, Volume 61, Issue 6, pp 763–775

Management of Antimicrobial Use in the Intensive Care Unit

  • Francisco Álvarez-Lerma
  • Mercedes Palomar
  • Santiago Grau
Review Article


Indications for the use of antimicrobials in critically ill patients are similar to those for other hospitalised patients. However, the selection of agents depends on the particular characteristics of patients in the intensive care unit (ICU), the form of presentation of infection, the type of infection and the bacteriological features of the causative pathogens.

The use of antimicrobials in patients admitted to medical-surgical ICUs varies between 33 and 53%. The selection of empirical antimicrobials to be included in treatment protocols of the most common infections depends on the strong interrelationship between patient characteristics, predominant pathogens in each focus, and antimicrobials used for treatment.

Epidemiological studies carried out in the past have identified the microorganisms most frequently responsible for community-acquired and nosocomial infections in patients admitted to ICUs. Susceptibility to antimicrobial agents may be different between each geographical area, between each hospital and even within the same hospital service. In addition, susceptibility patterns may change temporarily in relation to the use of particular antimicrobials or in association with other unknown factors so that assessment of endemic antimicrobial resistance patterns is very useful in order to tailor the antimicrobial regimens of therapeutic protocols.

Antimicrobial use should not be a routine procedure. The clinical course of the patient (an indicator of effectiveness) should be closely monitored as well as the possible appearance of adverse effects and/or multiresistant pathogens. Controls are based on the assessment of plasma drug concentrations and microbiological surveillance to detect the presence of multiresistant strains or new antibacterial-resistant pathogens.

Prevention of the development of multiresistant pathogens is the main goal of the ICU antimicrobial policy. Although a series of general strategies to reduce the presence of multiresistant pathogens have been proposed, the implementation of these recommendations in ICUs requires the cooperation of a member of the intensive care team.


  1. 1.
    Vincent JL, Bihari DJ, Suter PM, et al. The prevalence of nosocomial infection in intensive care units in Europe. Results of the European prevalence of infection in intensive care (EPIC) study. JAMA 1995; 274: 639–44PubMedCrossRefGoogle Scholar
  2. 2.
    Vaque J, Rossello J, Trilla A, et al. Nosocomial infections in Spain: results of 5 nationwide serial prevalence surveys (EPINE Project, 1990 to 1994). Infect Control Hosp Epidemiol 1996; 17: 293–7PubMedCrossRefGoogle Scholar
  3. 3.
    Insausti J, Alvarez-Lerma F, de la Cal MA, et al. Antibiotic usage patterns and trends in Spanish Intensive Care Unit (ICUs) [abstract]. Intensive Care Med 1997; 23 Suppl. 1: S110CrossRefGoogle Scholar
  4. 4.
    Feeley TW, du Moulin GC, Hedley-Whyte J, et al. Aerosol polymyxin and pneumonia in serious ill patients. N Engl J Med 1975; 293: 471–5PubMedCrossRefGoogle Scholar
  5. 5.
    Gaman W, Cates C, Snelling CF, et al. Emergence of gentamicin- and carbenicillin-resistant Pseudomonas aeruginosa in a hospital environment. Antimicrob Agents Chemother 1976; 9: 474–80PubMedCrossRefGoogle Scholar
  6. 6.
    Vogel F, Knothe H. Changes in aerobic faecal bacterial flora of severely ill patients during antibiotic treatment. Klin Wochenschr 1985; 63: 1174–9PubMedCrossRefGoogle Scholar
  7. 7.
    Dworzack DL, Pugsley MP, Sanders CC, et al. Emergence of resistance in Gram-negative bacteria during therapy with extended-spectrum cephalosporins. Eur J Clin Microbiol 1987; 6: 456–9PubMedCrossRefGoogle Scholar
  8. 8.
    Webb CH. Antibiotic resistance associated with selective decontamination of the digestive tract [editorial]. J Hosp Infect 1992; 22: 1–5PubMedCrossRefGoogle Scholar
  9. 9.
    Nardi G, Valentinis U, Proietti A, et al. Epidemiological impact of prolonged systematic use of topical SDD on bacterial colonization of the tracheobronchial tree and antibiotic resistance. A 3 year study. Intensive Care Med 1993; 19: 273–8PubMedCrossRefGoogle Scholar
  10. 10.
    Kunin CM. Problems in antibiotic usage. In: Mandell GL, Douglas RG, Bennet JE, editors. Principles and practice of infections diseases. New York: Churchill Livingstone, 1990; 427–33Google Scholar
  11. 11.
    Roder BL, Nielsen SL, Magnussen P, et al. Antibiotic usage in an intensive care unit in a Danish university hospital. J Antimicrob Chemother 1993; 32: 633–42PubMedCrossRefGoogle Scholar
  12. 12.
    Mosdell DM, Morris DM, Voltura A, et al. Antibiotic treatment for surgical peritonitis. Ann Surg 1991; 214: 543–9PubMedCrossRefGoogle Scholar
  13. 13.
    Luna CM, Vujacich P, Niederman MS, et al. Impact of BAL data on the therapy and outcome of ventilator-associated pneumonia. Chest 1997; 111: 676–85PubMedCrossRefGoogle Scholar
  14. 14.
    Kollef MH, Sherman G, Ward S, et al. Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among criticlly ill patients. Chest 1999; 115: 462–74PubMedCrossRefGoogle Scholar
  15. 15.
    Polk R. Optimal use of modern antibiotics: emerging trends. Clin Infect Dis 1999; 29: 264–74PubMedCrossRefGoogle Scholar
  16. 16.
    Lacy MK, Nicolau DP, Nightingale CH, et al. The pharmacodynamics of aminoglycosides. Clin Infect Dis 1998; 27: 23–7PubMedCrossRefGoogle Scholar
  17. 17.
    Lacy MK, Lu W, Xu X, et al. Pharmacodynamic comparisons of levofloxacin, ciprofloxacin, and ampicillin againts Streptococcus pneumoniae in an in vitro model of infection. Antimicrob Agents Chemother 1999; 43: 672–7PubMedGoogle Scholar
  18. 18.
    Turnidge JD. The pharmacodynamics of beta-lactams. Clin Infect Dis 1998; 27: 10–22PubMedCrossRefGoogle Scholar
  19. 19.
    Fink MP, Snydman DR, Niederman MS, et al. Treatment of severe pneumonia in hospitalized patients: results of a multicenter, randomized, double-blind trial comparing intravenous ciprofloxacin with impipenem-cilastatin. The Severe Pneumonia Study Group. Antimicrob Agents Chemother 1994; 38: 547–57PubMedCrossRefGoogle Scholar
  20. 20.
    Silver DR, Cohen IL, Weinberg PF. Recurrent Pseudomonas aeruginosa pneumonia in a intensive care unit. Chest 1992; 101: 194–8PubMedCrossRefGoogle Scholar
  21. 21.
    Crouch Brewer S, Wunderink RG, Jones CB, et al. Ventilator-associated pneumonia due to Pseudomonas aeruginosa. Chest 1996; 109: 1019–29PubMedCrossRefGoogle Scholar
  22. 22.
    Torres A, Aznar R, Gatell JM, et al. Incidence, risk, and prognosis factors of nosocomial pneumonia in mechanically ventilated patients. Am Rev Respir Dis 1990; 142: 523–8PubMedCrossRefGoogle Scholar
  23. 23.
    Alvarez-Lerma F, ICU-Acquired Pneumonia Study Group. Modification of empiric antibiotic treatment in patients with pneumonia acquired in the intensive care unit. Intensive Care Med 1996; 22: 387–94PubMedCrossRefGoogle Scholar
  24. 24.
    Barriere SL, Lowry SF. An overview of mortality risk prediction in sepsis. Crit Care Med 1995; 23: 376–93PubMedCrossRefGoogle Scholar
  25. 25.
    Palomar M, Alvarez-Lerma F, de la Cal MA, et al. ICU infections in Spain. Time trends of etiology and resistances from 1994 to 1998 [abstract]. Intensive Care Med 1999; 25: 163Google Scholar
  26. 26.
    Rello J, Rodriguez R, Jubert P, et al. Severe community-acquired pneumonia in the elderly: epidemiology and prognosis. Clin Infect Dis 1996; 23: 723–8PubMedCrossRefGoogle Scholar
  27. 27.
    Valles J, Leon C, Alvarez-Lerma F, et al. Nosocomial bacteremia in critically ill patients: a multicenter study evaluating epidemiology and prognosis. Clin Infect Dis 1997; 24: 387–95PubMedCrossRefGoogle Scholar
  28. 28.
    Alvarez-Lerma F, Palomar M, Martinez-Pellus A, et al. Etiology and diagnostic techniques in Intensive care acquired pneumonia. Clin Intensive Care 1997; 8: 164–70Google Scholar
  29. 29.
    Carmeli Y, Troillet N, Eliopoulos GM, et al. Emergence of antibiotic-resistant Pseudomonas aeruginosa: comparison of risk associated with different antipseudomonal agents. Antimicrob Agents Chemother 1999; 43: 1379–82PubMedGoogle Scholar
  30. 30.
    Damjanovic V, van Saene HKF. The value of surveillance cultures in neonatal intensive care units. In: van Saene HKF, Silvestri L, de la Cal MA, editors. Infection control in the intensive care unit. Berlin: Springer-Verlag, 1998; 316–22Google Scholar
  31. 31.
    van Saene HKF, Damjanovic V, Silvestri L, et al. Classification on infections. In: van Saene HKF, Silvestri L, de la Cal MA, editors. Infection control in the intensive care unit. Berlin: Springer-Verlag, 1998: 17–28Google Scholar
  32. 32.
    Viladrich PF, Gudiol F, Linares J, et al. Evaluation of vancomycin for therapy of adult pneumococcal meningitis. Antimicrob Agents Chemother 1991; 35: 2467–72PubMedCrossRefGoogle Scholar
  33. 33.
    Pennington JE. Penetration of antibiotics into respiratory secretions. Rev Infect Dis 1981; 3: 67–73PubMedCrossRefGoogle Scholar
  34. 34.
    Büchler M, Malfertheiner P, Friess H, et al. Human pancreatic tissue concentration of bactericidal antibiotics. Gastroenterology 1992; 103: 1902–8PubMedGoogle Scholar
  35. 35.
    Pelaez T, Bouza E. Actividad antianaerobicida de los carbapenemicos. Enferm Infecc Microbiol Clin 1997; 15 Suppl. 1:8–13PubMedGoogle Scholar
  36. 36.
    Pruul H, McDonald PJ. Damage to bacteria by antibiotics in vitro and its relevance to antimicrobial chemotherapy: a historical perspective. J Antimicrob Chemother 1988; 21: 695–8PubMedCrossRefGoogle Scholar
  37. 37.
    ter Braak EW, de Vries PJ, Bouter KP, et al. Once daily dosing regimen for aminoglycoside plus betalactam combination therapy of serious infections: comparative trial with netilmicin plus ceftriaxone. Am J Med 1990; 89: 58–66PubMedCrossRefGoogle Scholar
  38. 38.
    Prins JM, Buller HR, Kuijper EJ, et al. Once versus thrice daily gentamicin in patients with serious infections. Lancet 1993; 341: 335–9PubMedCrossRefGoogle Scholar
  39. 39.
    Nicolau DP, Freeman CD, Belliveau PP, et al. Experience with a once-daily aminoglycoside program administered to 2,184 adults patients. Antimicrob Agents Chemother 1995; 39: 650–5PubMedCrossRefGoogle Scholar
  40. 40.
    Hatala R, Dinh T, Cook DJ. Once-daily aminoglycoside dosing in immunocompentent adults: a meta-analysis. Ann Intern Med 1996; 124: 717–25PubMedGoogle Scholar
  41. 41.
    Barza M, Ioannidis JPA, Cappelleri JC, et al. Single or multiple daily doses of aminoglycosides: a meta-analysis. BMJ 1996; 312: 338–44PubMedCrossRefGoogle Scholar
  42. 42.
    Rodvold KA, Danziger LH, Quinn JP. Single daily doses of aminoglycosides. Lancet 1997; 350: 1412PubMedCrossRefGoogle Scholar
  43. 43.
    Visser LG, Arnouts P, van Furth R, et al. Clinical pharmacokinetics of continuous intravenous administration of penicillins. Clin Infect Dis 1993; 17:491–5PubMedCrossRefGoogle Scholar
  44. 44.
    Hyatt JM, McKinnon PS, Zimmer GS, et al. The importance of pharmacokinetic/pharmacodynamic surrogate markers to outcome. Focus on antibacterial agents. Clin Pharmacokinet 1995; 28: 143–60PubMedCrossRefGoogle Scholar
  45. 45.
    Tessier PR, Nicolau DP, Onyeji CD, et al. Pharmacodynamics of intermitent- and continuous-infusion cefepime alone and in combination with once-daily tobramycin against Pseudomonas aeruginosa in an in vitro infection model. Chemotherapy 1999; 45: 284–95PubMedCrossRefGoogle Scholar
  46. 46.
    Daenen S, de Vries-Hospers H. Cure of Pseudomonas aeruginosa infection in neutropenic patients by continuous infusion of ceftazidime [letter]. Lancet 1988; I: 937CrossRefGoogle Scholar
  47. 47.
    Vinks AAT, Touw DJ, Heijerman HGM, et al. Pharmacokinetics of ceftazidime in adult cystic fibrosis during continuous infusion and ambulatory treatment at home. Ther Drug Monit 1994; 16: 341–8PubMedCrossRefGoogle Scholar
  48. 48.
    Daenen S, Erjavec Z, Uges DR, et al. Continuous infusion of ceftazidime in febrile neutropenic patients with acute myeloid leukemia. Eur J Clin Microb Infect Dis 1995; 14: 188–92CrossRefGoogle Scholar
  49. 49.
    Di Filippo A, DE Gaudio AR, Novelli A, et al. Continuous infusion of vancomycin in methicillin-resistant staphylococcus infection. Chemotherapy 1998; 44: 63–8PubMedCrossRefGoogle Scholar
  50. 50.
    James JK, Palmer SM, Levine DP, et al. Comparison of conventional dosing versus continuous-infusion vancomycin therapy for patients with suspected or documented gram-positive infections. Antimicrob Agents Chemother 1996; 40: 696–700PubMedGoogle Scholar
  51. 51.
    Leder K, Turnidge JD, Korman TM, et al. The clinical efficacy of continuous-infusion flucloxacillin in serious staphylococal sepsis. J Antimicrob Chemother 1999; 43: 113–8PubMedCrossRefGoogle Scholar
  52. 52.
    Makhoul IR, Mezbach D, Lichtig C, et al. Antibiotic treatment of experimental Pseudomonas aeruginosa pneumonia in guinea pigs: comparison of aerosol and systemic administration. J Infect Dis 1993: 168: 1296–9PubMedCrossRefGoogle Scholar
  53. 53.
    Brown RB, Kruse JA, Counts GW, et al. Double-blind study of endotracheal tobramycin in the treatment of Gram-negative bacterial pneumonia. Antimicrob Agents Chemother 1990; 34: 269–72PubMedCrossRefGoogle Scholar
  54. 54.
    Stoutenbeek CP, van Saene HKF, Miranda DR, et al. Nosocomial gram-negative pneumonia in critically ill patients. A 3-year experience with a novel therapeutic regimen. Intensive Care Med 1986; 12:419–23PubMedCrossRefGoogle Scholar
  55. 55.
    Begg EJ, Barclay ML, Kirkpatrick CJM. The therapeutic monitoring of antimicrobial agents. Br J Clin Pharmacol 1999; 47: 23–30PubMedCrossRefGoogle Scholar
  56. 56.
    Slattery JT. A pharmacokinetic model-independent approach for estimating dose required to give derived steady-state trough concentrations of drug in plasma. J Pharmacokinet Biopharm 1980; 8: 105–10PubMedGoogle Scholar
  57. 57.
    Alvarez Lerma F. Impacto de las resistencias bacterianas sobre la politica antibiótica. Med Intensiva 1998; 22: 17–23Google Scholar
  58. 58.
    Yates RR. New intervention strategies for reducing antibiotic resistance. Chest 1999; 115; 24S–7SPubMedCrossRefGoogle Scholar
  59. 59.
    Burgess DS. Pharmacodynamic principles of antimicrobial therapy in the prevention of resistance. Chest 1999; 115: 19S–23SPubMedCrossRefGoogle Scholar
  60. 60.
    Alvarez Lerma F, Palomar Martinez M. Decalogo de normas para la utilización de antibióticos en pacientes críticos. Med Intensiva 2000; 24: 69–77Google Scholar
  61. 61.
    Drobnic L, Grau S, Salas E, et al. Guía terapéutica antimicrobiana, 1995. Madrid. Consorci Sanitari de Barcelona. IMAS, 1995Google Scholar
  62. 62.
    Cabana MD, Rand CS, Powe NR, et al. Why don’t physicians follow practice guidelines? A framework for improvement. JAMA 1999; 282: 1458–65.PubMedCrossRefGoogle Scholar
  63. 63.
    Grau S, Monterde J, Carmona A, et al. Monitoring of antimicrobial therapy by an integrated computer program. Pharm World Sci 1999; 21: 152–7PubMedCrossRefGoogle Scholar
  64. 64.
    Evans RS, Pestotnik SL, Classen DC, et al. A computer-assisted management program for antibiotics and other antiinfective agents. N Engl J Med 1998; 338: 232–8PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 2001

Authors and Affiliations

  • Francisco Álvarez-Lerma
    • 1
  • Mercedes Palomar
    • 2
  • Santiago Grau
    • 1
  1. 1.Servicio de Medicina IntensivaHospital del MarBarcelonaSpain
  2. 2.Hospital Vall d’HebronBarcelonaSpain

Personalised recommendations