, Volume 34, Supplement 2, pp 1–14 | Cite as

Cephalosporins 1945–1986

  • E. P. Abraham


In 1945, after penicillin had been introduced into medicine, an antibiotic-producing species of Cephalosporium was isolated from a sewage outfall in Sardinia. Four years later in Oxford, this organism was found to produce several antibiotics, one of which was a penicillin with a new side-chain, penicillin N. During a chemical study in 1953, this penicillin was shown to be contaminated with a second substance, cephalosporin C, which contained a β-lactam ring but was resistant to hydrolysis by a penicillinase (β-lactamase). At that time, penicillinase-producing Staphylococci were causing a serious problem in hospitals.

The isolation of the nucleus of cephalosporin C (7-ACA) enabled pharmaceutical manufacturers to produce many thousands of cephalosporins, some of which have been effective in the treatment of serious infections by a number of Gram-positive and Gram-negative bacteria. The cephalosporins, like the newer penicillins, have a very low toxicity and have greatly extended the range of chemotherapy. New, sensitive screening methods have revealed further families of clinically useful substances that contain a reactive β-lactam ring.

Genetic engineering has now begun to throw light on the nature of the enzymes that are involved in the biosynthesis of penicillins and cephalosporins, and x-ray crystallography may soon provide detailed 3-dimensional pictures of some of the bacterial enzymes with which the active β -lactam ring reacts. Rational approaches to the production and design of new and potentially useful compounds may then be within sight.


Cephalosporin Cephalothin Cepha Cephaloridine Cefmenoxime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, E.P. and Chain, E.: An enzyme from bacteria able to destroy penicillin. Nature 146: 837 (1940).CrossRefGoogle Scholar
  2. Abraham, E.P.; Newton, G.G.F. and Hale, C.W.: Purification and some properties of cephalosporin N, a new penicillin. Biochemical Journal 58: 94 (1954).PubMedGoogle Scholar
  3. Abraham, E.P.; Newton, G.G.F.; Olson, B.H.; Schuurmans, D.M.; Schenck, J.R.; Hargie, M.F.; Fisher, M.W. and Fusari, S.A.: Identity of cephalosporin N and synnematin B. Nature 176: 551 (1955).PubMedCrossRefGoogle Scholar
  4. Abraham, E.P. and Newton, G.G.F.: A comparison of the action of penicillinase on benzylpenicillin and cephalosporin N and the competitive inhibition of penicillinase by cephalosporin C. Biochemical Journal 63: 628 (1956a).PubMedGoogle Scholar
  5. Abraham, E.P. and Newton, G.G.F.: Experiments on the degradation of cephalosporin C. Biochemical Journal 62: 658 (1956b).PubMedGoogle Scholar
  6. Abraham, E.P. and Newton, G.G.F.: The structure of cephalosporin C. Biochemical Journal 79: 377 (1961).PubMedGoogle Scholar
  7. Abraham, E.P. and Loder, P.B.: Cephalosporin C: in Flynn (Ed.) Cephalosporins and Penicillins (Academic Press, New York and London 1972).Google Scholar
  8. Abraham, E.P.: β-Lactam antibiotics and related substances. Japanese Journal of Antibiotics 30(Suppl. 51): 1 (1977).PubMedGoogle Scholar
  9. Abraham, E.P.: A glimpse of the early history of the cephalosporins. Reviews of Infectious Diseases 1: 99 (1979).PubMedCrossRefGoogle Scholar
  10. Abraham, E.P.; HuddlestonU, J.A.; Jayatilake, G.S.; O’Sullivan, J. and White, R.L.: Conversion of δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine to isopenicillin N in cell-free extracts of Cephalosporium acremonium; in Gregory (Ed.) Recent Advances in the Chemistry of Antibiotics, p.125 (Royal Society of Chemistry, London 1981).Google Scholar
  11. Aoki, H.; Kunugita, K.; Hosoda, J. and Imanaka, H.: Screening of new and novel beta-lactam antibiotics. Japanese Journal of Antibiotics 30 (Suppl.): S207 (1977).Google Scholar
  12. Baldwin, J.E.; Singh, P.D.; Yoshida, M.; Sawada, Y. and Demain, A.L.: Incorporation of 3H and 14C from (6α-3H) penicillin N into deacetoxycephalosporin C. Biochemical Journal 186: 889 (1980).PubMedGoogle Scholar
  13. Baldwin, J.E.; Abraham, E.P.; Adlington, R.M.; Bahadur, G.A.; Chakravarti, B.; Domayne-Hayman, B.P.; Field, L.D.; Flitsch, S.L.; Jayatilake, G.S.; Spakovskis, A.; Ting, H.-H.; Turner, N.J.; White, R.L. and Usher, J.J.: Penicillin biosynthesis: Active site mapping with aminoadipoylcysteinylvaline variants. Journal of the Chemical Society, Chemical Communications p. 1225 (1984).Google Scholar
  14. Barza, M.: Imipenem/Cilastin. European Journal of Clinical Microbiology 3: 453 (1984).PubMedCrossRefGoogle Scholar
  15. Batchelor, F.R.; Doyle, F.P.; Nayler, J.H.C. and Rolinson, G.N.: Synthesis of penicillin: 6-aminopenicillanic acid in penicillin fermentations. Nature 183: 257 (1959).PubMedCrossRefGoogle Scholar
  16. Benavides, L.; Olson, B.H.; Varela, G. and Holt, S.H.: Treatment of typhoid with synnematin B. Journal of the American Medical Association 157: 989 (1955).PubMedCrossRefGoogle Scholar
  17. Brotzu, G.: Richerche su di un nuovo antibiotico. Lavori dell’Istituto d’Igiene di Cagliari (1948).Google Scholar
  18. Burton, H.S. and Abraham, E.P.: Isolation of antibiotics from a species of cephalosporium. Cephalosporins P1, P2, P3, P4 and P5. Biochemical Journal 50: 168 (1951).PubMedGoogle Scholar
  19. Burton, H.S.; Abraham, E.P. and Cardwell, H.M.E.: Cephalosporin P1 and helvolic acid. Biochemical Journal 62: 171 (1956).PubMedGoogle Scholar
  20. Cartwright, S.J. and Waley, S.G.: β-Lactamase inhibitors. Medical Research Reviews 3: 341 (1983).CrossRefGoogle Scholar
  21. Charnas, R.L.; Fisher, J. and Knowles, J.R.: Chemical studies on the inactivation of Escherichia coli RTEM beta-lactamase by clavulanic acid. Biochemistry, NY 17: 2185 (1978).CrossRefGoogle Scholar
  22. Cole, M.: β-Lactams as β-lactamase inhibitors. Philosophical Transactions of the Royal Society of London B 289: 207 (1980).CrossRefGoogle Scholar
  23. Crawford, K.; Heatley, N.G.; Boyd, P.F.; Hale, C.W.; Kelly, B.K.; Miller, G.A. and Smith, N.: Antibiotic production by a species of cephalosporium. Journal of General Microbiology 6: 47 (1952).PubMedCrossRefGoogle Scholar
  24. Demain, A.L.: Biosynthesis of β-lactam antibiotics; in Demain and Solomon (Eds) Antibiotics Containing the β-Lactam Structure, Part 1, p. 189 (Springer-Verlag, Berlin (1983).Google Scholar
  25. Elander, R.P.; Stauffer, J.F. and Backus, M.P.: Antibiotic production by various species and varieties of Cephalosporium and Emericellopsis. Antimicrobial Agents Annual 1: 91 (1961).Google Scholar
  26. Elander, R.P.: Strain improvement and the preservation of β-lactam-producing microorganisms; in Demain and Solomon (Eds) Antibiotics Containing the β-Lactam Structure, Part 1 p. 101 (Springer-Verlag, Berlin 1983).Google Scholar
  27. Fleming, P.C.: Cephalosporin C and cephalosporinase — some laboratory and clinical considerations. Canadian Journal of Public Health 54: 47 (1963).Google Scholar
  28. Florey, H.W.: Antibiotic products of a versatile fungus. Annals of Internal Medicine 43: 480 (1955).PubMedGoogle Scholar
  29. Florey, H.W.: The medical aspects of the development of resistance to antibiotics. Giomali Microbiologica 2: 361 (1956).Google Scholar
  30. Fukagawa, Y.; Kubo, K.; Okamura, K. and Ishikura, T.: Biosynthesis of carbapenem antibiotics; in Umezawa et al. (Eds) Trends in Antibiotic Research, Japan, p.248 (Antibiotics Research Association, Tokyo 1982).Google Scholar
  31. Godtfredsen, W.O.: Fusidic acid and some related antibiotics. Doctoral Dissertation; University of Copenhagen (1967).Google Scholar
  32. Gorman, M.: The development of cefaclor; in Salton and Shockman (Eds) β-Lactam Antibiotics, p.377 (Academic Press, New York 1981).Google Scholar
  33. Hale, C.W.; Newton, G.G.F. and Abraham, E.P.: Derivatives of cephalosporin C formed with certain heterocyclic tertiary bases. Biochemical Journal 79: 403 (1961).PubMedGoogle Scholar
  34. Hamilton-Miller, J.M.T. and Abraham, E.P.: Specificities of haemagglutinating antibodies evoked by members of the cephalosporin C family and benzylpenicillin. Biochemical Journal 123: 183 (1971).PubMedGoogle Scholar
  35. Hamilton-Miller, J.M.T.: Microbial investigation of cephalosporins. Drugs 34(Suppl. 2): 23 (1987).PubMedCrossRefGoogle Scholar
  36. Hedges, R.W. and Jacob, A.E.: Transposition of ampicillin resistance from RP4 to other replicons. Molecular and General Genetics 132: 31 (1974).PubMedCrossRefGoogle Scholar
  37. Henderson, N.D.; Garlock, F.C. and Olson, B.H.: Treatment of acute typhoid with synnematin B. Journal of the American Medical Association 169: 1991 (1959).PubMedCrossRefGoogle Scholar
  38. Hodgkin, D.C. and Maslen, E.N.: The X-ray analysis of the structure of cephalosporin C. Biochemical Journal 79: 393 (1961).PubMedGoogle Scholar
  39. Imada, A.; Kitano, K.; Kintaka, K.; Muroi, M. and Asai, M.: Sulfazecin and isosulfazecin, novel beta-lactam antibiotics of bacterial origin. Nature 289: 590 (1981).PubMedCrossRefGoogle Scholar
  40. Jeffery, J.D.’A and Abraham, E.P.: Deacetylcephalosporin C. Biochemical Journal 81: 591 (1961).PubMedGoogle Scholar
  41. Kahan, M.; Kropp, H.; Sundelof, J.G. and Birnbaum, J.: Thienamycin: development of imipenem-cilastatin. Journal of Antimicrobial Chemotherapy 12(Suppl. D): 1 (1983).PubMedGoogle Scholar
  42. Kelly, J.A.; Dideberg, O.; Charlier, P.; Wery, J.P.; Libert, M.; Moews, P.C.; Knox, J.R.; Duez, C.; Fraipont, A.; Joris, B.; Dusart, F.; Frere, J.M. and Ghysen, J.M.: On the origin of bacterial resistance to penicillin: comparison of a β-lactamase and a penicillin target. Science 231: 1429 (1986).PubMedCrossRefGoogle Scholar
  43. Kitano, K.; Fujisawa, Y.; Katamoto, K.; Nara, K. and Nakao, Y.: Occurrence of 7β-(4-carboxybutanamido)-cephalosporin compounds in the culture broth of some strains of the genus Cephalosporium. Journal of Fermentation Technology 54: 712 (1976).Google Scholar
  44. Kitano, K.; Nara, K. and Nakao, Y.: Screening for beta-lactam antibiotics using a mutant of Pseudomonas aeruginosa. Japanese Journal of Antibiotics 30(Suppl.): S239 (1977).CrossRefGoogle Scholar
  45. Kunugita, K.; Tamaki, S. and Matsuhashi, M.: Nocardicin A, general aspects and mechanism of action; in Salton and Shockman (Eds) (β-Lactam Antibiotics, p.185 (Academic Press, New York 1981).Google Scholar
  46. Loder, B.; Newton, G.G.F. and Abraham, E.P.: The cephalosporin C nucleus (7-aminocephalosporanic acid) and some of its derivatives. Biochemical Journal 79: 408 (1961).PubMedGoogle Scholar
  47. Morin, R.B.; Jackson, B.G.; Flynn, E.H. and Roeske, R.W.: Chemistry of cephalosporin antibiotics I. 7-aminocephalosporanic acid from cephalosporin C. Journal of the American Chemical Society 84: 3400 (1962).CrossRefGoogle Scholar
  48. Morin, R.B.; Jackson, B.G.; Mueller, R.A.; Lavagnino, E.R.; Scanlon, W.B. and Andrews, S.L.: Chemistry of cephalosporin antibiotics III. Chemical correlation of penicillin and cephalosporin antibiotics. Journal of the American Chemical Society 85: 1896 (1963).CrossRefGoogle Scholar
  49. Nagarajan, R.; Boeck, L.D.; Gorman, M.; Hamill, R.L.; Higgins, C.E.; Hoehn, M.M.; Stark, W.M. and Whitney, J.G.: (β-Lactam antibiotics from Streptomyces. Journal of the American Chemical Society 93: 2308 (1971).PubMedCrossRefGoogle Scholar
  50. Newton, G.G.F. and Abraham, E.P.: Degradation, structure and some derivatives of cephalosporin N. Biochemical Journal 58: 103 (1954).PubMedGoogle Scholar
  51. Newton, G.G.F. and Abraham, E.P.: Cephalosporin C, a new antibiotic containing sulphur and D-α-aminoadipic acid. Nature 175: 548 (1955).PubMedCrossRefGoogle Scholar
  52. Newton, G.G.F. and Abraham, E.P.: Isolation of cephalosporin C, a penicillin-like antibiotic containing D-α-aminoadipic acid. Biochemical Journal 62: 651 (1956).PubMedGoogle Scholar
  53. Noguchi, H. and Mitsuhashi, S.: Structure-activity relationships, in Mitsuhashi (Ed.) Beta-lactam antibiotics, p.59 (Japan Scientific Societies Press, Tokyo; Springer-Verlag, Berlin 1981).Google Scholar
  54. O’Sullivan, J. and Aklonis, C.A.: Enzymatic acylation of monobactams. Journal of Antibiotics 37: 804 (1984).PubMedCrossRefGoogle Scholar
  55. Ritchie, A.C.; Smith, N. and Florey, H.W.: Some biological properties of cephalosporin P. British Journal of Pharmacology and Chemotherapy 6: 430 (1951).PubMedGoogle Scholar
  56. Sabath, L.D. and Abraham, E.P.: Synergistic action of penicillins and cephalosporins. Nature 204: 1066 (1964).PubMedCrossRefGoogle Scholar
  57. Sabath, L.D.; Jago, M. and Abraham, E.P.: Cephalosporinase and penicillinase activities of a β-lactamase from Pseudomonas pyocyanea. Biochemical Journal 96: 739 (1965).PubMedGoogle Scholar
  58. Sabath, L.D.: Achievements and problems from the view of a physician. Philosophical Transactions of the Royal Society of London B 289: 251 (1980).CrossRefGoogle Scholar
  59. Samraoui, B.; Sutton, B.J.; Todd, R.J.; Artymiuk, P.J.; Waley, S.G. and Phillips, D.C.: Tertiary structural similarity between a class A β-lactamase and a penicillin-sensitive D-alanyl carboxypeptidase-transpeptidase. Nature 320: 378 (1986).PubMedCrossRefGoogle Scholar
  60. Samson, S.M.; Belagaje, R.; Blankenship, D.T.; Chapman, J.L.; Perry, D.; Skatrud, P.L.; Van Frank, R.M.; Abraham, E.P.; Baldwin, J.E.; Queener, S.W. and Ingolia, R.D.: Isolation, sequence determination and expression in Escherichia coli of the isopenicillin N synthetase gene from Cephalosporium acremonium. Nature 318: 191 (1985).PubMedCrossRefGoogle Scholar
  61. Shigi, Y.; Matsumoto, Y.; Kaizu, M.; Fujishita, Y. and Kojo, H.: Mechanism of action of the new orally active cephalosporin FK027. Journal of Antibiotics 37: 790 (1984).PubMedCrossRefGoogle Scholar
  62. Singh, P.D.; Young, M.G.; Johnson, J.H.; Cimarusti, C.M. and Sykes, R.B.: Bacterial production of 7-formamidocephalosporins. Isolation and structure determination. Journal of Antibiotics 37: 773 (1984).PubMedCrossRefGoogle Scholar
  63. Stapley, E.O.; Jackson, M.; Hernandez, S.; Zimmerman, S.B.; Currie, S.A.; Mochales, S.; Mata, J.M.; Woodruff, H.B. and Henlin, D.: Cephamycins, a new family of β-lactam antibiotics. Antimicrobial Agents and Chemotherapy 2: 122 (1972).PubMedCrossRefGoogle Scholar
  64. Stedman, R.J.; Swered, K. and Hoover, J.R.E.: 7-Aminodesacetoxycephalosporanic acid and its derivatives. Journal of Medicinal Chemistry 7: 117 (1964).PubMedCrossRefGoogle Scholar
  65. Sykes, R.B. and Matthew, M.: The β-lactamases of gram-negative bacteria and their role in resistance to β-lactam antibiotics. Journal of Antimicrobial Chemotherapy 2: 115 (1976).PubMedCrossRefGoogle Scholar
  66. Sykes, R.B.; Cimarusti, C.M.; Bonner, D.P.; Bush, K.; Floyd, D.M.; Georgopapadakou, N.H.; Koster, W.H.; Liu, W.C.; Parker, W.L.; Principe, P.A.; Rathnum, M.L.; Slusarchyk, W.A.; Trejo, W.H. and Wells, J.S.: Monocyclic β-lactam antibiotics produced by bacteria. Nature 291: 489 (1981).PubMedCrossRefGoogle Scholar
  67. Sykes, R.B. and Wells, J.B.: Screening for (3-lactam antibiotics in nature. Journal of Antibiotics 38: 119 (1985).PubMedCrossRefGoogle Scholar
  68. Wolfe, S.: Studies related to β-lactam compounds; in Nozaki (Ed.) Current Trends in Organic Synthesis, p. 101 (Pergamon Press, Oxford 1983).Google Scholar
  69. Yoshida, T.: Structural requirements for antibacterial activity and β-lactamase activity of 7β-arylmalonyl-7α-methoxy-1-oxycephems. Philosophical Transactions of the Royal Society B 289: 231 (1980).CrossRefGoogle Scholar

Copyright information

© ADIS Press Limited 1987

Authors and Affiliations

  • E. P. Abraham
    • 1
  1. 1.Sir William Dunn School of PathologyUniversity of OxfordOxfordEngland

Personalised recommendations