemic availability of albendazole when taken with a fatty meal. Eur J Clin Pharmacol 1988; 34(3): 315–7PubMedCrossRefGoogle Scholar
  9. 9.
    Eshelman FN, Spyker DA. Pharmacokinetics of amoxicillin and ampicillin: crossover study of the effect of food. Antimicrob Agents Chemother 1978; 14(4): 539–43PubMedCrossRefGoogle Scholar
  10. 10.
    Neu HC. Antimicrobial activity and human pharmacology of amoxicillin. J Infect Dis 1974; 129: S123–31PubMedCrossRefGoogle Scholar
  11. 11.
    Neuvonen PJ, Elonen E, Pentikainen PJ. Comparative effect of food on absorption of ampicillin and pivampicillin. J Int Med Res 1977; 5(1): 71–6PubMedGoogle Scholar
  12. 12.
    Welling PG, Huang H, Koch PA, et al. Bioavailability of ampicillin and amoxicillin in fasted and nonfasted subjects. J Pharm Sci 1977; 66(4): 549–52PubMedCrossRefGoogle Scholar
  13. 13.
    Welling PG, Tse FL. The influence of food on the absorption of antimicrobial agents. J Antimicrob Chemother 1982; 9(1): 7–27PubMedCrossRefGoogle Scholar
  14. 14.
    Dixon R, Pozniak AL, Watt HM, et al. Single-dose and steady-state pharmacokinetics of a novel microfluidized suspension of atovaquone in human immunodeficiency virus-seropositive patients. Antimicrob Agents Chemother 1996; 40(3): 556–60PubMedGoogle Scholar
  15. 15.
    Falloon J, Sargent S, Piscitelli SC, et al. Atovaquone suspension in HIV-infected volunteers: pharmacokinetics, pharmacodynamics, and TMP-SMX interaction study. Pharmacotherapy 1999; 19(9): 1050–6PubMedCrossRefGoogle Scholar
  16. 16.
    Freeman CD, Klutman NE, Lamp KC, et al. Relative bioavailability of atovaquone suspension when administered with an enteral nutrition supplement. Ann Pharmacother 1998; 32(10): 1004–7PubMedCrossRefGoogle Scholar
  17. 17.
    Rolan PE, Mercer AJ, Weatherley BC, et al. Examination of some factors responsible for a food-induced increase in absorption of atovaquone. Br J Clin Pharmacol 1994; 37(1): 13–20PubMedCrossRefGoogle Scholar
  18. 18.
    Hopkins S. Clinical toleration and safety of azithromycin. Am J Med 1991; 91(3A): S40–5CrossRefGoogle Scholar
  19. 19.
    Singhvi SM, McKinstry DN, Shaw JM, et al. Effect of food on the bioavailability of captopril in healthy subjects. J Clin Pharmacol 1982; 22(2–3): 135–40PubMedGoogle Scholar
  20. 20.
    Mäntylä R, Männistö PT, Vuorela A, et al. Impairment of captopril bioavailability by concomitant food and antacid intake. Int J Clin Pharmacol Ther Toxicol 1984; 22(11): 626–9PubMedGoogle Scholar
  21. 21.
    Salvetti A, Pedrinelli R, Magagna A, et al. Influence of food on acute and chronic effects of captopril in essential hypertensive patients. J Cardiovasc Pharmacol 1985; 7 Suppl. 1: S25-9Google Scholar
  22. 22.
    Ohman KP, Kagedal B, Larsson R, et al. Pharmacokinetics of captopril and its effects on blood pressure during acute and chronic administration and in relation to food intake. J Cardiovasc Pharmacol 1985; 7 Suppl. 1: S20-4Google Scholar
  23. 23.
    Levy RH, Pitlick WH, Troupin AS, et al. Pharmacokinetics of carbamazepine in normal man. Clin Pharmacol Ther 1975; 17(6): 657–68PubMedGoogle Scholar
  24. 24.
    Finn A, Straughn A, Meyer M, et al. Effect of dose and food on the bioavailability of cefuroxime axetil. Biopharm Drug Dispos 1987; 8(6): 519–26PubMedCrossRefGoogle Scholar
  25. 25.
    Ginsburg CM, McCracken Jr GH, Petruska M, et al. Pharmacokinetics and bactericidal activity of cefuroxime axetil. Antimicrob Agents Chemother 1985; 28(4): 504–7PubMedCrossRefGoogle Scholar
  26. 26.
    James NC, Donn KH, Collins JJ, et al. Pharmacokinetics of cefuroxime axetil and cefaclor: relationship of concentrations in serum to MICs for common respiratory pathogens. Antimicrob Agents Chemother 1991; 35(9): 1860–3PubMedCrossRefGoogle Scholar
  27. 27.
    Sommers DK, van Wyk M, Moncrieff J, et al. Influence of food and reduced gastric acidity on the bioavailability of bacampicillin and cefuroxime axetil. Br J Clin Pharmacol 1984; 18(4): 535–9PubMedCrossRefGoogle Scholar
  28. 28.
    Williams PE, Harding SM. The absolute bioavailability of oral cefuroxime axetil in male and female volunteers after fasting and after food. J Antimicrob Chemother 1984; 13(2): 191–6PubMedCrossRefGoogle Scholar
  29. 29.
    McCracken Jr GH, Ginsburg CM, Clahsen JC, et al. Pharmacologic evaluation of orally administered antibiotics in infants and children: effect of feeding on bioavailability. Pediatrics 1978; 62(5): 738–43PubMedGoogle Scholar
  30. 30.
    Neuvonen PJ, Kivisto KT, Lehto P. Interference of dairy products with the absorption of ciprofloxacin. Clin Pharmacol Ther 1991; 50 (5 Pt 1): 498–502PubMedCrossRefGoogle Scholar
  31. 31.
    Laitinen K, Patronen A, Harju P, et al. Timing of food intake has a marked effect on the bioavailability of clodronate. Bone 2000; 27(2): 293–6PubMedCrossRefGoogle Scholar
  32. 32.
    Schaad-Lanyi Z, Dieterle W, Dubois JP, et al. Pharmacokinetics of clofazimine in healthy volunteers. Int J Lepr Other Mycobact Dis 1987; 55(1): 9–15PubMedGoogle Scholar
  33. 33.
    Hartman NR, Yarchoan R, Pluda JM, et al. Pharmacokinetics of 2’,3’-dideoxyinosine in patients with severe human immunodeficiency infection. II. The effects of different oral formulations and the presence of other medications. Clin Pharmacol Ther 1991; 50(3): 278–85PubMedCrossRefGoogle Scholar
  34. 34.
    Knupp CA, Milbrath R, Barbhaiya RH. Effect of time of food administration on the bioavailability of didanosine from a chewable tablet formulation. J Clin Pharmacol 1993; 33(6): 568–73PubMedGoogle Scholar
  35. 35.
    Shyu WC, Knupp CA, Pittman A, et al. Food-induced reduction in bioavailability of didanosine. Clin Pharmacol Ther 1991; 50 (5 Pt 1): 503–7PubMedCrossRefGoogle Scholar
  36. 36.
    Brown DD, Juhl RP, Warner SL. Decreased bioavailability of digoxin due to hypocholesterolemic interventions. Circulation 1978; 58(1): 164–72PubMedCrossRefGoogle Scholar
  37. 37.
    Huupponen R, Seppala P, Iisalo E. Effect of guar gum, a fibre preparation, on digoxin and penicillin absorption in man. Eur J Clin Pharmacol 1984; 26(2): 279–81PubMedCrossRefGoogle Scholar
  38. 38.
    Meyer FP, Specht H, Quednow B, et al. Influence of milk on the bioavailability of doxycycline: new aspects. Infection 1989; 17(4): 245–6PubMedCrossRefGoogle Scholar
  39. 39.
    Welling PG, Huang H, Hewitt PF, et al. Bioavailability of erythromycin stearate: influence of food and fluid volume. J Pharm Sci 1978; 67(6): 764–6PubMedCrossRefGoogle Scholar
  40. 40.
    Welling PG, Elliott RL, Pitterle ME, et al. Plasma levels following single and repeated doses of erythromycin estolate and erythromycin stearate. J Pharm Sci 1979; 68(2): 150–5PubMedCrossRefGoogle Scholar
  41. 41.
    Rutland J, Berend N, Marlin GE. The influence of food on the bioavailability of new formulations of erythromycin stearate and base. Br J Clin Pharmacol 1979; 8(4): 343–7PubMedCrossRefGoogle Scholar
  42. 42.
    Schreiner A, Digranes A. Absorption of erythromycin stearate and enteric-coated erythromycin base after a single oral dose immediately before breakfast. Infection 1984; 12(5): 345–8PubMedCrossRefGoogle Scholar
  43. 43.
    Digranes A, Josefsson K, Schreiner A. Influence of food on the absorption of erythromycin from enteric-coated pellets and stearate tablets. Curr Ther Res Clin Exp 1984; 35(3): 313–20Google Scholar
  44. 44.
    Clayton D, Leslie A. The bioavailability of erythromycin stearate versus enteric-coated erythromycin base when taken immediately before and after food. J Int Med Res 1981; 9(6): 470–7PubMedGoogle Scholar
  45. 45.
    Mäntylä R, Ailio A, Allonen H, et al. Bioavailability and effect of food on the gastrointestinal absorption of two erythromycin derivatives. Ann Clin Res 1978; 10(5): 258–62PubMedGoogle Scholar
  46. 46.
    Tuominen RK, Männistö PT, Pohto P, et al. Absorption of erythromycin acistrate and erythromycin base in the fasting and non-fasting state. J Antimicrob Chemother 1988; 21 Suppl. D: 45–55PubMedCrossRefGoogle Scholar
  47. 47.
    Malmborg AS. Effect of food on absorption of erythromycin. A study of two derivatives, the stearate and the base. J Antimicrob Chemother 1979; 5(5): 591–9PubMedCrossRefGoogle Scholar
  48. 48.
    Randinitis EJ, Sedman AJ, Welling PG, et al. Effect of ahigh-fat meal on the bioavailability of a polymer-coated erythromycin particle tablet formulation. J Clin Pharmacol 1989; 29(1): 79–84PubMedGoogle Scholar
  49. 49.
    Coyne TC, Shum S, Chun AH, et al. Bioavailability of erythromycin ethylsuccinate in pediatric patients. J Clin Pharmacol 1978; 18(4): 194–202PubMedGoogle Scholar
  50. 50.
    Cook GJ, Blake GM, Fogelman I. The time of day that etidronate is ingested does not influence its therapeutic effect in osteoporosis. Scand J Rheumatol 2000; 29(1): 62–4PubMedCrossRefGoogle Scholar
  51. 51.
    Fogelman I, Smith L, Mazess R, et al. Absorption of oral diphosphonate in normal subjects. Clin Endocrinol (Oxf) 1986; 24(1): 57–62CrossRefGoogle Scholar
  52. 52.
    McCrindle JL, Li Kam Wa TC, Barren W, et al. Effect of food on the absorption of frusemide and bumetanide in man. Br J Clin Pharmacol 1996; 42(6): 743–6PubMedCrossRefGoogle Scholar
  53. 53.
    Paintaud G, Alvan G, Eckernas SA, et al. The influence of food intake on the effect of two controlled release formulations of furosemide. Biopharm Drug Dispos 1995; 16(3): 221–32PubMedCrossRefGoogle Scholar
  54. 54.
    Beermann B, Midskov C. Reduced bioavailability and effect of furosemide given with food. Eur J Clin Pharmacol 1986; 29(6): 725–7PubMedCrossRefGoogle Scholar
  55. 55.
    Hammarlund MM, Paalzow LK, Odlind B. Pharmacokinetics of furosemide in man after intravenous and oral administration. Application of moment analysis. Eur J Clin Pharmacol 1984; 26(2): 197–207PubMedCrossRefGoogle Scholar
  56. 56.
    Griffy KG. Pharmacokinetics of oral ganciclovir capsules in HIV-infected persons. AIDS 1996; 10 Suppl. 4: S3-6Google Scholar
  57. 57.
    Lavelle J, Follansbee S, Trapnell CB, et al. Effect of food on the relative bioavailability of oral ganciclovir. J Clin Pharmacol 1996; 36(3): 238–41PubMedGoogle Scholar
  58. 58.
    Aoyagi N, Ogata H, Kaniwa N, et al. Effect of food on the bioavailability of griseofulvin from microsize and PEG ultra-microsize (GRIS-PEG) plain tablets. J Pharmacobiodyn 1982; 5(2): 120–4PubMedCrossRefGoogle Scholar
  59. 59.
    Crounse RG. Human pharmacology of griseofulvin: the effect of fat intake on gastrointestinal absorption. J Invest Dermatol 1961; 37: 529–33PubMedCrossRefGoogle Scholar
  60. 60.
    Ginsburg CM, McCracken GH, Petruska M, et al. Effect of feeding on bioavailability of griseofulvin in children. J Pediatr 1983; 102(2): 309–11PubMedCrossRefGoogle Scholar
  61. 61.
    Khalafalla N, Elgholmy ZA, Khalil SA. Influence of high fat diet on GI absorption of griseofulvin tablets in man. Pharmazie 1981; 36(10): 692–3PubMedGoogle Scholar
  62. 62.
    Ogunbona FA, Smith IF, Olawoye OS. Fat contents of meals and bioavailability of griseofulvin in man. J Pharm Pharmacol 1985; 37(4): 283–4PubMedCrossRefGoogle Scholar
  63. 63.
    Milton KA, Edwards G, Ward SA, et al. Pharmacokinetics of halofantrine in man: effects of food and dose size. Br J Clin Pharmacol 1989; 28(1): 71–7PubMedCrossRefGoogle Scholar
  64. 64.
    Melander A, Liedholm H, McLean A. Concomitant food intake does enhance the bioavailability and effect of hydralazine. Clin Pharmacol Ther 1985; 38(4): 475–6PubMedCrossRefGoogle Scholar
  65. 65.
    Waiden RJ, Hernandez R, Witts D, et al. Effect of food on the absorption of hydralazine in man. Eur J Clin Pharmacol 1981; 20(1): 53–8CrossRefGoogle Scholar
  66. 66.
    Liedholm H, Wahlin-Boll E, Hanson A, et al. Influence of food on the bioavailability of ‘real’ and ‘apparent’ hydralazine from conventional and slow-release preparations. Drug Nutr Interact 1982; 1(4): 293–302PubMedGoogle Scholar
  67. 67.
    Jackson SH, Shepherd AM, Ludden TM, et al. Effect of food on oral availability of apresoline and controlled release hydralazine in hypertensive patients. J Cardiovasc Pharmacol 1990; 16(4): 624–8PubMedCrossRefGoogle Scholar
  68. 68.
    Shepherd AM, Irvine NA, Ludden TM. Effect of food on blood hydralazine levels and response in hypertension. Clin Pharmacol Ther 1984; 36(1): 14–8PubMedCrossRefGoogle Scholar
  69. 69.
    Semple HA, Koo W, Tarn YK, et al. Interactions between hydralazine and oral nutrients in humans. Ther Drug Monit 1991; 13(4): 304–8PubMedCrossRefGoogle Scholar
  70. 70.
    Yeh KC, Deutsch PJ, Haddix H, et al. Single-dose pharmacokinetics of indinavir and the effect of food. Antimicrob Agents Chemother 1998; 42(2): 332–8PubMedGoogle Scholar
  71. 71.
    Joshi MV, Saraf YS, Kshirsagar NA, et al. Food reduces isoniazid bioavailability in normal volunteers. J Assoc Physicians India 1991; 39(6): 470–1PubMedGoogle Scholar
  72. 72.
    Männistö P, Mäntylä R, Klinge E, et al. Influence of various diets on the bioavailability of isoniazid. J Antimicrob Chemother 1982; 10(5): 427–34PubMedCrossRefGoogle Scholar
  73. 73.
    Melander A, Danielson K, Hanson A, et al. Reduction of isoniazid bioavailability in normal men by concomitant intake of food. Acta Med Scand 1976; 200(1–2): 93–7PubMedGoogle Scholar
  74. 74.
    Peloquin CA, Namdar R, Dodge AA, et al. Pharmacokinetics of isoniazid under fasting conditions, with food, and with antacids. Int J Tuberc Lung Dis 1999; 3(8): 703–10PubMedGoogle Scholar
  75. 75.
    Zent C, Smith P. Study of the effect of concomitant food on the bioavailability of rifampicin, isoniazid and pyrazinamide. Tuber Lung Dis 1995; 76(2): 109–13PubMedCrossRefGoogle Scholar
  76. 76.
    Colburn WA, Gibson DM, Wiens E, et al. Food increases the bioavailability of isotretinoin. J Clin Pharmacol 1983; 23(11–12): 534–9PubMedGoogle Scholar
  77. 77.
    Barone JA, Koh JG, Bierman RH, et al. Food interaction and steady-state pharmacokinetics of itraconazole capsules in healthy male volunteers. Antimicrob Agents Chemother 1993; 37(4): 778–84PubMedCrossRefGoogle Scholar
  78. 78.
    Van Peer A, Woestenborghs R, Heykants J, et al. The effects of food and dose on the oral systemic availability of itraconazole in healthy subjects. Eur J Clin Pharmacol 1989; 36(4): 423–6PubMedCrossRefGoogle Scholar
  79. 79.
    Wishart JM. The influence of food on the pharmacokinetics of itraconazole in patients with superficial fungal infection. J Am Acad Dermatol 1987; 17 (2 Pt 1): 220–3PubMedCrossRefGoogle Scholar
  80. 80.
    Zimmermann T, Yeates RA, Albrecht M, et al. Influence of concomitant food intake on the gastrointestinal absorption of fluconazole and itraconazole in Japanese subjects. Int J Clin Pharmacol Res 1994; 14(3): 87–93PubMedGoogle Scholar
  81. 81.
    Zimmermann T, Yeates RA, Laufen H, et al. Influence of concomitant food intake on the oral absorption of two triazole antifungal agents, itraconazole and fluconazole. Eur J Clin Pharmacol 1994; 46(2): 147–50PubMedCrossRefGoogle Scholar
  82. 82.
    Barone JA, Moskovitz BL, Guarnieri J, et al. Food interaction and steady-state pharmacokinetics of itraconazole oral solution in healthy volunteers. Pharmacotherapy 1998; 18(2): 295–301PubMedGoogle Scholar
  83. 83.
    Van de Velde V, Van Peer AP, Heykants JJ, et al. Effect of food on the pharmacokinetics of a new hydroxypropyl-beta-cyclodextrin formulation of itraconazole. Pharmacotherapy 1996; 16(3): 424–8PubMedGoogle Scholar
  84. 84.
    Astarloa R, Mena MA, Sanchez V, et al. Clinical and pharmacokinetic effects of a diet rich in insoluble fiber on Parkinson disease. Clin Neuropharmacol 1992; 15(5): 375–80PubMedCrossRefGoogle Scholar
  85. 85.
    Baruzzi A, Contin M, Riva R, et al. Influence of meal ingestion time on pharmacokinetics of orally administered levodopa in parkinsonian patients. Clin Neuropharmacol 1987; 10(6): 527–37PubMedCrossRefGoogle Scholar
  86. 86.
    Contin M, Riva R, Martinelli P, et al. Effect of meal timing on the kinetic-dynamic profile of levodopa/carbidopa controlled release in parkinsonian patients. Eur J Clin Pharmacol 1998; 54(4): 303–8PubMedCrossRefGoogle Scholar
  87. 87.
    Nutt JG, Woodward WR, Hammerstad JP, et al. The ‘on-off’ phenomenon in Parkinson’s disease. Relation to levodopa absorption and transport. N Engl J Med 1984; 310(8): 483–8PubMedCrossRefGoogle Scholar
  88. 88.
    Malcolm SL, Allen JG, Bird H, et al. Single-dose pharmacokinetics of Madopar HBS in patients and effect of food and antacid on the absorption of Madopar HBS in volunteers. Eur Neurol 1987; 27 Suppl. 1: 28–35PubMedCrossRefGoogle Scholar
  89. 89.
    Richter WO, Jacob BG, Schwandt P. Interaction between fibre and lovastatin [letter]. Lancet 1991; 338(8768): 706PubMedCrossRefGoogle Scholar
  90. 90.
    Dobrinska MR, Stubbs RJ, Gregg H, et al. Effects of dose and food on HMG-CoA reductase inhibitor profiles after lovastatin (mevacor) [abstract]. Pharm Res 1988; 5: S182Google Scholar
  91. 91.
    McCabe BJ. Dietary tyramine and other pressor amines in MAOI regimens: a review. J Am Diet Assoc 1986; 86(8): 1059–64PubMedGoogle Scholar
  92. 92.
    Blackwell B, Marley E, Price J, et al. Hypertensive interactions between monoamine oxidase inhibitors and foodstuffs. Br J Psychiatry 1967; 113(497): 349–65PubMedCrossRefGoogle Scholar
  93. 93.
    Crevoisier C, Handschin J, Barre J, et al. Food increases the bioavailability of mefloquine. Eur J Clin Pharmacol 1997; 53(2): 135–9PubMedCrossRefGoogle Scholar
  94. 94.
    Bosanquet AG, Gilby ED. Comparison of the fed and fasting states on the absorption of melphalan in multiple myeloma. Cancer Chemother Pharmacol 1984; 12(3): 183–6PubMedCrossRefGoogle Scholar
  95. 95.
    Reece PA, Kotasek D, Morris RG, et al. The effect of food on oral melphalan absorption. Cancer Chemother Pharmacol 1986; 16(2): 194–7PubMedCrossRefGoogle Scholar
  96. 96.
    Dupuis LL, Koren G, Silverman ED, et al. Influence of food on the bioavailability of oral methotrexate in children. J Rheumatol 1995; 22(8): 1570–3PubMedGoogle Scholar
  97. 97.
    Madanat F, Awidi A, Shaheen O, et al. Effects of food and gender on the pharmacokinetics of methotrexate in children. Res Commun Chem Pathol Pharmacol 1987; 55(2): 279–82PubMedGoogle Scholar
  98. 98.
    Pinkerton CR, Welshman SG, Glasgow JF, et al. Can food influence the absorption of methotrexate in children with acute lymphoblastic leukaemia? Lancet 1980; 2(8201): 944–6PubMedCrossRefGoogle Scholar
  99. 99.
    Burton NK, Barnett MJ, Aherne GW, et al. The effect of food on the oral administration of 6-mercaptopurine. Cancer Chemother Pharmacol 1986; 18(1): 90–1PubMedCrossRefGoogle Scholar
  100. 100.
    Lonnerholm G, Kreuger A, Lindstrom B, et al. Oral mercaptopurine in childhood leukemia: influence of food intake on bioavailability. Pediatr Hematol Oncol 1989; 6(2): 105–12PubMedCrossRefGoogle Scholar
  101. 101.
    Riccardi R, Balis FM, Ferrara P, et al. Influence of food intake on bioavailability of oral 6-mercaptopurine in children with acute lymphoblastic leukemia. Pediatr Hematol Oncol 1986; 3(4): 319–24PubMedCrossRefGoogle Scholar
  102. 102.
    Karim A, Rozek LF, Smith ME, et al. Effects of food and antacid on oral absorption of misoprostol, a synthetic prostaglandin E1 analog. J Clin Pharmacol 1989; 29(5): 439–43PubMedGoogle Scholar
  103. 103.
    Rutgeerts P, Vantrappen G, Hiele M. Postprandial administration of prostaglandin (misoprostol) produces less adverse effects on intestinal transit than its preprandial administration [abstract]. Gastroenterology 1988; 94 (5 Pt 2): A391Google Scholar
  104. 104.
    Challenor VF, Waller DG, Gruchy BS, et al. Food and nifedipine pharmacokinetics. Br J Clin Pharmacol 1987; 23(2): 248–9PubMedCrossRefGoogle Scholar
  105. 105.
    Hirasawa K, Shen WF, Kelly DT, et al. Effect of food ingestion on nifedipine absorption and haemodynamic response. Eur J Clin Pharmacol 1985; 28(1): 105–7PubMedCrossRefGoogle Scholar
  106. 106.
    Reitberg DP, Love SJ, Quercia T, et al. Effect of food on nifedipine pharmacokinetics. Clin Pharmacol Ther 1987; 42(1): 2–5CrossRefGoogle Scholar
  107. 107.
    Ochs HR, Ramsch KD, Verburg-Ochs B, et al. Nifedipine: kinetics and dynamics after single oral doses. Klin Wochenschr 1984; 62(9): 427–9PubMedCrossRefGoogle Scholar
  108. 108.
    Ueno K, Kawashima S, Uemoto K, et al. Effect of food on nifedipine sustained-release preparation. DICP 1989; 23(9): 662–5PubMedGoogle Scholar
  109. 109.
    Balogh Nemes K, Horvath V, Grezal G, et al. Food interaction pharmacokinetic study of cordaflex 20 mg retard filmtablet in healthy volunteers. Int J Clin Pharmacol Ther 1998; 36(5): 263–9PubMedGoogle Scholar
  110. 110.
    Abrahamsson B, Alpsten M, Bake B, et al. Drug absorption from nifedipine hydrophilic matrix extended-release (ER) tablet-comparison with an osmotic pump tablet and effect of food. J Control Release 1998; 52(3): 301–10PubMedCrossRefGoogle Scholar
  111. 111.
    Minami R, Inotsume N, Nakano M, et al. Effect of milk on absorption of norfloxacin in healthy volunteers. J Clin Pharmacol 1993; 33(12): 1238–40PubMedGoogle Scholar
  112. 112.
    Wise R. Norfloxacin —a review of pharmacology and tissue penetration. J Antimicrob Chemother 1984; 13 Suppl. B: 59–64PubMedCrossRefGoogle Scholar
  113. 113.
    Bozigian HP, Pritchard JF, Gooding AE, et al. Ondansetron absorption in adults: effect of dosage form, food, and antacids. J Pharm Sci 1994; 83(7): 1011–3PubMedCrossRefGoogle Scholar
  114. 114.
    Bergstrom RF, Kay DR, Harkcom TM, et al. Penicillamine kinetics in normal subjects. Clin Pharmacol Ther 1981; 30(3): 404–13PubMedCrossRefGoogle Scholar
  115. 115.
    Osman MA, Patel RB, Schuna A, et al. Reduction in oral penicillamine absorption by food, antacid, and ferrous sulfate. Clin Pharmacol Ther 1983; 33(4): 465–70PubMedCrossRefGoogle Scholar
  116. 116.
    Schuna A, Osman MA, Patel RB, et al. Influence of food on the bioavailability of penicillamine. J Rheumatol 1983; 10(1): 95–7PubMedGoogle Scholar
  117. 117.
    Berlin H, Brante G. Studies on oral utilization of penicillin V. Antibiotics Annu 1958–1959: 149–57Google Scholar
  118. 118.
    Finkel Y, Bolme P, Eriksson M. The effect of food on the oral absorption of penicillin V preparations in children. Acta Pharmacol Toxicol 1981; 49(4): 301–4CrossRefGoogle Scholar
  119. 119.
    McCarthy CG, Finland M. Absorption and excretion of four penicillins; penicillin G, penicillin V, phenethicillin and phenylmercaptomethyl penicillin. N Engl J Med 1960; 263: 315–26CrossRefGoogle Scholar
  120. 120.
    Lecocq B, Funck-Brentano C, Lecocq V, et al. Influence of food on the pharmacokinetics of perindopril and the time course of angiotensin-converting enzyme inhibition in serum. Clin Pharmacol Ther 1990; 47(3): 397–402PubMedCrossRefGoogle Scholar
  121. 121.
    Bauer LA. Interference of oral phenytoin absorption by continuous nasogastric feedings. Neurology 1982; 32(5): 570–2PubMedCrossRefGoogle Scholar
  122. 122.
    Hatton RC. Dietary interaction with phenytoin. Clin Pharm 1984; 3(2): 110–1PubMedGoogle Scholar
  123. 123.
    Rodman DP, Stevenson TL, Ray TR. Phenytoin malabsorption after jejunostomy tube delivery. Pharmacotherapy 1995; 15(6): 801–5PubMedGoogle Scholar
  124. 124.
    Worden Jr JP, Wood Jr CA, Workman CH. Phenytoin and nasogastric feedings [letter]. Neurology 1984; 34(1): 132PubMedCrossRefGoogle Scholar
  125. 125.
    Pan HY, DeVault AR, Brescia D, et al. Effect of food on pravastatin pharmacokinetics and pharmacodynamics. Int J Clin Pharmacol Ther Toxicol 1993; 31(6): 291–4PubMedGoogle Scholar
  126. 126.
    Woo E, Greenblatt DJ. Effect of food on enteral absorption of quinidine. Clin Pharmacol Ther 1980; 27(2): 188–93PubMedCrossRefGoogle Scholar
  127. 127.
    Buniva G, Pagani V, Carozzi A. Bioavailability of rifampicin capsules. Int J Clin Pharmacol Ther Toxicol 1983; 21(8): 404–9PubMedGoogle Scholar
  128. 128.
    Polasa K, Krishnaswamy K. Effect of food on bioavailability of rifampicin. J Clin Pharmacol 1983; 23(10): 433–7PubMedGoogle Scholar
  129. 129.
    Siegler DI, Bryant M, Burley DM, et al. Effect of meals on rifampicin absorption. Lancet 1974; 2(7874): 197–8PubMedCrossRefGoogle Scholar
  130. 130.
    Peloquin CA, Namdar R, Singleton MD, et al. Pharmacokinetics of rifampin under fasting conditions, with food, and with antacids. Chest 1999; 115(1): 12–8PubMedCrossRefGoogle Scholar
  131. 131.
    Verbist L, Gyselen A. Antituberculous activity of rifampin in vitro and in vivo and the concentrations attained in human blood. Am Rev Respir Dis 1968; 98(6): 923–32PubMedGoogle Scholar
  132. 132.
    Gill GV. Rifampicin and breakfast [letter]. Lancet 1976; 2(7995): 1135PubMedCrossRefGoogle Scholar
  133. 133.
    Kenyon CJ, Brown F, McClelland GR, et al. The use of pharmacoscintigraphy to elucidate food effects observed with a novel protease inhibitor (saquinavir). Pharm Res 1998; 15(3): 417–22PubMedCrossRefGoogle Scholar
  134. 134.
    Muirhead GJ, Shaw T, Williams EO, et al. Pharmacokinetics of the HIV-protease inhibitor, Ro 318959, after single and multiple oral doses in healthy volunteers. Br J Clin Pharmacol 1992; 34: P170–1Google Scholar
  135. 135.
    Morgan TO. Clinical use of potassium supplements and potassium sparing diuretics. Drugs 1973; 6(3): 222–9PubMedCrossRefGoogle Scholar
  136. 136.
    Yap V, Patel A, Thomsen J. Hyperkalemia with cardiac arrhythmia. Induction by salt substitutes, spironolactone, and azotemia. JAMA 1976; 236(24): 2775–6PubMedCrossRefGoogle Scholar
  137. 137.
    Welty DF, Siedlik PH, Posvar EL, et al. The temporal effect of food on tacrine bioavailability. J Clin Pharmacol 1994; 34(10): 985–8PubMedGoogle Scholar
  138. 138.
    Bekersky I, Dressier D, Mekki QA. Effect of low-and high-fat meals on tacrolimus absorption following 5 mg single oral doses to healthy human subjects. J Clin Pharmacol 2001; 41(2): 176–82PubMedCrossRefGoogle Scholar
  139. 139.
    Jung H, Peregrina AA, Rodriguez JM, et al. The influence of coffee with milk and tea with milk on the bioavailability of tetracycline. Biopharm Drug Dispos 1997; 18(5): 459–63PubMedCrossRefGoogle Scholar
  140. 140.
    Leyden JJ. Absorption of minocycline hydrochloride and tetracycline hydrochloride. Effect of food, milk, and iron. J Am Acad Dermatol 1985; 12 (2 Pt 1): 308–12PubMedCrossRefGoogle Scholar
  141. 141.
    Neuvonen PJ. Interactions with the absorption of tetracyclines. Drugs 1976; 11(1): 45–54PubMedCrossRefGoogle Scholar
  142. 142.
    Welling PG, Koch PA, Lau CC, et al. Bioavailability of tetracycline and doxycycline in fasted and nonfasted subjects. Antimicrob Agents Chemother 1977; 11(3): 462–9PubMedCrossRefGoogle Scholar
  143. 143.
    Hendeles L, Weinberger M, Milavetz G, et al. Food-induced ‘dose-dumping’ from a once-a-day theophylline product as a cause of theophylline toxicity. Chest 1985; 87(6): 758–65PubMedCrossRefGoogle Scholar
  144. 144.
    Karim A, Burns T, Wearley L, et al. Food-induced changes in theophylline absorption from controlled-release formulations. Part I. Substantial increased and decreased absorption with Uniphyl tablets and Theo-Dur Sprinkle. Clin Pharmacol Ther 1985; 38(1): 77–83PubMedCrossRefGoogle Scholar
  145. 145.
    Steffensen G, Pedersen S. Food induced changes in theophylline absorption from a once-a-day theophylline product. Br J Clin Pharmacol 1986; 22(5): 571–7PubMedCrossRefGoogle Scholar
  146. 146.
    Young MA, Lettis S, Eastmond R. Improvement in the gastrointestinal absorption of troglitazone when taken with, or shortly after, food. Br J Clin Pharmacol 1998; 45(1): 31–5PubMedCrossRefGoogle Scholar
  147. 147.
    Karlson B, Leijd B, Hellstrom K. On the influence of vitamin K-rich vegetables and wine on the effectiveness of warfarin treatment. Acta Med Scand 1986; 220(4): 347–50PubMedCrossRefGoogle Scholar
  148. 148.
    Kudo T. Warfarin antagonism of natto and increase in serum vitamin K by intake of natto. Artery 1990; 17(4): 189–201PubMedGoogle Scholar
  149. 149.
    Parr MD, Record KE, Griffith GL, et al. Effect of enteral nutrition on warfarin therapy. Clin Pharm 1982; 1(3): 274–6PubMedGoogle Scholar
  150. 150.
    Qureshi GD, Reinders TP, Swint JJ, et al. Acquired warfarin resistance and weight-reducing diet. Arch Intern Med 1981; 141(4): 507–9PubMedCrossRefGoogle Scholar
  151. 151.
    Nazareno LA, Holazo AA, Limjuco R, et al. The effect of food on pharmacokinetics of zalcitabine in HIV-positive patients. Pharm Res 1995; 12(10): 1462–5PubMedCrossRefGoogle Scholar
  152. 152.
    Hamelin BA, Allard S, Laplante L, et al. The effect of timing of a standard meal on the pharmacokinetics and pharmacodynamics of the novel atypical antipsychotic agent ziprasidone. Pharmacotherapy 1998; 18(1): 9–15PubMedGoogle Scholar
  153. 153.
    Miceli JJ, Hunt T, Cole MJ, et al. Pharmacokinetics of Cp-88,059 (CP) in healthy male volunteers following oral (PO) and intravenous (IV) administration [abstract]. Clin Pharmacol Ther 1994; 55(2): 142Google Scholar
  154. 154.
    Aaes-Jorgensen T, Liedholm H, Melander A. Influence of food intake on the bioavailability of zuclopenthixol. Drug Nutr Interact 1987; 5(3): 157–60PubMedGoogle Scholar
  155. 155.
    Singh BN. Effects of food on clinical pharmacokinetics. Clin Pharmacokinet 1999; 37(3): 213–55PubMedCrossRefGoogle Scholar
  156. 156.
    Charman WN, Porter CJ, Mithani S, et al. Physiochemical and physiological mechanisms for the effects of food on drug absorption: the role of lipids and pH. J Pharm Sci 1997; 86(3): 269–82PubMedCrossRefGoogle Scholar
  157. 157.
    Kane GC, Lipsky JJ. Drug-grapefruit juice interactions. Mayo Clin Proc 2000; 75(9): 933–42PubMedCrossRefGoogle Scholar
  158. 158.
    Musa MN, Lyons LL. Absorption and disposition of warfarin: effect of food and liquids. Curr Ther Res 1976; 20: 630–3Google Scholar
  159. 159.
    Blickstein D, Shaklai M, Inbal A. Warfarin antagonism by avocado. Lancet 1991; 337(8746): 914–5PubMedCrossRefGoogle Scholar
  160. 160.
    Greenblatt DJ, Duhme DW, Koch-Weser J, et al. Bioavailability of digoxin tablets and elixir in the fasting and postprandial states. Clin Pharmacol Ther 1974; 16(3): 444–8PubMedGoogle Scholar
  161. 161.
    Johnson BF, O’Grady J, Sabey GA, et al. Effect of a standard breakfast on digoxin absorption in normal subjects. Clin Pharmacol Ther 1978; 23(3): 315–9PubMedGoogle Scholar
  162. 162.
    White RJ, Chamberlain DA, Howard M, et al. Plasma concentrations of digoxin after oral administration in the fasting and postprandial state. BMJ 1971; 1(745): 380–1PubMedCrossRefGoogle Scholar
  163. 163.
    Rodin SM, Johnson BF. Pharmacokinetic interactions with digoxin. Clin Pharmacokinet 1988; 15(4): 227–44PubMedCrossRefGoogle Scholar
  164. 164.
    Spenard J, Sirois G, Gagnon MA. Influence of food on the comparative bioavailability of a fast-and slow-release dosage form of quinidine gluconate. Int J Clin Pharmacol Ther Toxicol 1983; 21(1): 1–9PubMedGoogle Scholar
  165. 165.
    Martinez MN, Pelsor FR, Shah VP, et al. Effect of dietary fat content on the bioavailability of a sustained release quinidine gluconate tablet. Biopharm Drug Dispos 1990; 11(1): 17–29PubMedCrossRefGoogle Scholar
  166. 166.
    Ace LN, Jaffe JM, Kunka RL. Effect of food and an antacid on quinidine bioavailability. Biopharm Drug Dispos 1983; 4(2): 183–90PubMedCrossRefGoogle Scholar
  167. 167.
    Melander A, Danielson K, Hanson A, et al. Enhancement of hydralazine bioavailability by food. Clin Pharmacol Ther 1977; 22(1): 104–7PubMedGoogle Scholar
  168. 168.
    Armstrong J, Challenor VF, Macklin BS, et al. The influence of two types of meal on the pharmacokinetics of a modified-release formulation of nifedipine (Adalat Retard). Eur J Clin Pharmacol 1997; 53(2): 141–3PubMedCrossRefGoogle Scholar
  169. 169.
    Chung M, Reitberg DP, Gaffney M, et al. Clinical pharmacokinetics of nifedipine gastrointestinal therapeutic system. A controlled-release formulation of nifedipine. Am J Med 1987; 83(6B): 10–4PubMedCrossRefGoogle Scholar
  170. 170.
    Bailey DG, Spence JD, Munoz C, et al. Interaction of citrus juices with felodipine and nifedipine. Lancet 1991; 337(8736): 268–9PubMedCrossRefGoogle Scholar
  171. 171.
    Sigusch H, Henschel L, Kraul H, et al. Lack of effect of grapefruit juice on diltiazem bioavailability in normal subjects. Pharmazie 1994; 49(9): 675–9PubMedGoogle Scholar
  172. 172.
    Zaidenstein R, Dishi V, Gips M, et al. The effect of grapefruit juice on the pharmacokinetics of orally administered verapamil. Eur J Clin Pharmacol 1998; 54(4): 337–40PubMedCrossRefGoogle Scholar
  173. 173.
    Massarella JW, DeFeo TM, Brown AN, et al. The influence of food on the pharmacokinetics and ACE inhibition of cilazapril. Br J Clin Pharmacol 1989; 27 Suppl. 2: S205-9Google Scholar
  174. 174.
    Swanson BN, Vlasses PH, Ferguson RK, et al. Influence of food on the bioavailability of enalapril. J Pharm Sci 1984; 73(11): 1655–7PubMedCrossRefGoogle Scholar
  175. 175.
    Mojaverian P, Rocci Jr ML, Vlasses PH, et al. Effect of food on the bioavailability of lisinopril, a nonsulfhydryl angiotensin-converting enzyme inhibitor. J Pharm Sci 1986; 75(4): 395–7PubMedCrossRefGoogle Scholar
  176. 176.
    Radulovic LL, Cilla DD, Posvar EL, et al. Effect of food on the bioavailability of atorvastatin, an HMG-CoA reductase inhibitor. J Clin Pharmacol 1995; 35(10): 990–4PubMedGoogle Scholar
  177. 177.
    Whitfield LR, Stern RH, Sedman AJ, et al. Effect of food on the pharmacodynamics and pharmacokinetics of atorvastatin, an inhibitor of HMG-CoA reductase. Eur J Drug Metab Pharmacokinet 2000; 25(2): 97–101PubMedCrossRefGoogle Scholar
  178. 178.
    Dujovne CA, Davidson MH. Fluvastatin administration at bedtime versus with the evening meal: a multicenter comparison of bioavailability, safety, and efficacy. Am J Med 1994; 96(6A): S37–40CrossRefGoogle Scholar
  179. 179.
    Kantola T, Kivisto KT, Neuvonen PJ. Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid. Clin Pharmacol Ther 1998; 63(4): 397–402PubMedCrossRefGoogle Scholar
  180. 180.
    Lilja JJ, Kivisto KT, Neuvonen PJ. Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin. Clin Pharmacol Ther 1999; 66(2): 118–27PubMedGoogle Scholar
  181. 181.
    Lilja JJ, Kivisto KT, Neuvonen PJ. Grapefruit juice-simvastatin interaction: effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors. Clin Pharmacol Ther 1998; 64(5): 477–83PubMedCrossRefGoogle Scholar
  182. 182.
    Ginsburg CM, McCracken Jr GH, Thomas ML, et al. Comparative pharmacokinetics of amoxicillin and ampicillin in infants and children. Pediatrics 1979; 64(5): 627–31PubMedGoogle Scholar
  183. 183.
    Lutz M, Espinoza J, Arancibia A, et al. Effect of structured dietary fiber on bioavailability of amoxicillin. Clin Pharmacol Ther 1987; 42(2): 220–4PubMedCrossRefGoogle Scholar
  184. 184.
    Munkholm P, Olsen J, Hovgaard C, et al. Absorption of pivampicillin as related to dose, and tolerability of a 700 mg tablet. Infection 1993; 21(1): 30–3PubMedCrossRefGoogle Scholar
  185. 185.
    Tetzlaff TR, McCracken GH, Jr., Thomas ML. Bioavailability of cephalexin in children: relationship to drug formulations and meals. J Pediatr 1978; 92(2): 292–4PubMedCrossRefGoogle Scholar
  186. 186.
    Gower PE, Dash CH. Cephalexin: human studies of absorption and excretion of a new cephalosporin antibiotic. Br J Pharmacol 1969; 37(3): 738–47PubMedCrossRefGoogle Scholar
  187. 187.
    Segre G, Bianchi E, Zanolo G. Influence of food on the bioavailability of roxithromycin versus erythromycin stearate. Br J Clin Pract 1998; Suppl. 55: 55–7Google Scholar
  188. 188.
    Thompson PJ, Burgess KR, Marlin GE. Influence of food on absorption of erythromycin ethyl succinate. Antimicrob Agents Chemother 1980; 18(5): 829–31PubMedCrossRefGoogle Scholar
  189. 189.
    Järvinen A, Nykänen S, Mattila J, et al. Effect of food on absorption and hydrolysis of erythromycin acistrate. Arzneimittelforschung 1992; 42(1): 73–6PubMedGoogle Scholar
  190. 190.
    Hovi T, Heikinheimo M. Effect of concomitant food intake on absorption kinetics of erythromycin in healthy volunteers. Eur J Clin Pharmacol 1985; 28(2): 231–3PubMedCrossRefGoogle Scholar
  191. 191.
    Simicevic VN, Erceg D, Dohoczky C, et al. Lack of effect of food on the bioavailability of oral azithromycin tablets. Clin Drug Invest 1998; 16(5): 405–10CrossRefGoogle Scholar
  192. 192.
    Foulds G, Luke DR, Teng R, et al. The absence of an effect of food on the bioavailability of azithromycin administered as tablets, sachet or suspension. J Antimicrob Chemother 1996; 37 Suppl. C: 37–44PubMedCrossRefGoogle Scholar
  193. 193.
    Chu S, Park Y, Locke C, et al. Drug-food interaction potential of clarithromycin, anew macrolide antimicrobial. J Clin Pharmacol 1992; 32(1): 32–6PubMedGoogle Scholar
  194. 194.
    Puri SK, Lassman HB. Roxithromycin: a pharmacokinetic review of a macrolide. J Antimicrob Chemother 1987; 20 Suppl B: 89–100PubMedCrossRefGoogle Scholar
  195. 195.
    Kanazawa S, Ohkubo T, Sugawara K. The effects of grapefruit juice on the pharmacokinetics of erythromycin. Eur J Clin Pharmacol 2001; 56(11): 799–803PubMedCrossRefGoogle Scholar
  196. 196.
    Cheng KL, Nafziger AN, Peloquin CA, et al. Effect of grapefruit juice on clarithromycin pharmacokinetics. Antimicrob Agents Chemother 1998; 42(4): 927–9PubMedGoogle Scholar
  197. 197.
    Ledergerber B, Bettex JD, Joos B, et al. Effect of standard breakfast on drug absorption and multiple-dose pharmacokinetics of ciprofloxacin. Antimicrob Agents Chemother 1985; 27(3): 350–2PubMedCrossRefGoogle Scholar
  198. 198.
    Frost RW, Carlson JD, Dietz Jr AJ, et al. Ciprofloxacin pharmacokinetics after a standard or high-fat/high-calcium breakfast. J Clin Pharmacol 1989; 29(10): 953–5PubMedGoogle Scholar
  199. 199.
    Höffken G, Lode H, Wiley R, et al. Pharmacokinetics and bioavailability of ciproxin and ofloxacin: effect of food and antacid intake. Rev Infect Dis 1988; 10 Suppl. 1: S138-9Google Scholar
  200. 200.
    Leroy A, Borsa F, Humbert G, et al. The pharmacokinetics of ofloxacin in healthy adult male volunteers. Eur J Clin Pharmacol 1987; 31(5): 629–30PubMedCrossRefGoogle Scholar
  201. 201.
    Verho M, Malerczyk V, Dagrosa E, et al. The effect of food on the pharmacokinetics of ofloxacin. Curr Med Res Opin 1986; 10(3): 166–71PubMedCrossRefGoogle Scholar
  202. 202.
    Dudley MN, Marchbanks CR, Flor SC, et al. The effect of food or milk on the absorption kinetics of ofloxacin. Eur J Clin Pharmacol 1991; 41(6): 569–71PubMedCrossRefGoogle Scholar
  203. 203.
    Neuvonen PJ, Kivisto KT. Milk and yoghurt do not impair the absorption of ofloxacin. Br J Clin Pharmacol 1992; 33(3): 346–8PubMedCrossRefGoogle Scholar
  204. 204.
    Mueller BA, Brierton DG, Abel SR, et al. Effect of enteral feeding with ensure on oral bioavailabilities of ofloxacin and ciprofloxacin. Antimicrob Agents Chemother 1994; 38(9): 2101–5PubMedCrossRefGoogle Scholar
  205. 205.
    Daneshmend TK, Warnock DW, Ene MD, et al. Influence of food on the pharmacokinetics of ketoconazole. Antimicrob Agents Chemother 1984; 25(1): 1–3PubMedCrossRefGoogle Scholar
  206. 206.
    Brass C, Galgiani JN, Blaschke TF, et al. Disposition of ketoconazole, an oral antifungal, in humans. Antimicrob Agents Chemother 1982; 21(1): 151–8PubMedCrossRefGoogle Scholar
  207. 207.
    Männistö PT, Mäntylä R, Nykänen S, et al. Impairing effect of food on ketoconazole absorption. Antimicrob Agents Chemother 1982; 21(5): 730–3PubMedCrossRefGoogle Scholar
  208. 208.
    Lelawongs P, Barone JA, Colaizzi JL, et al. Effect of food and gastric acidity on absorption of orally administered ketoconazole. Clin Pharm 1988; 7(3): 228–35PubMedGoogle Scholar
  209. 209.
    Lange D, Pavao JH, Jacqmin P. The effect of coadministration of a cola beverage on the bioavailability of itraconazole in patients with aquired immunodeficiency syndrome. Curr Ther Res Clin Exp 1997; 58(3): 202–12CrossRefGoogle Scholar
  210. 210.
    Jaruratanasirikul S, Kleepkaew A. Influence of an acidic beverage (Coca-Cola) on the absorption of itraconazole. Eur J Clin Pharmacol 1997; 52(3): 235–7PubMedCrossRefGoogle Scholar
  211. 211.
    Chin TW, Loeb M, Fong IW. Effects of an acidic beverage (Coca-Cola) on absorption of ketoconazole. Antimicrob Agents Chemother 1995; 39(8): 1671–5PubMedCrossRefGoogle Scholar
  212. 212.
    Kawakami M, Suzuki K, Ishizuka T, et al. Effect of grapefruit juice on pharmacokinetics of itraconazole in healthy subjects. Int J Clin Pharmacol Ther 1998; 36(6): 306–8PubMedGoogle Scholar
  213. 213.
    Penzak SR, Gubbins PO, Gurley BJ, et al. Grapefruit juice decreases the systemic availability of itraconazole capsules in healthy volunteers. Ther Drug Monit 1999; 21(3): 304–9PubMedCrossRefGoogle Scholar
  214. 214.
    Lejonc JL, Gusmini D, Brochard P. Isoniazid and reaction to cheese. Ann Intern Med 1979; 91: 793PubMedGoogle Scholar
  215. 215.
    Baciewicz AM, Self TH. Isoniazid interactions. South Med J 1985; 78(6): 714–8PubMedCrossRefGoogle Scholar
  216. 216.
    Ameer B, Polk RE, Kline BJ, et al. Effect of food on ethambutol absorption. Clin Pharm 1982; 1(2): 156–8PubMedGoogle Scholar
  217. 217.
    Peloquin CA, Bulpitt AE, Jaresko GS, et al. Pharmacokinetics of ethambutol under fasting conditions, with food, and with antacids. Antimicrob Agents Chemother 1999; 43(3): 568–72PubMedGoogle Scholar
  218. 218.
    Stevens RC, Rodman JH, Yong FH, et al. Effect of food and pharmacokinetic variability on didanosine systemic exposure in HIV-infected children. AIDS Res Hum Retroviruses 2000; 16(5): 415–21PubMedCrossRefGoogle Scholar
  219. 219.
    Shelton MJ, Portmore A, Blum MR, et al. Prolonged, but not diminished, zidovudine absorption induced by a high-fat breakfast. Pharmacotherapy 1994; 14(6): 671–7PubMedGoogle Scholar
  220. 220.
    Unadkat JD, Collier AC, Crosby SS, et al. Pharmacokinetics of oral zidovudine (azidothymidine) in patients with AIDS when administered with and without a high-fat meal. AIDS 1990; 4(3): 229–32PubMedCrossRefGoogle Scholar
  221. 221.
    Angel JB, Hussey EK, Hall ST, et al. Pharmacokinetics of 3TC (GR109714X) administered with and without food to HIV-infected patients. Drug Invest 1993; 6(2): 70–4CrossRefGoogle Scholar
  222. 222.
    Moore KH, Shaw S, Laurent AL, et al. Lamivudine/zidovudine as a combined formulation tablet: bioequivalence compared with lamivudine and zidovudine administered concurrently and the effect of food on absorption. J Clin Pharmacol 1999; 39(6): 593–605PubMedCrossRefGoogle Scholar
  223. 223.
    Yuen GJ, Lou Y, Thompson NF, et al. Abacavir/lamivudine/zidovudine as a combined formulation tablet: bioequivalence compared with each component administered concurrently and the effect of food on absorption. J Clin Pharmacol 2001; 41(3): 277–88PubMedCrossRefGoogle Scholar
  224. 224.
    Adair CG, Bridges JM, Desai ZR. Can food affect the bioavailability of chlorambucil in patients with haematological malignancies? Cancer Chemother Pharmacol 1986; 17(1): 99–102PubMedCrossRefGoogle Scholar
  225. 225.
    Ehrsson H, Wallin I, Simonsson B, et al. Effect of food on pharmacokinetics of chlorambucil and its main metabolite, phenylacetic acid mustard. Eur J Clin Pharmacol 1984; 27(1): 111–4PubMedGoogle Scholar
  226. 226.
    Hamilton RA, Kremer JM. The effects of food on methotrexate absorption. J Rheumatol 1995; 22(4): 630–2PubMedGoogle Scholar
  227. 227.
    Kozloski GD, De Vito JM, Kisicki JC, et al. The effect of food on the absorption of methotrexate sodium tablets in healthy volunteers. Arthritis Rheum 1992; 35(7): 761–4PubMedCrossRefGoogle Scholar
  228. 228.
    Oguey D, Kolliker F, Gerber NJ, et al. Effect of food on the bioavailability of low-dose methotrexate in patients with rheumatoid arthritis. Arthritis Rheum 1992; 35(6): 611–4PubMedCrossRefGoogle Scholar
  229. 229.
    Kahan BD, Dunn J, Fitts C, et al. Reduced inter-and intrasubject variability in cyclosporine pharmacokinetics in renal transplant recipients treated with a microemulsion formulation in conjunction with fasting, low-fat meals, or high-fat meals. Transplantation 1995; 59(4): 505–11PubMedGoogle Scholar
  230. 230.
    Barone G, Chang CT, Choc Jr MG, et al. The pharmacokinetics of a microemulsion formulation of cyclosporine in primary renal allograft recipients. Transplantation 1996; 61(6): 875–80PubMedCrossRefGoogle Scholar
  231. 231.
    Tan KK, Trull AK, Uttridge JA, et al. Effect of dietary fat on the pharmacokinetics and pharmacodynamics of cyclosporine in kidney transplant recipients. Clin Pharmacol Ther 1995; 57(4): 425–33PubMedCrossRefGoogle Scholar
  232. 232.
    Gupta SK, Manfro RC, Tomlanovich SJ, et al. Effect of food on the pharmacokinetics of cyclosporine in healthy subjects following oral and intravenous administration. J Clin Pharmacol 1990; 30(7): 643–53PubMedGoogle Scholar
  233. 233.
    Mueller EA, Kovarik JM, Kutz K. Minor influence of a fat-rich meal on the pharmacokinetics of a new oral formulation of cyclosporine. Transplant Proc 1994; 26(5): 2957–8PubMedGoogle Scholar
  234. 234.
    Ku YM, Min DI, Flanigan M. Effect of grapefruit juice on the pharmacokinetics of microemulsion cyclosporine and its metabolite in healthy volunteers: does the formulation difference matter? J Clin Pharmacol 1998; 38(10): 959–65PubMedGoogle Scholar
  235. 235.
    Ducharme MP, Warbasse LH, Edwards DJ. Disposition of intravenous and oral cyclosporine after administration with grapefruit juice. Clin Pharmacol Ther 1995; 57(5): 485–91PubMedCrossRefGoogle Scholar
  236. 236.
    Welling PG, Tse FL. Food interactions affecting the absorption of analgesic and anti-inflammatory agents. Drug Nutr Interact 1983; 2(3): 153–68PubMedGoogle Scholar
  237. 237.
    Kennedy MC, Wade DN. The effect of food on the absorption of phenytoin. Aust N Z J Med 1982; 12: 258–61PubMedCrossRefGoogle Scholar
  238. 238.
    Melander A, Brante G, Johansson O, et al. Influence of food on the absorption of phenytoin in man. Eur J Clin Pharmacol 1979; 15(4): 269–74PubMedCrossRefGoogle Scholar
  239. 239.
    Dotson R, Dickinson L, Kang H, et al. Effect of simultaneously ingested milk on phenytoin bioavailability. Neurology 1985; 35(10): 1526–7PubMedCrossRefGoogle Scholar
  240. 240.
    Retzow A, Schurer M, Schulz HU. Influence of food on the bioavailability of a carbamazepine slow-release formulation. Int J Clin Pharmacol Ther 1997; 35(12): 557–60PubMedGoogle Scholar
  241. 241.
    McLean A, Browne S, Zhang Y, et al. The influence of food on the bioavailability of a twice-daily controlled release carbamazepine formulation. J Clin Pharmacol 2001; 41(2): 183–6PubMedCrossRefGoogle Scholar
  242. 242.
    Garg SK, Kumar N, Bhargava VK, et al. Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy. Clin Pharmacol Ther 1998; 64(3): 286–8PubMedCrossRefGoogle Scholar
  243. 243.
    Degen PH, Flesch G, Cardot JM, et al. The influence of food on the disposition of the antiepileptic oxcarbazepine and its major metabolites in healthy volunteers. Biopharm Drug Dispos 1994; 15(6): 519–26PubMedCrossRefGoogle Scholar
  244. 244.
    Robertson DR, Higginson I, Macklin BS, et al. The influence of protein containing meals on the pharmacokinetics of levo-dopa in healthy volunteers. Br J Clin Pharmacol 1991; 31(4): 413–7PubMedCrossRefGoogle Scholar
  245. 245.
    Mena I, Cotzias GC. Protein intake and treatment of Parkinson’s disease with levodopa. N Engl J Med 1975; 292(4): 181–4PubMedCrossRefGoogle Scholar
  246. 246.
    Eriksson T, Granerus AK, Linde A, et al. ‘On-off’ phenomenon in Parkinson’s disease: relationship between dopa and other large neutral amino acids in plasma. Neurology 1988; 38(8): 1245–8PubMedCrossRefGoogle Scholar
  247. 247.
    Juncos JL, Fabbrini G, Mouradian MM, et al. Dietary influences on the antiparkinsonian response to levodopa. Arch Neurol 1987; 44(10): 1003–5PubMedCrossRefGoogle Scholar
  248. 248.
    Nutt JG, Woodward WR, Carter JH, et al. Influence of fluctuations of plasma large neutral amino acids with normal diets on the clinical response to levodopa. J Neurol Neurosurg Psychiatry 1989; 52(4): 481–7PubMedCrossRefGoogle Scholar
  249. 249.
    Zisook S. Side effects of isocarboxazid. J Clin Psychiatry 1984; 45 (7 Pt 2): 53–8PubMedGoogle Scholar
  250. 250.
    Bekhti A. Serum concentrations of mebendazole in patients with hydatid disease. Int J Clin Pharmacol Ther Toxicol 1985; 23(12): 633–41PubMedGoogle Scholar
  251. 251.
    Welling PG, Lyons LL, Craig WA, et al. Influence of diet and fluid on bioavailability of theophylline. Clin Pharmacol Ther 1975; 17(4): 475–80PubMedGoogle Scholar
  252. 252.
    Kann J, Levitt MJ, Horodniak JW, et al. Food effects on the nighttime pharmacokinetics of Theo-Dur tablets. Ann Allergy 1989; 63(4): 282–6PubMedGoogle Scholar
  253. 253.
    Thebault JJ, Aiache JM, Mazoyer F, et al. The influence of food on the bioavailability of a slow release theophylline preparation. Clin Pharmacokinet 1987; 13(4): 267–72PubMedCrossRefGoogle Scholar
  254. 254.
    Leeds NH, Gal P, Purohit AA, et al. Effect of food on the bioavailability and pattern of release of a sustained-release theophylline tablet. J Clin Pharmacol 1982; 22(4): 196–200PubMedGoogle Scholar
  255. 255.
    Pedersen S, Moeller-Petersen J. Influence of food on the absorption rate and bioavailability of a sustained release theophylline preparation. Allergy 1982; 37(7): 531–4PubMedCrossRefGoogle Scholar
  256. 256.
    Delhotal-Landes B, Flouvat B, Boutin MS, et al. Influence of food on the absorption of theophylline administered in the form of sustained release tablet and microgranules. Biopharm Drug Dispos 1988; 9(1): 19–29PubMedCrossRefGoogle Scholar
  257. 257.
    Pabst G, Weber W, Muller M, et al. Study on the influence of food on the absorption of theophylline from a controlled-release preparation. Arzneimittelforschung 1994; 44(3): 333–7PubMedGoogle Scholar
  258. 258.
    Ürmös I, Grezal G, Balogh Nemes K, et al. Food interaction study of a new theophylline (Egifilin) 200 and 400 mg retard tablet in healthy volunteers. Int J Clin Pharmacol Ther 1997; 35(2): 65–70PubMedGoogle Scholar
  259. 259.
    Fagan TC, Walle T, Oexmann MJ, et al. Increased clearance of propranolol and theophylline by high-protein compared with high-carbohydrate diet. Clin Pharmacol Ther 1987; 41(4): 402–6PubMedCrossRefGoogle Scholar
  260. 260.
    Jonkman JH. Food interactions with sustained-release theophylline preparations. A review. Clin Pharmacokinet 1989; 16(3): 162–79PubMedCrossRefGoogle Scholar
  261. 261.
    Jonkman JH, Grasmeijer G, Holland A. Theophylline disposition after single-dose ingestion of a once-a-day preparation (Dilatrane A. P. 400 mg) with and without breakfast. Int J Clin Pharmacol Ther Toxicol 1987; 25(11): 633–7PubMedGoogle Scholar
  262. 262.
    Gonzalez MA, Straughan AB. Effect of meals and dosage-form modification on theophylline bioavailability from a 24-hour sustained-release delivery system. Clin Ther 1994; 16(5): 804–14PubMedGoogle Scholar
  263. 263.
    Harrison LI, Mitra AK, Kehe CR, et al. Kinetics of absorption of a new once-a-day formulation of theophylline in the presence and absence of food. J Pharm Sci 1993; 82(6): 644–8PubMedCrossRefGoogle Scholar
  264. 264.
    Rau SE, Bend JR, Arnold MO, et al. Grapefruit juice-terfenadine single-dose interaction: magnitude, mechanism, and relevance. Clin Pharmacol Ther 1997; 61(4): 401–9PubMedCrossRefGoogle Scholar
  265. 265.
    Honig PK, Wortham DC, Lazarev A, et al. Grapefruit juice alters the systemic bioavailability and cardiac repolarization of terfenadine in poor metabolizers of terfenadine. J Clin Pharmacol 1996; 36(4): 345–51PubMedGoogle Scholar
  266. 266.
    Benton RE, Honig PK, Zamani K, et al. Grapefruit juice alters terfenadine pharmacokinetics, resulting in prolongation of repolarization on the electrocardiogram. Clin Pharmacol Ther 1996; 59(4): 383–8PubMedCrossRefGoogle Scholar
  267. 267.
    Spence JD. Drug interactions with grapefruit: whose responsibility is it to warn the public? Clin Pharmacol Ther 1997; 61(4): 395–400PubMedCrossRefGoogle Scholar
  268. 268.
    Bailey DG, Malcolm J, Arnold O, et al. Grapefruit juice-drug interactions. Br J Clin Pharmacol 1998; 46(2): 101–10PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 2002

Authors and Affiliations

  • Lars E. Schmidt
    • 1
  • Kim Dalhoff
    • 1
  1. 1.Department of Clinical Pharmacology Q. 7642RigshospitaletCopenhagenDenmark

Personalised recommendations