Drugs

, Volume 60, Issue 6, pp 1329–1352

Current Recommendations for the Treatment of Genital Herpes

Disease Management

Abstract

The incidence of genital herpes continues to increase in epidemic-like fashion. Aciclovir (acyclovir) has been the original gold standard of therapy. The recent addition of famciclovir and valaciclovir as antiherpes drugs has improved convenience as well as the efficacy of treatment. Although aciclovir remains a widely prescribed and reliable drug, its administration schedule falls short of the ease of usage that the newer nucleoside analogues offer, for both episodic and suppressive therapy. Suppression of symptomatic disease and asymptomatic shedding from the genitalia have both become popular approaches, if not the primary targets of antiviral therapy. Knowing that asymptomatic disease leads to most cases of transmission strongly suggests that suppression with antiviral agents could reduce transmission risk in discordant couples. Unfortunately, the role for antivirals in reducing transmission remains to be proven in clinical trials. Neonatal herpes is now successfully treated using aciclovir. Current randomised clinical trials are examining aciclovir and valaciclovir administration, as well as safety and efficacy for post-acute suppressive therapy. Prevention of recurrences in pregnancy is also a topic under investigation, with a view to reducing the medical need for Cesarean section, or alternatively (and far less likely to be accomplished) to protect the neonate.

Although resistance is largely limited to the immunocompromised and a change in resistance patterns is not expected, several drugs are available for the treatment of aciclovir-resistant strains of herpes simplex. Foscarnet is the main alternative with proven efficacy in this setting. Unfortunately, administration of foscarnet requires intravenous therapy, although a single anecdote of topical foscarnet efficacy in this setting has been published. Alternatives include cidofovir gel, which is not commercially available but can be formulated locally from the intravenous preparation. Less effective alternatives include trifluridine and interferon. Future possibilities for treatment of genital herpes include a microparticle-based controlled-release formulation of aciclovir and resiquimod (VML-600; R-848). The search for an effective therapeutic vaccine for genital herpes has not been successful to date, although a live virus glycoprotein H-deficient (DISC) vaccine is currently in clinical trials. Recent data suggest that seronegative women are protected (albeit, not fully) by a glycoprotein D recombinant vaccine with adjuvant.

Despite the established safety and convenience of current treatment options, better suppressive options and topical treatment options are much needed. Studies using existing agents as potential tools to avoid Cesarean section, or transmission to neonate or partner are ongoing. Both vaccines and antivirals may eventually play a role in prevention of infection.

References

  1. 1.
    Sacks SL. Genital herpes simplex virus infection and treatment. In: Sacks SL, Straus SE, Whitley RA, et al., editors. Clinical management of herpes virus infections. Amsterdam: IOS Press, 1995: 55–74Google Scholar
  2. 2.
    Benedetti J, Corey L, Ashley R. Recurrence rates in genital herpes after symptomatic first-episode infection. Ann Intern Med 1994; 121: 847–54PubMedGoogle Scholar
  3. 3.
    Schomogyi M, Wald A, Corey L. Herpes simplex virus-2 infection: an emerging disease? Infect Dis Clin North Am 1998; 12: 47–61PubMedCrossRefGoogle Scholar
  4. 4.
    Fleming DT, McQuillan GM, Johnson RE, et al. Herpes simplex virus type 2 in the United States, 1976 to 1994. N Engl J Med 1997; 337: 1105–11PubMedCrossRefGoogle Scholar
  5. 5.
    Johnson RE, Nahmias AT, Magder LS, et al. A seroepidemiologic survey of the prevalence of herpes simplex virus type 2 infection in the United States. N Engl J Med 1989; 321: 7–12PubMedCrossRefGoogle Scholar
  6. 6.
    Mertz GJ, Benedetti J, Ashley R, et al. Risk factors for the sexual transmission of genital herpes. Ann Intern Med 1992; 116: 197–202PubMedGoogle Scholar
  7. 7.
    Schaeffer HJ, Beauchamp L, de Miranda P, et al. 9-(2-hydroxyethoxymethyl)guanine activity against viruses of the herpes group. Nature 1978; 272: 583–5PubMedCrossRefGoogle Scholar
  8. 8.
    Fyfe JA, Keller PM, Funnan PA, et al. Thymidine kinase from herpes simplex virus phosphorylates the new antiviral com-pound, 9-(2-hydroxyethoxymethyl)guanine. JBiol Chem 1978; 253: 8721–7Google Scholar
  9. 9.
    Derse D, Cheng Y-C, Funnan PA, et al. Inhibition of purified human and herpes simplex virus-induced DNA polymerases by 9-(2-hydroxyethoxyinethyl)guanine triphosphate: effects on primer-template function. JBiol Chem 1981;256: 11447–51Google Scholar
  10. 10.
    Funnan PA, St Clair MH, Spector T. Acyclovir triphosphate is a suicide inactivator of the herpes simplex virus DNA polymerase. J Biol Chem 1984; 259: 9575–9Google Scholar
  11. 11.
    Elion GB, Furman PA, Fyfe JA, et al. Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl)guanine. Proc Nat Acad Sci U S A 1977; 74: 5716–20CrossRefGoogle Scholar
  12. 12.
    de Miranda P, Blum MR. Pharmacokinetics of acyclovir after intravenous and oral administration. J Antimicrob Chemother 1983; 12 Suppl. B: 29–37PubMedCrossRefGoogle Scholar
  13. 13.
    Burnette TC, de Miranda P. Metabolic disposition of the acyclovir prodrug valaciclovir in the rat. Drug Metab Dispos 1994; 22: 60–4PubMedGoogle Scholar
  14. 14.
    Burnette TC, de Miranda P. Purification and characterization of an enzyme from rat liver that hydrolyzes 25 GU 87, the L-valyl ester prodrug of acyclovir [abstract]. Antiviral Res 1993; 20 Suppl. 1: 119Google Scholar
  15. 15.
    de Miranda P, Burnette TC. Metabolism and phannacokinetics of the acyclovir prodrug BW 256U 87 in cynomolgus monkeys [abstract]. Antiviral Res 1992; 17 Suppl. 1: 53CrossRefGoogle Scholar
  16. 16.
    Soul-Lawton J, Seaber E, On N, et al. Absolute bioavailability and metabolic disposition of valaciclovir, the L-valyl ester of acyclovir, following oral administration to humans. Antimicrob Agents Chemother 1995; 39: 2759–64PubMedCrossRefGoogle Scholar
  17. 17.
    Weiler S, Blum MR, Doucette M, et al. Phannacokinetics of the acyclovir pro-drug valaciclovir after escalating single-dose and multiple-dose administration to normal volunteers. Clin Pharmacol Ther 1993; 54: 595–605CrossRefGoogle Scholar
  18. 18.
    Weller S, Blum MR, Smiley ML. Phase I phannacokinetics of the acyclovir prodrug, valaciclovir. Antiviral Res 1993; 20 Suppl. 1: 144Google Scholar
  19. 19.
    Wang LH, Schults M, Weiler S, et al. Phannacokinetics and safety of multiple-dose valaciclovir in geriatric volunteers with and without concomitant diuretic therapy. Antimicrob Agents Chemother 1996; 40: 80–5PubMedGoogle Scholar
  20. 20.
    Spruance SL, Tyring SK, deGregorio B, et al. A large-scale, placebo-controlled, dose-ranging trial of peroral valaciclovir for episodic treatment of recurrent herpes genitalis. Arch Intern Med 1996; 156: 1729–35PubMedCrossRefGoogle Scholar
  21. 21.
    Beutner KR, Friedman DJ, Forszpaniak C, et al. Valaciclovir compared with acyclovir for improved therapy for herpes zoster in immunocompetent adults. Antimicrob Agents Chemother 1995; 39: 1546–53PubMedCrossRefGoogle Scholar
  22. 22.
    Patel R, Bodsworth NJ, Woolley P, et al. Valaciclovir for the suppression of recurrent genital HSV infection: a placebo-controlled study of once-daily therapy. Genitourin Med 1997; 73: 105–9PubMedGoogle Scholar
  23. 23.
    Feinberg J, Hurwitz S, Cooper D, et al. A randomized, double-blind trial of valaciclovir prophylaxis for cytomegalovirus disease in patients with advanced human immunodeficiency virus infection. J Infect Dis 1998; 177: 48–56PubMedCrossRefGoogle Scholar
  24. 24.
    Lowance D, Neumayer HH, Legendre CM, et al. Valacyclovir for the prevention of cytomegalovirus disease after renal transplantation. N Engl J Med 1999; 340: 1462–70PubMedCrossRefGoogle Scholar
  25. 25.
    Vere Hodge RA, Cheng Y-C. The mode of action of penciclovir. Antiviral Chem Chemother 1993; 4 Suppl. 1: 13–24Google Scholar
  26. 26.
    Boyd MR, Bacon TH, Sutton D, et al. Antiherpesvirus activity of 9-(4-hydroxy-3-hydroxymethylbut-l-yl)guanine (BRL 39123) in cell culture. Antimicrob Agents Chemother 1987; 31: 1238–42PubMedCrossRefGoogle Scholar
  27. 27.
    Vere Hodge RA. Famciclovir and penciclovir: the mode of action of famciclovir including its conversion to penciclovir. Antiviral Chem Chemother 1993; 4: 67–84Google Scholar
  28. 28.
    Pue MA, Benet LZ. Phannacokinetics of famciclovir in man. Antiviral Chem Chemother 1993; 4 Suppl. 1: 47–55Google Scholar
  29. 29.
    Earnshaw DL, Bacon TH, Darlison SJ, et al. Mode of anitivral action of penciclovir in MRC-5 cells infected cells with herpes simplex virus type-1 (HSV-1), HSV-2, and varicella-zoster virus. Antimicrob Agents Chemother 1992; 36: 2747–57PubMedCrossRefGoogle Scholar
  30. 30.
    Vere Hodge RA, Sutton D, Boyd MR, et al. Selection of an oral prodrug (BRL42810; famciclovir) for the antiherpesvirus agent BRL 39123 [9-(4-hydroxy-3-hydroxymethylbut-1-yl)guanine; penciclovir]. Antimicrob Agents Chemother 1989; 33: 1765–73PubMedCrossRefGoogle Scholar
  31. 31.
    Weinberg AA, Bate BJ, Masters HB. In vitro activities of penciclovir and acyclovir against herpes simplex virus types 1 and 2. Antimicrob Agents Chemother 1992; 36: 2037–8PubMedCrossRefGoogle Scholar
  32. 32.
    Chatis PA, Crumpacker CS. Resistance of herpesvirus to antiviral drugs. Antimicrob Agents Chemother 1992; 36: 1589–95PubMedCrossRefGoogle Scholar
  33. 33.
    Field HJ, Tewari D, Sutton D, et al. Comparison of efficacies of famciclovir and valaciclovir against herpes simplex virus type 1 in a murine immunosuppression model. Antimicrob Agents Chemother 1995; 39: 1114–9PubMedCrossRefGoogle Scholar
  34. 34.
    Field HJ, Thackray AM. The effects of delayed-onset chemotherapy using famciclovir or valaciclovir in a murine immunosuppression model for HSV-1. Antiviral Chem Chemother 1995; 6: 210–6Google Scholar
  35. 35.
    Thackwray AM, Field HJ. Differential effects of famciclovir and valaciclovir on the pathogenesis of herpes simplex virus in a murine infection model including reactivation from latency. J Infect Dis 1996; 173: 291–9CrossRefGoogle Scholar
  36. 36.
    Saltzman R, Jurewicz R, Boon R. Safety of famciclovir in patients with herpes zoster and genital herpes. Antimicrob Agents Chemother 1994; 38: 2454–7PubMedCrossRefGoogle Scholar
  37. 37.
    Daniels S, Schentag JJ. Drug interaction studies and safety of famciclovir in healthy volunteers: a review. Antiviral Chem Chemother 1993; 4 Suppl. 1: 57–64Google Scholar
  38. 38.
    Fowles SE, Pue MA, Pierce D, et al. Pharmacokinetics of penciclovir in healthy elderly subjects following a single oral administration of 750mg famciclovir [abstract]. Br J Clin Pharmacol 1992; 34: 450PGoogle Scholar
  39. 39.
    Fowles SE, Pierce DM, Prince WT, et al. Effect of food on bioavailability and pharmacokinetics of penciclovir, a novel antiherpes agent, following oral administration of the prodrug, famciclovir [abstract]. Br J Clin Pharmacol 1990; 29: 620P-1Google Scholar
  40. 40.
    Fowles SE, Fairless AJ, Pierce DM, et al. A further study of the effect of food on the bioavailability and pharmacokinetics of penciclovir after oral administration of famciclovir [abstract]. Br J Clin Pharmacol 1991; 32: 657PGoogle Scholar
  41. 41.
    Bryson YJ, Dillon M, Lovett M, et al. Treatment of first episodes of genital herpes simplex virus infection with oral acyclovir: a randomized double-blind controlled trial in normal subjects. N Engl J Med 1983; 308: 916–21PubMedCrossRefGoogle Scholar
  42. 42.
    Mertz GJ, Critchlow, CW, Benedetti J, et al. Double-blind placebo-controlled trials of oral acyclovir in first-episode genital herpes simplex virus infection. JAMA 1984; 252: 1147–51PubMedCrossRefGoogle Scholar
  43. 43.
    Mindel A, Adler MW, Sutherland S, et al. Intravenous acyclovir treatment for primary genital herpes. Lancet 1982; I: 697–700CrossRefGoogle Scholar
  44. 44.
    Corey L, Fife K, Benedetii JK, et al. Intravenous acyclovir for the treatment of primary genital herpes. Ann Intern Med 1983; 98: 914–21PubMedGoogle Scholar
  45. 45.
    Wald A, Benedetti J, Davis G, et al. A randomized, double-blind, comparative trial comparing high-and standard-dose oral acyclovir for first-episode genital herpes infections. Antimicrob Agents Chemother 1994; 38: 174–6PubMedCrossRefGoogle Scholar
  46. 46.
    Fife KH, Barabarash RA, Rudolph T, et al. Valaciclovir versus acyclovir in the treatment of first-episode genital herpes infection: results of an international, multicenter, double-blind, randomized clinical trial. Sex Transm Dis 1997; 24: 481–6PubMedCrossRefGoogle Scholar
  47. 47.
    Murphy SM, Ruck F, Kitchin VS, et al. Oral famciclovir (FCV) a new antiherpes agent: comparative study with acyclovir in clinic initiated treatment of first episode genital herpes (FGH) [abstract]. The 2nd Congress of the European Acadamy of Dermatology and Venereology (EADV): 1991; AthensGoogle Scholar
  48. 48.
    Loveless M, Sacks SL, Harris JRW. Famciclovir in the management of first-episode genital herpes. Infect Dis Clin Prac 1997; 6 (1 Suppl.): S12–16CrossRefGoogle Scholar
  49. 49.
    Reichman RC, Badger GJ, Mertz GJ, et al. Treatment of recurrent genital herpes simplex infections with oral acyclovir: a controlled trial. JAMA 1984; 251: 2103–7PubMedCrossRefGoogle Scholar
  50. 50.
    Salo AP, Lassus A, Hovi T, et al. Double-blind placebo controlled trial of oral acyclovir in recurrent genital herpes. Eur J Sex Transm Dis 1983; 1: 95–8Google Scholar
  51. 51.
    Ruhnet-Forsbeck M, Sandstrom E, Andersson B, et al. Treatment of recurrent genital herpes simplex infections with oral acyclovir. J Antimicrob Chemother 1985; 16: 621–8CrossRefGoogle Scholar
  52. 52.
    Tyring SK, Douglas JM, Corey, L, et al. Arandomized, placebo-controlled comparison of oral valacyclovir and acyclovir in immunocompetent patients with recurrent genital herpes infections. Arch Dermatol 1998; 134: 185–91PubMedCrossRefGoogle Scholar
  53. 53.
    Centers for Disease Control and Prevention. Guidelines for treatment of sexually transmitted diseases: MMWR 47 (RR-1); 1–118 [online]. Available from: URL: http://aepo-xdv-www.epo.cdc.gov/wonder/prevguid/p0000480/entire.htm [Accessed 2000 Aug 22]
  54. 54.
    Luby JP, Gnann Jr JW, Alexander WJ, et al. A collaborative study of patient-initiated treatment of recurrent genital herpes with topical acyclovir or placebo. J Infect Dis 1984; 150: 1–6PubMedCrossRefGoogle Scholar
  55. 55.
    Corey L, Nahmias AJ, Guinan ME, et al. A trial of topical acyclovir in genital herpes simplex virus infections. N Engl J Med 1982; 306: 1313–9PubMedCrossRefGoogle Scholar
  56. 56.
    Reichman RC, Badger GJ, Guinan ME, et al. Treatment of recurrent genital herpes simplex genitalis: a controlled trial. J Infect Dis 1983; 147: 336–40PubMedCrossRefGoogle Scholar
  57. 57.
    Leone PA, Trottier S, Miller JM. A comparison of oral valaciclovir 500mg twice daily for three or five days in the treatment of recurrent genital herpes [abstract no. 22.012]. Abstracts from the 8th International Congress on Infectious Diseases: 1998 May 15–18; Boston (MA)Google Scholar
  58. 58.
    Bodsworth NJ, Crooks RJ, Berell S, et al. Valaciclovir versus aciclovir in patient initiated treatment of recurrent genital herpes: a randomised, double-blind trial. Genitourin Med 1997; 73: 110–60PubMedGoogle Scholar
  59. 59.
    Sacks SL, Aoki FY, Diaz-Mitoma F, et al. Patient-initiated, twice daily oral famciclovir for early recurrent genital herpes: a randomized, double-blind multicenter trial. JAMA 1996; 276: 44–9PubMedCrossRefGoogle Scholar
  60. 60.
    Sacks SL, Martel A, Aoki F, et al. Early, clinic-initiated treatment of recurrent genital herpes using famciclovir: results of a Canadian, multicentre study [abstract]. ClinRes 1994; 42: 300AGoogle Scholar
  61. 61.
    Sacks SL, Aoki FY, Diaz-Mitoma F, et al. Reply to: Goldman BD. Famciclovir for genital herpes. JAMA 1997; 277: 210–1Google Scholar
  62. 62.
    Douglas JM, Critchlow C, Benedetti J, et al. A double-blind study of oral aciclovir for suppression of recurrences of genital herpes simplex virus infection. N Engl J Med 1984; 310: 1151–6CrossRefGoogle Scholar
  63. 63.
    Mindel A, Flaherty A, Carney O, et al. Dosage and safety of long-term suppressive aciclovir therapy for recurrent genital herpes. Lancet 1988; I: 926–8CrossRefGoogle Scholar
  64. 64.
    Mertz GJ, Jones CC, Mills J. Long-term aciclovir suppression of frequently recurring genital herpes simplex virus infection. JAMA 1988; 260: 201–6PubMedCrossRefGoogle Scholar
  65. 65.
    Straus SE, Takiff HE, Seidlin M, et al. Suppression of frequently recurring genital herpes: a placebo-controlled double-blind trial of oral acyclovir. N Engl J Med 1984; 310: 1545–50PubMedCrossRefGoogle Scholar
  66. 66.
    Mertz GJ, Eron L, Goldberg L, et al. Prolonged continuous versus intermittent oral aciclovir treatment in normal adults with frequently recurring genital herpes simplex virus infection. Am J Med 1988; 85: 14–9PubMedGoogle Scholar
  67. 67.
    Goldberg LH, Kaufman R, Kurtz TO, et al. Long-term suppression of recurrent genital herpes with acyclovir: a 5-year benchmark. Arch Dermatol 1993; 129: 582–7PubMedCrossRefGoogle Scholar
  68. 68.
    Perrin L, Hirscel B. Combination therapy in primary HIV infection. Antiviral Res 1996; 29: 87–9PubMedCrossRefGoogle Scholar
  69. 69.
    Kaplowitz LG, Baker D, Gelb L, et al. Prolonged continuous acyclovir treatment of normal adults with frequently recurring genital herpes simplex virus infection. JAMA 1991; 265: 747–51PubMedCrossRefGoogle Scholar
  70. 70.
    Straus SE, Croen KD, Sawyer MH, et al. Acyclovir suppression of frequently recurring genital herpes: efficacy and diminishing need during successive years of treatment. JAMA 1988; 260: 2227–30PubMedCrossRefGoogle Scholar
  71. 71.
    Carney O, Ross E, Ikkos G, et al. The effect of suppressive acyclovir on the psychological morbidity associated with recurrent genital herpes. Genitourin Med 1993; 69: 457–9PubMedGoogle Scholar
  72. 72.
    Reitano M, Tyring S, Lang W, et al. Valaciclovir for the suppression of recurrent genital herpes simplex virus infection: a large-scale dose range-finding study. J Infect Dis 1998; 178: 603–10PubMedCrossRefGoogle Scholar
  73. 73.
    Mertz GJ, Loveless MO, Levin MJ, et al. Oral famciclovir for the suppression of recurrent genital herpes simplex virus infection in women: a multicenter, double-blind, placebo-controlled trial. Arch Intern Med 1997; 157: 343–9PubMedCrossRefGoogle Scholar
  74. 74.
    Diaz-Mitoma F, Sibbald RG, Sharon SD, et al. Oral famciclovir for the suppression of recurrent genital herpes: a randomized controlled trial. JAMA 1998; 280: 887–92PubMedCrossRefGoogle Scholar
  75. 75.
    Mertz GJ, Schmidt D, Jourden JL, et al. Frequency of acquisition of first-episode genital infection with herpes simplex virus from symptomatic and asymptomatic source contacts. Sex Transm Dis 1985; 12: 33–9PubMedCrossRefGoogle Scholar
  76. 76.
    Wald A, Zeh J, Barnum G, et al. Suppression of subclinical shedding of herpes simplex virus type 2 with acyclovir. Ann Intern Med 1996; 124: 8–15PubMedGoogle Scholar
  77. 77.
    Diaz-Mitoma F, Ruben M, Sacks S, et al. Detection of viral DNA to evaluate outcome of antiviral treatment of patients with recurrent genital herpes. J Clin Microbiol 1996; 34: 657–63PubMedGoogle Scholar
  78. 78.
    Sacks SL, Hughes A, Rennie B, et al. Famciclovir for suppression of asymptomatic and symptomatic recurrent genital herpes shedding: a randomised, double-blind, double dummy, parallel group, placebo-controlled trial [abstract no. H-73]. Abstracts of the 37th Interscience Conference on Antimicrobial Agents and Chemotherapy: 1997; 1997 Sep 28–Oct 1; TorontoGoogle Scholar
  79. 79.
    Sacks SL, Shafran SD. BID Famciclovir suppression of asymptomatic genital herpes simplex virus shedding in men [abstract no. H-12]. Abstracts of the 38th Interscience Conference on Antimicrobial Agents and Chemotherapy: 1998 Sep 24–27; San Diego (CA)Google Scholar
  80. 80.
    Schacker T, Hu H, Koelle DM, et al. Famciclovir for the suppression of symptomatic and asymptomatic herpes simplex virus reactivation in HIV-infected persons. Ann Intern Med 1998; 128: 21–8PubMedGoogle Scholar
  81. 81.
    Wald A, Warren T, Hu H, et al. Suppression of subclinical shedding of herpes simplex virus type 2 in the genital tract with valaciclovir [abstract no. H-82]. Abstracts of the 38th Interscience Conference on Antimicrobial Agents and Chemotherapy: 1998 Sep 24–27; San Diego (CA)Google Scholar
  82. 82.
    Straus SE, Seidlin M, Takiff HE, et al. Effect of oral acyclovir treatment on symptomatic and asymptomatic virus shedding in recurrent genital herpes. Sex Transm Dis 1989; 16: 107–13PubMedCrossRefGoogle Scholar
  83. 83.
    Whitley RJ, Nahmias AJ, Vinistine AM, et al. The natural history of herpes simplex virus infection of mother and newborn. Pediatrics 1980; 66: 489–94PubMedGoogle Scholar
  84. 84.
    Stone KM, Brooks CA, Guinan ME, et al. National surveillance for neonatal herpes simplex virus infections. Sex Transm Dis 1989; 16: 152–6PubMedCrossRefGoogle Scholar
  85. 85.
    Brown ZA, Benedetti J, Ashley RL, et al. Neonatal herpes simplex virus infection in relation to asymptomatic maternal infection at the time of labor. N Engl J Med 1991; 324: 1247–52PubMedCrossRefGoogle Scholar
  86. 86.
    Whitley RJ, Arvin A, Prober C, et al. A controlled trial comparing vidarabine with acyclovir in neonatal herpes simplex virus infection. N Engl J Med 1991; 324: 444–9PubMedCrossRefGoogle Scholar
  87. 87.
    Koutsky LA, Ashely RL, Holmes KK, et al. The frequency of unrecognised type 2 herpes simplex virus infection among women: implications for the control of genital herpes. Sex Transm Dis 1990; 17: 90–4PubMedCrossRefGoogle Scholar
  88. 88.
    Brown ZA, Benedetti JK, Watts DH, et al. A comparison between detailed and simple histories in the diagnosis of genital herpes complicating pregnancy. Am J Obstet Gynecol 1995; 172: 1299–303PubMedCrossRefGoogle Scholar
  89. 89.
    Brown ZA, Vontver LA, Benedetti J, et al. Genital herpes during pregnancy: risk factors associated with recurrences and asymptomatic shedding. Am J Obstet Gynecol 1985; 153: 24–30PubMedGoogle Scholar
  90. 90.
    Brown ZA, Selke S, Zeh J, et al. The acquisition of herpes simplex virus during pregnancy. N Engl J Med 1997; 337: 509–15PubMedCrossRefGoogle Scholar
  91. 91.
    Prober CG, Sullender WM, Yasukawa LL, et al. Low risk of herpes simplex virus infections in neonates exposed to the virus at the time of vaginal delivery to mothers with recurrent genital herpes simplex virus infections. N Engl J Med 1987; 316: 240–4PubMedCrossRefGoogle Scholar
  92. 92.
    Prober CG, Corey L, Brown ZA, et al. The management of pregnancies complicated by genital infections with herpes simplex virus. Clin Infect Dis 1992; 15: 1031–8PubMedCrossRefGoogle Scholar
  93. 93.
    American College of Obstetricians and Gynecologists (ACOG). Perinatal herpes simplex virus infections. Washington (DC): ACOG Technical Bulletin, 1988: 122Google Scholar
  94. 94.
    Roberts SW, Cox SM, Dax J, et al. Genital herpes during pregnancy: no lesions, no cesarean. Obstet Gynecol 1995; 85: 261–4PubMedCrossRefGoogle Scholar
  95. 95.
    Haddad J, Langer B, Astruc D, et al. Oral acyclovir and recurrent genital herpes during late pregnancy. Obstet Gynecol 1993; 82: 102–4PubMedGoogle Scholar
  96. 96.
    Scott LL, Sanchez PJ, Jackson GL, et al. Acyclovir suppression to prevent cesarean delivery after first-episode genital herpes. Obstet Gynecol 1996; 87: 69–73PubMedCrossRefGoogle Scholar
  97. 97.
    Brocklehurst P, Kinghorn G, Carney O, et al. A randomised placebo controlled trial of suppressive acyclovir in late pregnancy in women with recurrent genital herpes infection. Br J Obstet Gynaecol 1998; 105: 275–80PubMedCrossRefGoogle Scholar
  98. 98.
    Stray-Pedersen B. Acyclovir in late pregnancy to prevent neonatal herpes simplex [letter]. Lancet 1990; 336: 756PubMedCrossRefGoogle Scholar
  99. 99.
    Andrews EB, Yankaskas BC, Cordero JF, et al. Acyclovir in pregnancy registry: six years experience. N Engl J Med 1992; 79: 7–13Google Scholar
  100. 100.
    Kimberlin D, Powell D, Gruber W, et al. Administration of oral acyclovir suppressive therapy after neonatal herpes simplex virus disease limited to the skin, eyes, and mouth: results of a Phase I/II trial. Pediatr Infect Dis J 1996; 15: 247–54PubMedCrossRefGoogle Scholar
  101. 101.
    Kimberlin DF, Weiler S, Whitiey RJ, et al. Pharmacokinetics of oral valacyclovir and acyclovir in late pregnancy. Am J Obstet Gynecol 1998; 179: 846–51PubMedCrossRefGoogle Scholar
  102. 102.
    Parris D, Harrington JE. Herpes simplex virus variants resistant to high concentrations of acyclovir exist in clinical isolates. Antimicrob Agents Chemother 1982; 22: 71–7PubMedCrossRefGoogle Scholar
  103. 103.
    Crumpacker CS, Schnipper LE, Marlowe SI, et al. Resistance to antiviral drugs of herpes simplex virus isolated from a patient treated with acyclovir. N Engl J Med 1982; 306: 343–6PubMedCrossRefGoogle Scholar
  104. 104.
    Burns WH, Saral R, Santos GW, et al. Isolation and characterisation of resistant herpes simplex virus after acyclovir therapy. Lancet 1982; I: 421–3CrossRefGoogle Scholar
  105. 105.
    Wade JC, McLaren C, Meyers JD. Frequency and significance of acyclovir-resistant herpes simplex virus isolated from marrow transplant patients receiving multiple courses of treatment with acyclovir. J Infect Dis 1983; 148: 1077–82PubMedCrossRefGoogle Scholar
  106. 106.
    Erlich KS, Mills J, Chatis P, et al. Acyclovir-resistant herpes simplex virus infections in patients with the acquired immunodeficiency syndrome. N Engl J Med 1989; 320: 293–6PubMedCrossRefGoogle Scholar
  107. 107.
    Englund JA, Zimmerman ME, Swierkosz EM, et al. Herpes simplex virus resistant to acyclovir: a study in a tertiary care centre. Ann Intern Med 1990; 112: 416–22PubMedGoogle Scholar
  108. 108.
    Christophers J, Clayton J, Craske J, et al. Survey of resistance of herpes simplex virus to acyclovir in northwest England. Antimicrob Agents Chemother 1998; 42: 868–72PubMedGoogle Scholar
  109. 109.
    Nugier F, Colin JN, Aymard M, et al. Occurrence and characterization of acyclovir-resistant herpes simplex virus isolates: report on a two-year sensitivity screening survey. J Med Virol 1992; 36: 1–12PubMedCrossRefGoogle Scholar
  110. 110.
    Reusser P, Cordonnier C, Einsele H, et al. European survey of herpesvirus resistance to antiviral drugs in bone marrow transplant recipients. Bone Marrow Transplant 1996; 17: 813–7PubMedGoogle Scholar
  111. 111.
    Darville JM, Ley BE, Roome APCH, et al. Acyclovir-resistant herpes simplex virus infections in a bone marrow transplant population. Bone Marrow Transplant 1998; 22: 587–9PubMedCrossRefGoogle Scholar
  112. 112.
    Kost RG, Hill EL, Tigges M, et al. Brief report: recurrent acyclovir-resistant genital herpes in an immunocompetentpatient. N Engl J Med 1993; 329: 1777–82PubMedCrossRefGoogle Scholar
  113. 113.
    Pottage Jr JC, Kessler KA. Herpes simplex virus resistance to acyclovir: clinical relevance. Infect Agents Dis 1995; 4: 115–24PubMedGoogle Scholar
  114. 114.
    Jones TJ, Paul P. Disseminated acyclovir-resistant herpes simplex virus type 2 treated successfully with foscarnet. J Infect Dis 1995; 171: 508–9PubMedCrossRefGoogle Scholar
  115. 115.
    Darby G, Field HJ. Altered substrate specificity of herpes simplex virus thymidine kinase confers acyclovir-resistance. Nature 1981; 289: 81–3PubMedCrossRefGoogle Scholar
  116. 116.
    Field HJ. Persistent herpes simplex virus infections and mechanisms of virus drug resistance. Eur J Clin Microbiol Infect Dis 1989; 8: 671–80PubMedCrossRefGoogle Scholar
  117. 117.
    Hill EL, Hunter GA, Ellis MN. In vitro and in vivo characterization of herpes simplex virus clinical isolates recovered from patients infected with human immunodeficiency virus. Antimicrob Agents Chemother 1991; 35: 2322–8PubMedCrossRefGoogle Scholar
  118. 118.
    Chatis PA, Crumpacker CS. Analysis of the thymidine kinase gene from clinically isolated acyclovir-resistant herpes simplex viruses. Virology 1991; 180: 793–7PubMedCrossRefGoogle Scholar
  119. 119.
    Sasadeusz JJ, Sacks SL. Spontaneous reactivation of thymidine kinase-deficient, acyclovir-resistant type 2 herpes simplex virus: masked heterogeneity or reversion? J Infect Dis 1996; 174: 476–82PubMedCrossRefGoogle Scholar
  120. 120.
    Parker AC, Craig JIO, Collins P, et al. Acyclovir-resistant herpes simplex virus infection due to altered DNA polymerase [letter]. Lancet 1987; II: 1461CrossRefGoogle Scholar
  121. 121.
    Sacks SL, Wanklin RJ, Reece DE, et al. Progressive esophagitis from acyclovir-resistant herpes simplex: clinical roles for DNA polymerase mutants and viral heterogeneity. Ann Intern Med 1989; 111: 893–9PubMedGoogle Scholar
  122. 122.
    Blower SM, Porco TC, Darby G. Predicting and preventing the emergence of antiviral drug resistance in HSV-2. Nat Med 1998; 4: 673–8PubMedCrossRefGoogle Scholar
  123. 123.
    Helgstrand E, Eriksson B, Johansson NG, et al. Trisodium phosphonoformate, a new antiviral compound. Science 1978; 201: 819–21PubMedCrossRefGoogle Scholar
  124. 124.
    Wagstaff AJ, Bryson HM. Foscarnet: a reappraisal of its antiviral activity, pharmacokinetic properties and therapeutic use in immunocompromised patients with viral infections. Drugs 1994; 48: 199–226PubMedCrossRefGoogle Scholar
  125. 125.
    Balfour H, Benson C, Braun J, et al. Management of acyclovir-resistant herpes simplex and varicella-zoster virus infections. J AIDS 1994; 7: 254–60Google Scholar
  126. 126.
    Chatis M, Schrager LE, Crumpacker CS. Successful treatment with foscarnet of an acyclovir-resistant mucocutaneous infection with herpes simplex virus in a patient with acquired immune deficiency syndrome. N Engl J Med 1989; 320: 297–300PubMedCrossRefGoogle Scholar
  127. 127.
    Jacobson MA. Review of the toxicities of foscarnet. J AIDS 1992; 5 Suppl. 1: S11–17Google Scholar
  128. 128.
    Wallin J, Lernestedt J, Ogenstad S, et al. Topical treatment of recurrent genital herpes infections with foscarnet. Scand J Infect Dis 1985; 17: 165–72PubMedGoogle Scholar
  129. 129.
    Barton S, Munday P, Kinghorn G, et al. Topical treatment of recurrent genital herpes simplex virus infections with trisodium phosphonoformate (foscarnet): double blind, placebo controlled, multicentre study. Genitourin Med 1986; 62: 247–50PubMedGoogle Scholar
  130. 130.
    Swetter SM, Hill EL, Kern ER, et al. Chronic vulvar ulceration in an immunocompetent woman due to acyclovir-resistant, thymidine kinase-deficient herpes simplex virus. J Infect Dis 1998; 177: 543–50PubMedCrossRefGoogle Scholar
  131. 131.
    Sacks SL, Reece DE, Galloway P, et al. Acyclovir (ACV) resistance in herpes simplex virus (HSV) isolates from a patient with esophagitis: a thymadine kinase (TK) positive, foscarnet (PFA) resistant strain with response to intravenous PFA. 27th Interscience Conference on Antimicrobial Agents and Chemotherapy: 1987 Oct 4–7; New York (NY)Google Scholar
  132. 132.
    Chatis PA, Miller CH, Schrager LE, et al. Successful treatment with foscarnet of an acyclovir-resistant mucocutaneous infection with herpes simplex virus in a patient with acquired immunodeficiency syndrome. N Engl J Med 1989; 320: 297–300PubMedCrossRefGoogle Scholar
  133. 133.
    Vinckier F, Boogaerts M, De Clerck D, et al. Chronic herpetic infection in an immunocompromised patient: report of a case. J Oral Maxillofac Surg 1987; 45: 723–8PubMedCrossRefGoogle Scholar
  134. 134.
    Youle MM, Hawkins DA, Collins P, et al. Acyclovir-resistant herpes in AIDS treated with foscarnet. Lancet 1988; II: 341–2CrossRefGoogle Scholar
  135. 135.
    Safrin S. Treatment of acyclovir-resistant herpes simplex virus infections in patients with AIDS. J AIDS 1992; 5 Suppl. 1: S29–32Google Scholar
  136. 136.
    Safrin S, Assaydeen T, Follansbee S, et al. Foscarnet therapy for acyclovir-resistant mucocutaneous herpes simplex virus infection in 26 AIDS patients: preliminary data. J Infect Dis 1990; 161: 1078–84PubMedCrossRefGoogle Scholar
  137. 137.
    Safrin S, Crumpacker C, Chatis P, et al. A controlled trial comparing foscarnet with vidarabine for acyclovir-resistant mucocutaneous herpes simplex in the acquired immunodeficiency syndrome. N Engl J Med 1991; 325: 551–5PubMedCrossRefGoogle Scholar
  138. 138.
    Birch CJ, Tachedjian G, Doherty RR, et al. Altered sensitivity to antiviral drugs of herpes simplex virus isolates from a patient with the acquired immunodeficiency syndrome. J Infect Dis 1990; 161: 731–4CrossRefGoogle Scholar
  139. 139.
    Safrin S, Kemmerly S, Plotkin B, et al. Foscarnet-resistant herpes simplex virus infection in patients with AIDS. J Infect Dis 1994; 169: 193–6PubMedCrossRefGoogle Scholar
  140. 140.
    Snoeck R, Andrei G, Gerard M, et al. Successful treatment of progressive mucocutaneous infection due to acyclovir-and foscarnet-resistant herpes simplex virus with (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine (HPMPC). Clin Infect Dis 1994; 18: 570–8PubMedCrossRefGoogle Scholar
  141. 141.
    Safrin S, Elbeik T, Phan L, et al. Correlation between response to acyclovir and foscarnet therapy and in vitro susceptibility results for isolates of herpes simplex virus from human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 1994; 38: 1246–50PubMedCrossRefGoogle Scholar
  142. 142.
    Ho HT, Woods KL, Bronson JJ, et al. Intracellular metabolism of the antiherpes agent 1-[3-hydroxy-2-(phosphonylmethoxy)propyl]cytosine. Mol Pharmacol 1992; 41: 197–202PubMedGoogle Scholar
  143. 143.
    Cihlar T, Votruba I, Hoska K, et al. Metabolism of (S)-1-[3-hydroxy-2-(phosphonylmethoxy)propyl]-cytosine (HPMPC) in human embryonic lung cells. Collect Czech Chem Commun 1992; 57: 661–72CrossRefGoogle Scholar
  144. 144.
    Jones RJ, Bischofberger NJ. Minireview: nucleotide prodrugs. Antiviral Res 1995; 27: 1–17PubMedCrossRefGoogle Scholar
  145. 145.
    Andrei G, Snoeck R, Goubau P, et al. Comparative activity of various compounds against clinical strains of herpes simplex virus. Eur J Clin Microbiol Infect Dis 1992; 11: 143–51PubMedCrossRefGoogle Scholar
  146. 146.
    De Clerq E, Holy A. Efficacy of (S)-2-(3-hydroxy-2-phosphonyl-methoxy propyl)cytosine in various models of herpes simplex virus infection in mice. Antimicrob Agents Chemother, 1991; 35: 701–6CrossRefGoogle Scholar
  147. 147.
    Lalezari JP, Drew WL, Glutzer E, et al. Treatment with intravenous (S)-1-[3-hydroxy-2-(phosphonylmethoxy)propyl]cytosine of acyclovir-resistant mucocutaneous infection with herpes simplex virus inapatient with AIDS. J Infect Dis 1994; 170: 570–2PubMedCrossRefGoogle Scholar
  148. 148.
    Snoeck R, Andrei G, de Clerq E, et al. A new topical treatment for resistant herpes simplex infections. N Engl J Med 1993; 329: 968–9PubMedCrossRefGoogle Scholar
  149. 149.
    Mendel DB, Barkhimer DB, Chen MS. Biochemical basis for increased susceptibility to cidofovir of herpes simplex viruses with altered or deficient thymidine kinase activity. Antimicrob Agents Chemother 1995; 39: 2120–2PubMedCrossRefGoogle Scholar
  150. 150.
    Talarico C, Stanet S, Lambe C, et al. Mode of action studies on the anti-cytomegalovirus nucleoside analog [l-(2-hydroxy-1-hydroxymethyl)ethyoxy-methyl)cytosine] (abstract no. 92). Antiviral Res 1990; S1: 87Google Scholar
  151. 151.
    Merta A, Votruba I, Rosenberg I, et al. Inhibition of herpes simplex virus DNA polymerase by diphosphates of acyclic phosphonylmethyoxalkyl nucleotide analogues. Antiviral Res 1990; 13: 209–18PubMedCrossRefGoogle Scholar
  152. 152.
    Neyts J, Snoeck R, Schols D, et al. Selective inhibition of human cytomegalovirus DNA synthesis by (S)-1-[3-hydroxy-2-(phosphonylmethoxy)propyl]cytosine [(S)-HPMPC] and 9-(1,3-dihydorxy-2-propoxymethyl)guanine (DHPG)). Virology 1990; 179: 41–50PubMedCrossRefGoogle Scholar
  153. 153.
    Naesens L, Snoeck R, Andrei G, et al. HPMPC (cidofovir), PMEA (adefovir) and related acyclic nucleoside phosphonate analogues: a review of their pharmacology and clinical potential in the treatment of viral infections. Antiviral Chem Chemother 1997; 8: 1–23Google Scholar
  154. 154.
    Bravo FJ, Stanberry LR, Kier AB, et al. Evaluation of HPMPC therapy for primary and recurrent genital herpes in mice and guinea pigs. Antiviral Res 1993; 21: 59–72PubMedCrossRefGoogle Scholar
  155. 155.
    Palmer J, Vogt PE, Kern ER. Prevention and treatment of experimental genital herpes simplex virus type 2 (HSV-2) infections with topical HPMPC [abstract no. 205]. Antiviral Res 1995; 26: A334Google Scholar
  156. 156.
    Aduma PP, Connelly MC, Srinivas RV, et al. Metabolic diversity and antiviral activities of acyclic nucleoside phosphonates. Mol Pharmacol 1995; 47: 816–22PubMedGoogle Scholar
  157. 157.
    Cundy KC, Petty BG, Flaherty J, et al. Clinical pharmacokinetics of cidofovir in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 1995; 39: 1247–52PubMedCrossRefGoogle Scholar
  158. 158.
    Wachsman M, Petty BG, Cundy KC, et al. Pharmacokinetics, safety and bioavailability of HPMPC (cidofovir) in human immunodeficiency virus-infected subjects. Antiviral Res 1996; 29: 153–61PubMedCrossRefGoogle Scholar
  159. 159.
    Lalezari J, Schacker T, Feinberg J, et al. A randomized, doubleblind, placebo-controlled trial of cidofovir gel for the treatment of acyclovir-unresponsive mucocutaneous herpes simplex virus infection in patients with AIDS. J Infect Dis 1997; 176: 892–8PubMedCrossRefGoogle Scholar
  160. 160.
    Sacks SL, Shafran SD, Diaz-Mitoma F, et al. A multicenter phase I/II dose escalation study of single-dose cidofovir gel for treatment of recurrent genital herpes. Antimicrob Agents Chemother 1998; 42: 2996–9PubMedGoogle Scholar
  161. 161.
    Colin J, Malet F, Chastel C, et al. Use of collagen shields in the treatment of herpetickeratitis. Curr Eye Res 1991; 10: 189–91PubMedCrossRefGoogle Scholar
  162. 162.
    Murphy M, Morley A, Eglin RP, et al. Topical trifluridine for mucocutaneous acyclovir-resistant herpes simplex II in AIDS patient [letter]. Lancet 1992; 340: 1040PubMedCrossRefGoogle Scholar
  163. 163.
    Weaver D, Weissbach N, Kapell K, et al. Topical trifluridine treatment of acyclovir-resistant herpes simplex disease [abstract no. 507]. 31st Interscience Conference on Antimicrobial Agents and Chemotherapy: 1991 Sep 29–Oct 2; Chicago (IL)Google Scholar
  164. 164.
    Birch CJ, Tyssen DP, Tachedjian G, et al. Clinical effects and in vitro studies of trifluorothymidine combined with interferon-alpha for treatment of drug-resistant and -sensitive herpes simplex virus infections. J Infect Dis 1992; 166: 108–12PubMedCrossRefGoogle Scholar
  165. 165.
    Chatterjee S, Hunter E, Whitley R. Effect of cloned human interferons on protein synthesis and morphogenesis of herpes simplex virus. J Virol 1985; 56: 419–25PubMedGoogle Scholar
  166. 166.
    Overall JC, Yeh TJ, Kern ER. Sensitivity of herpes simplex virus 1 and 2 to three preparations of human interferon. J Infect Dis 1980; 142: 943PubMedCrossRefGoogle Scholar
  167. 167.
    Lebwohl M, Gordon M, Conant M, et al. Recombinant α-2 interferon in the treatment of recurrent herpes genitalis [abstract]. J Invest Dermatol 1987; 88: 505Google Scholar
  168. 168.
    Shupack J, Stiller M, Knobler E, et al. Topical alpha-interferon in recurrent genital herpes simplex infection: a double-blind, placebo-controlled clinical trial. Dermatologica 1990; 181: 134–8PubMedCrossRefGoogle Scholar
  169. 169.
    Shupack J, Stiller M, Davis I, et al. Topical alpha-interferon ointment with dimethyl sulfoxide in the treatment of recurrent genital herpes simplex. Dermatology 1992; 184: 40–4PubMedCrossRefGoogle Scholar
  170. 170.
    Vonka V, Petrovska P, Borecky L, et al. Increased effects of topically applied interferon in herpes simplex virus-induced lesions by caffeine. Acta Virol 1995; 39: 125–30PubMedGoogle Scholar
  171. 171.
    Eron LJ, Toy C, Salsitz B, et al. Therapy of genital herpes with topically applied interferon. Antimicrob Agents Chemother 1987; 31: 1137–9PubMedCrossRefGoogle Scholar
  172. 172.
    Friedman-Kien AE, Klein RJ, Glaser RD, et al. Treatment of recurrent genital herpes with topical alpha interferon gel combined with nonoxynol 9. J Am Acad Dermatol 1986; 15: 989–94PubMedCrossRefGoogle Scholar
  173. 173.
    Sacks SL, Varner TL, Davies KS, et al. Randomized, double-blind, placebo-controlled, patient-initiated study of topical high-and low-dose interferon-α with nonoxynol-9 in the treatment of recurrent genital herpes. J Infect Dis 1990; 161: 692–8PubMedCrossRefGoogle Scholar
  174. 174.
    Lebwohl M, Sacks S, Conant M, et al. Recombinant alpha-2 interferon gel treatment of recurrent herpes genitalis. Antiviral Res 1992; 17: 235–43PubMedCrossRefGoogle Scholar
  175. 175.
    Glezerman M, Cohen V, Movshovitz M, et al. Placebo-controlled trial of topical interferon in labial and genital herpes. Lancet 1988; I: 150–2CrossRefGoogle Scholar
  176. 176.
    Field AK, Tuomari AV, McGeever-Rubin B, et al. (+)-(lα,2b,3a)-9-[2,3-Bis (hydroxymethyl) cyclobutyl] guanine [(±)BHCG]: a potent and selective inhibitor of herpesviruses. Antiviral Res 1990; 13: 41–52PubMedCrossRefGoogle Scholar
  177. 177.
    Kohlbrenner WE, Carter CD, Fesik SW, et al. Efficiency of phosphorylation of the Cyclobut-G (A-69992) enantiomers by HSV-1 thymidine kinase dose not correlate with their anti-herpesvirus activity. Biochem Pharmacol 1990; 40: R5–10PubMedCrossRefGoogle Scholar
  178. 178.
    Koyano S, Suzutani T, Yoshida I, et al. Analysis of phosphorylation pathways of antiherpesvirus nucleosides by varicella-zoster virus-specific enzymes. Antimicrob Agents Chemother 1996; 40: 920–3PubMedGoogle Scholar
  179. 179.
    Terry BJ, Cianci CW, Hagen ME. Inhibition of herpes simplex virus type 1 DNA polymerase by [1R(1α,2β,3α)-9-[2,3-bis(hydroxymethyl)cyclobutyl]guanine. Mol Pharmacol 1991; 40: 591–6PubMedGoogle Scholar
  180. 180.
    Bisacchi GS, Braitman A, Cianci CW, et al. Synthesis and antiviral activity of enantiomeric forms of cyclobutyl nucleoside analogues. J Med Chem 1991; 34: 1415–21PubMedCrossRefGoogle Scholar
  181. 181.
    Izuta S, Shimada N, Kitagawa M, et al. Inhibitory effects of triphosphate derivatives of oxetanocin G and related compounds on eukaryotic and viral DNA polymerases and human immunodeficiency virus reverse transcriptase. J Biochem 1992; 112: 81–7PubMedGoogle Scholar
  182. 182.
    Yamanaka G, Tuomari AV, Hagen M, et al. Selective activity and cellular pharmacology of [1R-1α,2β,3α)-9-[2,3-bis-(hydroxymethyl)cyclobutyl]guanine in herpesvirus-infected cells. Mol Pharmacol 1991; 40: 446–53PubMedGoogle Scholar
  183. 183.
    Braitman A, Swerdel MR, Olsen SJ, et al. Evaluation of SQ 34,514: pharmacokinetics and efficacy in experimental herpesvirus infections in mice. Antimicrob Agents Chemother 1991; 35: 1464–8PubMedCrossRefGoogle Scholar
  184. 184.
    Tenney DJ, Yamanaka G, Voss SM, et al. Lobucavir is phosphorylated in human cytomegalovirus-infected and -uninfected cells and inhibits the viral DNA polymerase. Antimicrob Agents Chemother 1997; 41: 2680–5PubMedGoogle Scholar
  185. 185.
    Yang H, Drain RL, Franco CA, et al. Efficacy of BMS-180194 against experimental cytomegalovirus infections in immunocompromised mice. Antiviral Res 1996; 29: 233–41PubMedCrossRefGoogle Scholar
  186. 186.
    Yang H, Dalton J, Drain R, et al. Lobucavir (BMS-180194): a new herpesvirus topical agent effective against cutaneous infection in guinea pigs [abstract no. H117]. Abstracts of the 36th Interscience Conference on Antimicrobial Agents and Chemotherapy: 1996 Oct 17–20; New Orleans (LA)Google Scholar
  187. 187.
    Petty BG, Saito H, Summerill RS, et al. Pharmacokinetics and bioavailability of cygalovir (BMS-180194) in asymptomatic HIV-and CMV-seropositive volunteers [abstract]. Antiviral Res 1994; 23 Suppl. 1: 18Google Scholar
  188. 188.
    Hellman N, DeHertogh D, Stewart M, et al. Sequential ascending multiple-dose safety and pharmacokinetic study of oral lobucavir (BMS-180194) in asymptomatic volunteers seropositive for HIV and CMV [abstract no. 133]. Antiviral Res 1995; 26: A296Google Scholar
  189. 189.
    Flaherty J, Lalezari J, Petty B, et al. Pharmacokinetics and safety of oral lobucavir in cytomegalovirus-infected HIV patients [abstract 302-S31]. 4th Conference on Retroviruses and Opportunistic Infections: 1997 Jan 22–26; Washington (DC)Google Scholar
  190. 190.
    Safrin S, McKinley G, McKeough M, et al. Treatment of acyclovir-unresponsive cutaneous herpes simplex virus infection with topically applied SP-303. Antiviral Res 1994; 25: 185–92PubMedCrossRefGoogle Scholar
  191. 191.
    Orozco-Topete R, Sierra-Madero J, Cano-Dominguez C, et al. Safety and efficacy of Virend for topical treatment of genital and anal herpes simplex lesions in patients with AIDS. Antiviral Res 1997; 37: 91–103CrossRefGoogle Scholar
  192. 192.
    De Clercq E, descamps J, Verhelst G, et al. Comparative efficacy of antiherpes drugs against different strains of herpes simplex virus. J Infect Dis 1980; 141: 563–74PubMedCrossRefGoogle Scholar
  193. 193.
    Teh CZ, Sacks SL. Susceptibility of recent clinical isolates of herpes simplex virus to 5-ethyl-2’-deoxyuridine: preferential inhibition of herpes simplex virus type 2. Antimicrob Agents Chemother 1983; 23: 637–40PubMedCrossRefGoogle Scholar
  194. 194.
    Schinazi RF, Scott RT, Peters J, et al. Antiviral activity of 5-ethyl-2’-deoxyuridine against herpes simplex viruses in cell culture, mice, and guinea pigs. Antimicrob Agents Chemother 1985; 28: 552–60PubMedCrossRefGoogle Scholar
  195. 195.
    Spruance SL, Freeman DJ, Sheth NV. Comparison of topically applied 5-ethyl-2’-deoxyuridine and acyclovir in the treatment of cutaneous herpes simplex virus infection in guinea pigs. Antimicrob Agents Chemother 1985; 10: 103–6CrossRefGoogle Scholar
  196. 196.
    Sacks SL, Tyrrell LD, Lawee D, et al. Randomized, double-blind, placebo-controlled, clinic-initiated, Canadian multicenter trial of topical edoxudine 3.0% cream in the treatment of recurrent genital herpes. J Infect Dis 1991; 164: 665–72PubMedCrossRefGoogle Scholar
  197. 197.
    Flamel Technologies. Viropump investigator’s brochure. Vénissieux: Flamel Technologies, 1998Google Scholar
  198. 198.
    Tomai M, Gisbon S, Imbertson L, et al. Immunomodulating and antiviral activities of the imidazoquinoline S-28463. Antiviral Res 1995; 28: 253–64PubMedCrossRefGoogle Scholar
  199. 199.
    Bernstein DI, Miller RL, Tepe E, et al. Effect of S-28463 in reducing recurrent genital HSV-2 in guinea pigs [abstract no. 209]. 8th International Conference on Antiviral Research: 1995 Apr 23–28; Santa Fe (NM)Google Scholar
  200. 200.
    Sauder D, Tomai M, McDermott D, et al. Systemic and cutaneous pharmacodynamics of topical R-848 gel in humans [abstract]. The 38th Interscience Conference on Antimicrobial Agents and Chemotherapy: 1998 Sep 24–27; San Diego (CA): A-90Google Scholar
  201. 201.
    Spruance SL, Tyring S, Bleazard C, et al. Immunomodulation to decrease recurrences of herpes genitalis: a double-blind, dose ranging study of topical R-848 [abstract]. The 40th Interscience Conference on Antimicrobial Agents and Chemotherapy: 2000 Sep 17–20; Toronto: A466Google Scholar
  202. 202.
    Stanberry LR. The concept of immune-based therapies in chronic viral infections. J AIDS 1994; 7 Suppl. 1: S1–5Google Scholar
  203. 203.
    Milligan GN, Bernstein DI, Bourne N. T lymphocytes are required for protection of the vaginal mucosae and sensory ganglia of immune mice against reinfection with herpes simplex virus type 2. J Immunol 1998; 160: 6093–100PubMedGoogle Scholar
  204. 204.
    Kuklin NA, Daheshia M, Chun S, et al. Role of mucosal immunity in herpes simplex virus infection. J Immunol 1998; 160: 5998–6003PubMedGoogle Scholar
  205. 205.
    Burke RL. Development of a herpes simplex virus subunit vaccine for prophylactic and therapeutic use. Rev Infect Dis 1991; 13 Suppl. 11: S906–11PubMedCrossRefGoogle Scholar
  206. 206.
    Ashley R, Mertz G, Clark H, et al. Humoral immune response to herpes simplex virus type 2 glycoproteins in patients receiving a glycoprotein subunit vaccine. J Virol 1985; 56: 475–81PubMedGoogle Scholar
  207. 207.
    Stanberry LR, Berstein DI, Burke RL, et al. Vaccination with recombinant herpes simplex virus glycoproteins: protection against initial and recurrent genital herpes. J Infect Dis 1987; 155: 914–20PubMedCrossRefGoogle Scholar
  208. 208.
    Heineman TC, Connelly BL, Bourne N, et al. Immunization with recombinant varicella-zoster virus expressing herpes simplex virus type 2 glycoprotein D reduces the severity of genital herpes in guinea pigs. J Virol 1995; 69: 8109–13PubMedGoogle Scholar
  209. 209.
    Mertz GJ, Hasley R, Burke RL, et al. Double-blind, placebo-controlled trial of a herpes simplex virus type 2 glycoprotein vaccine in persons at high risk for genital herpes infection. J Infect Dis 1990; 161: 653–60PubMedCrossRefGoogle Scholar
  210. 210.
    Straus SE, Corey L, Burke RL, et al. Placebo-controlled trial of vaccination with recombinant glycoprotein D of herpes simplex virus type 2 for immunotherapy of genital herpes. Lancet 1994; 343: 1460–5PubMedCrossRefGoogle Scholar
  211. 211.
    Langenberg AG, Burke RL, Adair SF, et al. A recombinant glycoprotein vaccine for herpes simplex virus type 2: safety and immunogenicity. Ann Intern Med 1995; 122: 889–98PubMedGoogle Scholar
  212. 212.
    Corey L, Langenberg AG, Ashley R, et al. Recombinant glycoprotein vaccine for the prevention of genital HSV-2 infection: two randomized controlled trials. Chiron HSV Vaccine Study Group. JAMA 1999; 282: 331–40Google Scholar
  213. 213.
    Ashley RL, Crisostomo F, Doss M, et al. Cervical antibody responses to a herpes simplex virus type 2 glycoprotein subunit vaccine. J Infect Dis 1998; 178: 1–7PubMedCrossRefGoogle Scholar
  214. 214.
    Straus SE, Wald A, Kost RG, et al. Immunotherapy of recurrent genital herpes with recombinant herpes simplex virus type 2 glycoproteins D and B: results of a placebo-controlled vaccine trial. J Infect Dis 1997; 176: 1129–34PubMedCrossRefGoogle Scholar
  215. 215.
    Mastrolorenzo A, Tiradritti L, Salimbeni L, et al. Multicentre clinical trial with herpes simplex virus vaccine in recurrent herpes infection. Int J STD AIDS 1995; 6: 431–5PubMedGoogle Scholar
  216. 216.
    Spruance S. Gender-specific efficacy of a prophylactic SBAS4-adjuvanted gD2 subunit vaccine against genital herpes disease (GHD): results of two clinical efficacy trials [abstract]. The 40th Interscience Conference on Antimicrobial Agents and Chemotherapy: 2000 Sep 17–20; Toronto: L-6Google Scholar
  217. 217.
    Ulmer JB, Donnelly JJ, Parker SE, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 1993; 259: 1745–9PubMedCrossRefGoogle Scholar
  218. 218.
    Webster RG, Fynan EF, Santoro JC, et al. Protection of ferrets against influenza challenge with a DNA vaccine to the hemagglutinin. Vaccine 1994; 12: 1495–504PubMedCrossRefGoogle Scholar
  219. 219.
    Donnelly JJ, Friedman A, Martinez D, et al. Preclinical efficacy of a prototype DNA vaccine: enhanced protection against antigenic drift in influenza virus. Nat Med 1995; 1: 583–7PubMedCrossRefGoogle Scholar
  220. 220.
    Robinson HL, Hunt LA, Webster RG. Protection against a lethal influenza virus challenge by immunization with a hemaglutinin-expressing plasmid DNA. Vaccine 1993; 11: 957–60PubMedCrossRefGoogle Scholar
  221. 221.
    Fynan EF, Webster RG, Fuller DH, et al. DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc Natl Acad Sci U S A 1993; 90: 11478–82PubMedCrossRefGoogle Scholar
  222. 222.
    Xiang ZQ, Spitalnik S, Tran M, et al. Vaccination with a plasmid vector carrying the rabies glycoprotein gene induces protective immunity against rabies virus. Virology 1994; 199: 132–40PubMedCrossRefGoogle Scholar
  223. 223.
    Cox GJM, Zamb TJ, Babiuk LA. Bovine herpesvirus 1: immune responses in mice and cattle injected with plasmid DNA. J Virol 1993; 67: 5664–7PubMedGoogle Scholar
  224. 224.
    Xu D, Liew FY. Genetic vaccination against leishmaniasis. Vaccine 1994; 12: 1534–6PubMedCrossRefGoogle Scholar
  225. 225.
    Sedegah M, Hedstrom RC, Hobart P, et al. Protection against malaria by immunization with plasmid DNA encoding circumsporozoite protein. Proc Natl Acad Sci U S A 1994; 91: 9866–70PubMedCrossRefGoogle Scholar
  226. 226.
    Manickan E, Rouse RJD, Yu Z, et al. Genetic immunization against herpes simplex virus: protection is mediated by CD4+ T lymphocytes. J Immunol 1995; 155: 259–65PubMedGoogle Scholar
  227. 227.
    Bourne N, Stanberry LR, Bernstein DI, et al. DNA immunization against experimental genital herpes simplex virus infection. J Infect Dis 1996; 173: 800–7PubMedCrossRefGoogle Scholar
  228. 228.
    Hickling JK, Chisholm SE, Duncan IA, et al. Immunogenicity of a disabled infectious single cycle HSV-2 vaccine in phase 1 clinical trials in HSV-2 seropositive and seronegative volunteers [abstract no. 22.008]. Abstracts of the 8th International Congress on Infectious Diseases: 1998 May 15–18; BostonGoogle Scholar

Copyright information

© Adis International Limited 2000

Authors and Affiliations

  1. 1.Wake Forest University Baptist Medical CenterWinston SalemUSA
  2. 2.Viridae Clinical Sciences Incorporated, Department of Pharmacology and TherapeuticsUniversity of British ColumbiaVancouverCanada

Personalised recommendations