Advertisement

Drugs

, Volume 58, Issue 1, pp 143–157 | Cite as

Trimetazidine

A Review of its Use in Stable Angina Pectoris and Other Coronary Conditions
  • Karen J. McClellanEmail author
  • Greg L. Plosker
Adis Drug Evaluation

Abstract

The orally administered antianginal agent trimetazidine increases cell tolerance to ischaemia by maintaining cellular homeostasis. In theory, this cytoprotective activity should limit myocyte loss during ischaemia in patients with angina pectoris.

Data from studies in patients with coronary artery disease indicate that, unlike the effects of other antianginals, the anti-ischaemic effects of trimetazidine 20mg are not associated with alterations in haemodynamic determinants of myocardial oxygen consumption such as heart rate, systolic blood pressure and the rate-pressure product. Furthermore, limited evidence suggests trimetazidine may improve left ventricular function in patients with chronic coronary artery disease or ischaemic cardiomyopathy and in patients experiencing acute periods of ischaemia when undergoing percutaneous transluminal coronary angioplasty.

Clinical studies have shown that oral trimetazidine 20mg 3 times daily reduces the frequency of anginal attacks and nitroglycerin use and increases exercise capacity when used as monotherapy in patients with angina pectoris. Its clinical effects are broadly similar to those of nifedipine 40 mg/day and propranolol 120 to 160 mg/day but, unlike these agents, trimetazidine does not affect the rate-pressure product during peak exercise or at rest.

Adjunctive trimetazidine 60 mg/day reduces the frequency of anginal attacks and nitroglycerin use and improves exercise capacity in patients with angina pectoris not sufficiently controlled by conventional antianginal agents. Furthermore, the drug appears to be more effective than isosorbide dinitrate 30 mg/day when used adjunctively in patients with angina pectoris poorly controlled by propranolol 120 mg/day.

The tolerability profile of trimetazidine 60 mg/day was similar to that of placebo when used as add-on therapy in patients with angina pectoris insufficiently controlled by other antianginal agents and was superior to that of either nifedipine 40 mg/day or propranolol 120 to 160 mg/day when used as monotherapy. The most frequently reported adverse events in trimetazidine recipients were gastrointestinal disorders, although the incidence of these events was low.

Conclusions: Trimetazidine is an effective and well tolerated anti-ischaemic agent which, in addition to providing symptom relief and functional improvement in patients with angina pectoris, has a cytoprotective action during ischaemia. The drug is suitable for initial use as monotherapy in patients with angina pectoris and, because of its different mechanism of action, as adjunctive therapy in those with symptoms not sufficiently controlled by nitrates, β-blockers or calcium antagonists. The role of trimetazidine in other coronary conditions has yet to be clearly established.

Keywords

Adis International Limited Nifedipine Angina Pectoris Calcium Antagonist Trimetazidine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Task Force of the European Society of Cardiology. Management of stable angina pectoris: recommendations of the Task Force of the European Society of Cardiology. Eur Heart J 1997 Mar; 18: 394–413CrossRefGoogle Scholar
  2. 2.
    Knight C, Fox K. From antianginal drugs to myocardial cyto-protective agents. Am J Cardiol 1995 Aug 24; 76: 4B–7BPubMedCrossRefGoogle Scholar
  3. 3.
    Lavanchy N, Martin J, Rossi A. Préservation par la trimét-azidine du potentiel énergétique du myocarde au cours de l’ischémie et de la reperfusion. Etude par spectroscopie RMN du phosphore sur le coeur isolé [in French]. Presse Med 1986 Oct 16; 15: 1758–61PubMedGoogle Scholar
  4. 4.
    Renaud JF. Internal pH, Na+, and Ca2+regulation by trimetazidine during cardiac cell acidosis. Cardiovasc Drugs Ther 1988 Mar; 1: 677–86PubMedCrossRefGoogle Scholar
  5. 5.
    Lagadic-Gossmann D, Le Prigent K, Feuvray D. Effects of trimetazidine on pHi regulation in the rat isolated ventricular myocyte. Br J Pharmacol 1996 Mar; 117:831–8PubMedCrossRefGoogle Scholar
  6. 6.
    Ponchaut S, Goudernant J-F, Demeure R, et al. Anti-ischemic effects of trimetazidine (TMZ): 31P- and 23NA-NMR spec-troscopy in the working rat heart. Servier 1998. (Data on file)Google Scholar
  7. 7.
    Kiyosue T, Nakamura S, Arita M. Effects of trimetazidine on action potentials and membrane currents of guinea-pig ventricular myocytes. J Mol Cell Cardiol 1986 Dec; 18: 1301–11PubMedCrossRefGoogle Scholar
  8. 8.
    Hisatome I, Ishiko R, Tanaka Y, et al. Trimetazidine inhibits Na+, K+-ATPase activity, and overdrive hyperpolarization in guinea-pig ventricular muscles. Eur J Pharmacol 1991 Apr3; 195:381–8PubMedCrossRefGoogle Scholar
  9. 9.
    Allibardi S, Chierchia SL, Margonato V, et al. Effects of trimetazidine on metabolic and functional recovery of post-ischemic rat hearts. Cardiovasc Drugs Ther 1998; 12: 543–9PubMedCrossRefGoogle Scholar
  10. 10.
    Libersa C, Honoré E, Adamantidis M, et al. Effects of trimetazidine on a model of in vitro myocardial ischemia [in French]. Presse Med 1986 Oct 16; 15: 1765–9PubMedGoogle Scholar
  11. 11.
    Kay L, Finelli C, Aussedat J, et al. Improvement of long term preservation of the isolated arrested rat heart by trimetazidine: effects on the energy state and mitochondrial function. Am J Cardiol 1995 Aug 24; 76: 45B-9BCrossRefGoogle Scholar
  12. 12.
    Guarnieri C, Finelli C, Zini M, et al. Effects of trimetazidine on the calcium transport and oxidative phosphorylation of isolated rat heart mitochondria. Basic Res Cardiol 1997 Apr; 92: 90–5PubMedGoogle Scholar
  13. 13.
    Guarnieri C, Muscari C. Effect of trimetazidine on mitochondrial function and oxidative damage during reperfusion of ischemic hypertrophied rat myocardium. Pharmacology 1993 Jun;46: 324–31PubMedCrossRefGoogle Scholar
  14. 14.
    Elimadi A, Settaf A, Morin D, et al. Trimetazidine counteracts the hepatic injury associated with ischemia-reperfusion by preserving mitochondrial function. J Pharmacol Exp Ther 1998 Jul; 286: 23–8PubMedGoogle Scholar
  15. 15.
    Morin D, Elimadi A, Sapena R, et al. Evidence for the existence of [3H]-trimetazidine binding sites involved in the regulation of the mitochondrial permeability transition pore. Br J Pharmacol 1998 Apr; 123: 1385–94PubMedCrossRefGoogle Scholar
  16. 16.
    Guarnieri C, Muscari C. Beneficial effects of trimetazidine on mitochondrial function and Superoxide production in the cardiac muscle [abstract]. Cardiovasc Drugs Ther 1990 Aug; 4 Suppl. 4: 814–5PubMedCrossRefGoogle Scholar
  17. 17.
    Lopaschuk GD, Kozak R. Trimetazidine inhibits fatty acid oxidation in the heart [abstract]. J Mol Cell Cardiol 1998; 30: A112Google Scholar
  18. 18.
    Sentex E, Sergiel JP, Lucien A, et al. Is the cytoproctive effect of trimetazidine associated with lipid metabolism? Am J Cardiol 1998; 82: 18K–24KPubMedCrossRefGoogle Scholar
  19. 19.
    Lopaschuk GD. Treating ischemic heart disease by pharmacologically improving cardiac energy metabolism. Am J Cardiol 1998; 82: 14K–7KPubMedCrossRefGoogle Scholar
  20. 20.
    Mody FV, Singh BN, Mohiuddin IH, et al. Trimetazidine-induced enhancement of myocardial glucose utilization in normal and ischemie myocardial tissue: an evaluation by positron emission tomography. Am J Cardiol 1998; 82: 42K–9KPubMedCrossRefGoogle Scholar
  21. 21.
    Kantor PF, Kozak R, Clanachan AS, et al. Glucose oxidation is enhanced by the anti-anginal agent trimetazidine [abstract no. 363]. Can J Cardiol 1998 Sep; 14 Suppl. F: 169FGoogle Scholar
  22. 22.
    Maridonneau-Parini I, Harpey C. Effect of trimetazidine on membrane damage induced by oxygen free radicals in human red cells. Br J Clin Pharmacol 1985 Aug; 20: 148–51PubMedCrossRefGoogle Scholar
  23. 23.
    Catroux P, Benchekroun N, Robert J, et al. Influence of trimetazidine on deleterious effect of oxygen radical species in post-ischemic acute renal failure in the rat [abstract]. Cardiovasc Drugs Ther 1990 Aug; 4 Suppl. 4: 816–7PubMedCrossRefGoogle Scholar
  24. 24.
    Williams FM, Tanda K, Kus M. Trimetazidine inhibits neutro-phil accumulation after myocardial ischaemia and reperfusion in rabbits. J Cardiovasc Pharmacol 1993 Dec; 22: 828–33PubMedCrossRefGoogle Scholar
  25. 25.
    Tritto I, Wang P, Giraldez R, et al. Trimetazidine prevents neu-trophil-mediated myocardial injury in post-ischaemic rat hearts [abstract]. Eur Heart J 1997 Aug; 18 Abstract Suppl.: 53Google Scholar
  26. 26.
    Camilleri JP, Joseph D. Effets de la trimétazidine (Vastarel 20 mg) sur l’infarctus expérimental du rat perfusé [abstract]. Arch Mal Coeur Vaiss 1988; 81: 371Google Scholar
  27. 27.
    Catroux P, Dorian C, Harpey C, et al. Mise en évidence de l’effet protecteur de la Trimétazidine vis-á-vis de l’enzymurie induite par clampage du pédicule rénal chez le rat. Néphrologie 1986; 7: 124Google Scholar
  28. 28.
    Kober G, Buck T, Sievert H, et al. Myocardial protection during percutaneous transluminal coronary angioplasty: effects of trimetazidine. Eur Heart J 1992 Aug; 13: 1109–15PubMedGoogle Scholar
  29. 29.
    Timour Q, Harpey C, Durr F, et al. Is the antianginal action of trimetazidine independent of hemodynamic changes? Cardiovasc Drugs Ther 1991 Dec; 5: 1043–4PubMedCrossRefGoogle Scholar
  30. 30.
    Sellier P, Audouin P, Payen B, et al. Acute effects of trimetazid-ine evaluated by exercise testing. Eur J Clin Pharmacol 1987; 33: 205–7PubMedCrossRefGoogle Scholar
  31. 31.
    Lu C, Dabrowski P, Fragasso G, et al. Effects of trimetazidine on ischemic left ventricular dysfunction in patients with coronary artery disease. Am J Cardiol 1998 Oct 1; 82: 898–901PubMedCrossRefGoogle Scholar
  32. 32.
    Michaelides AP, Vyssoulis GP, Bonoris PE, et al. Beneficial effects of trimetazidine in men with stable angina under beta-blocker treatment. Curr Ther Res 1989; 46: 565–76Google Scholar
  33. 33.
    Passeron J. Efficacité de la trimétazidine dans l’angor d’effort stable de l’insuffisant coronarien chronique. Etude à double insu contre placebo. Presse Med 1986 Oct 16; 15: 1775–8PubMedGoogle Scholar
  34. 34.
    Gallet M. Efficacité clinique de la trimétazidine dans l’angor d’effort stable. Etude contrôlée à double insu contre placebo. Presse Med 1986 Oct 16; 15: 1779–82PubMedGoogle Scholar
  35. 35.
    Dalla-Volta S, Maraglino G, Delia-Valentina P, et al. Comparison of trimetazidine with nifedipine in effort angina: a double-blind, crossover study. Cardiovasc Drugs Ther 1990 Aug; 4 Suppl. 4: 853–9PubMedCrossRefGoogle Scholar
  36. 36.
    Detry JM, Sellier P, Pennaforte S, et al. Trimetazidine: a new concept in the treatment of angina: comparison with propranolol in patients with stable angina. Br J Clin Pharmacol 1994 Mar; 37: 279–88PubMedCrossRefGoogle Scholar
  37. 37.
    Harpey C, Clauser P, Labrid C, et al. Trimetazidine, a cellular anti-ischemic agent. Cardiovasc Drug Rev 1989; 6(4): 292–312CrossRefGoogle Scholar
  38. 38.
    Goupit P. Pharmacocinétique de la trimétazidine. Concours Med 1987; 109 Suppl. 36: 3447–51Google Scholar
  39. 39.
    Jackson PJ, Brownsill RD, Taylor AR, et al. Identification of trimetazidine metabolites in human urine and plasma. Xenobiotica 1996 Feb; 26: 221–8PubMedCrossRefGoogle Scholar
  40. 40.
    Edeki TI, Johnston A, Campbell DB, et al. An examination of the possible pharmacokinetic interaction of trimetazidine with theophylline, digoxin and antipyrine. Br J Clin Pharmacol 1988; 26: 657PGoogle Scholar
  41. 41.
    Szwed H, Pachocki R, Domzal-Bochenska M, et al. Efficacy and tolerance of trimetazidine in combination with a conventional antianginal drug in patients with stable effort angina. Diagn Treat Cardiol 1997; 4: 237–47Google Scholar
  42. 42.
    Manchanda SC, Krishnaswami S. Combination treatment with trimetazidine and diltiazem in stable angina pectoris. Heart 1997 Oct; 78: 353–7PubMedGoogle Scholar
  43. 43.
    Michaelides AP, Spiropoulos K, Dimopoulos K. Antianginal efficacy of the combination of trimetazidine-propranolol compared with isosorbide dinitrate-propranolol in patients with stable angina. Clin Drug Invest 1997 Jan; 13: 8–14CrossRefGoogle Scholar
  44. 44.
    Levy S, Group of South of France Investigators. Combination therapy of trimetazidine with diltiazem in patients with coronary artery disease. Am J Cardiol 1995 Aug 24; 76: 12B–6BPubMedCrossRefGoogle Scholar
  45. 45.
    Brochier M, Demange J, Ducloux G, et al. Intérêt de l’association de la trimétazidine à un inhibiteur calcique dans le traitement de l’insuffisance coronarienne chronique [in French]. Ann Cardiol Angeiol Paris 1986 Jan; 35: 49–56PubMedGoogle Scholar
  46. 46.
    Szwed H, Sadowski Z, Pachocki R, et al. Anti-ischaemic effects and tolerability of trimetazidine in coronary diabetic patients: a sub-study from TRIMPOL-1. Cardiovasc Drugs Ther. In pressGoogle Scholar
  47. 47.
    Szwed H, Sadowski Z, Pachocki R, et al. TRIMPOL-II-multi-center study. Efficacy and safety of trimetazidine in patients with stable angina pectoris under beta-blocker therapy. Preliminary results [abstract]. 8th International Symposium on Cardiovascular Pharmacotherapy; 1999 Mar 28–Apr 1; AmsterdamGoogle Scholar
  48. 48.
    Shlyakhto EV, Vakhrameyeva IV, Nifontoff EM, et al. Chronic effects of myocardial cytoprotector trimetazidine for CAD: clinical, biochemical and echocardiographical follow-up [abstract]. Eur Heart J 1998; 19 Abstract Suppl.: 191Google Scholar
  49. 49.
    Brottier L, Barat JL, Combe C, et al. Therapeutic value of a cardioprotective agent in patients with severe ischaemic car-diomyopathy. Eur Heart J 1990 Mar; 11: 207–12PubMedGoogle Scholar
  50. 50.
    Belardinelli R, Purcaro A. Trimetazidine improves the contractile response of hibernating myocardium to low-dose dobut-amine in ischemic cardiomyopathy [abstract no. 3727]. Circulation 1998 Oct 27; 98 Suppl: I–709Google Scholar
  51. 51.
    Fabiani JN, Ponzio O, Emerit I, et al. Cardioprotective effect of trimetazidine during coronary artery graft surgery. J Cardiovasc Surg Torino 1992 Jul–Aug; 33: 486–91PubMedGoogle Scholar
  52. 52.
    Vedrinne J-M, Vedrinne C, Bompard D, et al. Myocardial protection during coronary artery bypass graft surgery: a randomized, double-blind, placebo-controlled study with trimetazidine. Anesth Analg 1996 Apr; 82: 712–8PubMedGoogle Scholar
  53. 53.
    Birand A, Kudaiberdieva GZ, Batyraliev TA, et al. Effects of trimetazidine on heart rate variability and left ventricular systolic performance in patients with coronary artery disease after percutaneous transluminal angioplasty. Angiology 1997 May; 48: 413–22PubMedCrossRefGoogle Scholar
  54. 54.
    Steg PG, Grollier G, Gallay P, et al. A randomized double-blind trial of trimetazidine as adjunctive therapy to primary PTCA for acute myocardial infarction: evidence for improved myocardial reperfusion from ST-segment analysis [abstract]. Eur Heart J 1998; 19 Abstract Suppl.: 365Google Scholar
  55. 55.
    Servier. Vastarel 20: a new strategic approach to the management of coronary disease. Servier, FranceGoogle Scholar
  56. 56.
    Ridker PM, Manson JE, Gaziano JM, et al. Low-dose aspirin therapy for chronic stable angina: a randomized, placebo-controlled clinical trial. Ann Intern Med 1991; 114: 835–9PubMedGoogle Scholar
  57. 57.
    Juul-Möller S, Edvardsson N, Jahnmatz B, et al. Double-blind trial of aspirin in primary prevention of myocardial infarction in patients with stable chronic angina pectoris. Lancet 1992; 340: 1421–5PubMedCrossRefGoogle Scholar
  58. 58.
    Abrams J. Therapy of angina pectoris with long-acting nitrates: which agent and when? Can J Cardiol 1996; 12 Suppl. C: 9C–16CPubMedGoogle Scholar
  59. 59.
    Dougall HT, McLay J. A comparative review of the adverse effects of calcium antagonists. Drug Saf 1996; 15(2): 91–106PubMedCrossRefGoogle Scholar
  60. 60.
    Houston MC, Hodge R. Beta-adrenergic blocker withdrawal syndromes in hypertension and other cardiovascular diseases. Am Heart J 1998 Aug: 515–23Google Scholar
  61. 61.
    British National Formulary No. 35. Oxon: The Pharmaceutical Press, Mar, 1998. p562Google Scholar
  62. 62.
    Packer M. Combined beta-adrenergic and calcium-entry blockade in angina pectoris. N Engl J Med 1989 Mar 16; 320: 709–18PubMedCrossRefGoogle Scholar
  63. 63.
    Fox KM, Mulcahy D, Findlay I, et al. The Total Ischaemic Burden European Trial (TIBET): effects of atenolol, nifedipine SR and their combination on the exercise test and the total ischaemic burden in 608 patients with stable angina. Eur Heart J 1996; 17:96–103PubMedCrossRefGoogle Scholar
  64. 64.
    Savonitto S, Ardissino D, Egstrup K, et al. Combination therapy with metoprolol and nifedipine versus monotherapy in patients with stable angina pectoris. J Am Coll Cardiol 1996 Feb; 27: 311–6PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 1999

Authors and Affiliations

  1. 1.Adis International LimitedMairangi Bay, AucklandNew Zealand

Personalised recommendations