Drugs

, Volume 25, Issue 3, pp 223–289 | Cite as

Cefotaxime

A review of its Antibacterial Activity, Pharmacological Properties and Therapeutic Use
  • A. A. Carmine
  • R. N. Brogden
  • R. C. Heel
  • T. M. Speight
  • G. S. Avery
Drug Evaluations

Summary

Synopsis:Cefotaxime1is a new ‘third generation’ semisynthetic cephalosporin administered intravenously or intramuscularly. It has a broad spectrum of activity against Gram-positive and Gram-negative aerobic and anaerobic bacteria, and is generally more active against Gram-negative bacteria than the ‘first’ and ‘second generation’ cephalosporins. Although cefotaxime has some activity against Pseudomonas aeruginosa, on the basis of present evidence it cannot be recommended as sole antibiotic therapy for pseudomonal infections. However, cefotaxime has been effective in treating infections due to other ‘difficult’ organisms, such as multidrug-resistant Enterobacteriaceae. Like other cephalosporins, cefotaxime is effective in treating patients with complicated urinary tract and lower respiratory tract infections, particularly pneumonia caused by Gram-negative bacilli. High response rates have also been achieved in patients with Gram-negative bacteraemia. Although favourable clinical results have been obtained in patients with infections caused by mixed aerobic/anaerobic organisms (such as peritonitis or soft tissue infections), the relatively low in vitro activity of cefotaxime against Bacteroides fragilis may restrict its usage in situations where this organism is the suspected or proven pathogen. In preliminary studies, males and females treated with a single intramuscular dose of cefotaxime for uncomplicated gonorrhoea caused by penicillinase-producing strains of Neisseria gonorrhoeae responded very favourably. Encouraging results have also been reported in open studies in children, including neonates, treated with cefotaxime for meningitis and various other serious infections. In some situations, cefotaxime has been given in combination with another antibiotic such as an aminoglycoside, but the merits of such a combination have not been clearly established. Whether cefotaxime alone is appropriate therapy for conditions previously treated with aminoglycosides (other than pseudomonal infections) also needs additional clarification, but if established as equally effective in such conditions cefotaxime offers potentially important clinical and practical advantages in its apparent lack of serious adverse effects and freedom from the need to undertake drug plasma concentration monitoring.

Antibacterial Activity: Cefotaxime has a broad spectrum of activity in vitro which includes Gram-positive and Gram-negative aerobic and anaerobic bacteria. Cefotaxime is as active as benzyl penicillin against Streptococcus pneumoniae and pyogenes, but is also very active against penicillin-resistant and multiple drug-resistant strains of Streptococcus pneumoniae. Like other cephalosporins, cefotaxime has poor activity against enterococci (including Streptococcus faecalis). Penicillin-sensitive and -resistant strains of Staphylococcus aureus are inhibited by low concentrations of cefotaxime, but cephalothin and cefamandole are more active against this species. When compared with other ‘third generation’ cephalosporins, cefotaxime tends to be similar in activity to cefoperazone against S. aureus, but more active than cefoperazone against streptococci in general, and more active than moxalactam against all Gram-positive bacteria.

Cefotaxime exhibits both a wider spectrum and greater activity against Gram-negative aerobic bacteria than ‘first generation’ or ‘second generation’ cephalosporins, is generally more active than cefoperazone except against Pseudomonas aeruginosa, and similar in activity to moxalactam. A multicentre study in the USA found that over 91% of 6000 clinical isolates of Enterobacteriaceae were inhibited by 0.5 μg/ml or less of cefotaxime. This antibiotic is active against many cephalothin-resistant and gentamicin-resistant Enterobacteriaceae and against some strains which show multiple drug resistance. Cefotaxime is also active at very low concentrations (MIC90 ⩽ 0.06 μg/ml) against β-lactamase-producing and non-producing strains of Haemophilus influenzae and Neisseria gonorrhoeae. Although cefotaxime tends to be less active than cefoxitin against Bacteroides fragilis, it inhibits most other anaerobic bacteria at low concentrations.

Like cefuroxime, cefotaxime is highly stable to degradation by β-lactamases produced by S. aureus and various Gram-negative bacteria, but not to that produced by B. fragilis. Although desacetyl-cefotaxime, the principal metabolite of cefotaxime, is less active in vitro than the parent compound, it appears to be more active than cefoxitin and cefuroxime against some Gram-negative bacilli.

A combination of cefotaxime and gentamicin was found to be synergistic for over one-half of the strains of P. aeruginosa tested, including gentamicin-resistant strains but not carbenicillin-resistant strains. Similar results were obtained with cefotaxime plus tobramycin against tobramycin-sensitive strains of P. aeruginosa. However, the synergistic activity of cefotaxime and amikacin varied widely between studies.

In general, there was usually little difference between minimum bactericidal (MBC) and minimum inhibitory concentrations (MIC) of cefotaxime for most Gram-negative organisms studied. Although results tended to vary from study to study, larger differences have been reported for some species such as Enterobacter, indole-positive Proteus and Pseudomonas aeruginosa. Little information is available on the MBC to MIC relationship for Gram-positive organisms.

Renal Tolerance: In studies to date, cefotaxime appeared to be free of adverse effects on renal function. Thus, a renal tolerance study in rabbits found that subcutaneous cefotaxime (750 or 1500 mg/kg/day for 7 days), like moxalactam (same dose), but unlike cephaloridine (100 or 200 mg/kg/day) did not significantly increase plasma creatinine or excretion of the lysosomal enzyme N-acetylglucosaminidase.

A study in healthy volunteers which measured urinary excretion of alanine aminopeptidase (an early sensitive indicator of renal tubular damage) found that cefotaxime 6 g/day alone or given with frusemide 20 mg/day did not affect proximal renal tubule function. Similar results were reported in small groups of patients with serious infections (and normal renal function) treated with cefotaxime 6 g/day alone or combined with azlocillin 15 g/day. Results from this small study also found that cefotaxime given in combination with tobramycin 3 mg/kg/day did not increase the risk of tobramycin nephrotoxicity.

Some patients with impaired renal function have also been treated with cefotaxime, usually without any deterioration in renal function. However, there is relatively little detailed information available on such patients.

Pharmacokinetics: After a 1000mg intravenous bolus, mean peak plasma concentrations of cefotaxime usually range between 81 and 102 μg/ml. Doses of 500mg and 2000mg produce plasma concentrations of 38 and 200 μg/ml, respectively. There is no accumulation following administration of 1000mg intravenously or 500mg intramuscularly for 10 or 14 days.

The apparent volume of distribution at steady-state of cefotaxime is 21.6 L/1.73m2 after 1g intravenous 30-minute infusions. Concentrations of cefotaxime (usually determined by non-selective assay) have been studied in a wide range of human body tissues and fluids. Cerebrospinal fluid concentrations are low when the meninges are not inflamed, but are between 3 and 30 μg/ml in children with meningitis. Concentrations (0.2–5.4/μg/ml) inhibitory for most Gram-negative bacteria, are attained in purulent sputum, bronchial secretions and pleural fluid after doses of 1 or 2g. Concentrations likely to be effective against most sensitive organisms are similarly attained in female reproductive organs, otitis media effusions, prostatic tissue, interstitial fluid, renal tissue, peritoneal fluid and gallbladder wall, after usual therapeutic doses. High concentrations of cefotaxime and desacetyl-cefotaxime are attained in bile.

Cefotaxime is partially metabolised prior to excretion. The principal metabolite is the microbiologically active product, desacetyl-cefotaxime. Most of a dose of cefotaxime is excreted in the urine, about 60% as unchanged drug and a further 24% as desacetyl-cefotaxime. Plasma clearance is reported to be between 260 and 390 ml/minute and renal clearance 145 to 217 ml/minute.

After intravenous administration of cefotaxime to healthy adults, the elimination half-life of the parent compound is 0.9 to 1.14 hours and that of the desacetyl metabolite, about 1.3 hours.

In neonates the pharmacokinetics are influenced by gestational and chronological age, the half-life being prolonged in premature and low birth weight babies relative to that in term and average birth weight neonates of the same age.

In severe renal dysfunction the elimination half-life of cefotaxime itself is increased minimally to about 2.5 hours, whereas that of desacetyl-cefotaxime is increased to about 10 hours. Total urinary recovery of cefotaxime and its principal metabolite decreases with reduction in renal function.

Therapeutic Trials: Published studies on several thousand patients have documented the efficacy of cefotaxime (usual dosage, 2 to 6 g/day at 6-, 8-or 12-hourly intervals) in a wide range of infections caused by Gram-positive and Gram-negative aerobic bacteria and, occasionally, anaerobic bacteria. Cefotaxime has been used successfully in patients who had failed to respond to other antibiotics, and in infections caused by organisms resistant to usual therapy, such as: Enterobacteriaceae resistant to other cephalosporins, gentamicin and/or carbenicillin; Serratia marcescens and Klebsiella pneumoniae resistant to all commercially available antibiotics; ampicillin-resistant Haemophilus influenzae; and penicillin-resistant Neisseria gonorrhoeae. Although cefotaxime alone was effective in some patients with pseudomonal infections, on the basis of present evidence it cannot be recommended as the sole antibiotic for suspected or confirmed pseudomonal infections.

A large number of patients with urinary tract infections, many of which were complicated by underlying urological abnormalities, have been treated successfully with cefotaxime in open or controlled studies. About 70 to 90% of infecting strains of cefotaximesensitive Gram-negative organisms were eradicated from patients with complicated and uncomplicated urinary tract infections immediately following treatment with cefotaxime 2 g/day. In general, E. coli, Klebsiella species, indole-positive and -negative Proteus, Enterobacter and Citrobacter species were eradicated more successfully than Pseudomonas and Serratia species. Although large studies in patients with complicated urinary tract infections have shown intravenous cefotaxime in a dose of 2 g/day to be significantly (p < 0.01) superior to cefazolin 4 g/day, ceftezole 4 g/day and sulbenicillin 10 g/day, caution must be exercised in interpreting these results because of the manner in which response was assessed. Results from smaller comparative studies suggested that better bacteriological responses were obtained with cefotaxime 2 g/day, than with cefazolin 2 g/day, cefuroxime 2.25 g/day, cefoxitin 3 g/day, or gentamicin 160 mg/day in various types of urinary tract infections. However, these results require confirmation in well-controlled studies.

Cefotaxime has been studied in many hospitalised patients with lower respiratory tract infections, frequently caused by Streptococcus pneumoniae, Haemophilus influenzae, Klebsiella species, E. coli and Proteus mirabilis. 75 to 100% of patients with pneumonia showed complete resolution or improvement in clinical signs and symptoms and chest radiographs. In a large comparative study in patients with mild to moderate pneumonia complicated by underlying respiratory disease, or in patients with other lower respiratory tract infections, cefotaxime 4 g/day was as effective clinically, but more effective bacteriologically, than intravenous cefazolin 4 g/day. However, only 35% of 218 patients in this study were bacteriologically assessable.

In the treatment of patients with septicaemia/bacteraemia, cefotaxime-sensitive Gram-negative bacteria such as E. coli, Klebsiella and Proteus species were isolated most frequently and over 90% of these organisms were eradicated from blood. Bacteraemia caused by Serratia marcescens, Pseudomonas species and Gram-positive bacteria was also treated successfully with cefotaxime alone.

Intra-abdominal infections such as peritonitis, and to a lesser extent hepatic and biliary infections, have also been treated with cefotaxime, often as an adjunct to surgery. Cefotaxime 80 mg/kg/day was as effective as a combination of gentamicin 3 mg/kg/day and a rather lower than usual dose of clindamycin (20 mg/kg/day) in treating patients with peritonitis (85% vs 82% cured, respectively) and similar polymicrobial soft-tissue surgical sepsis, despite in vitro susceptibility results suggesting superior activity of the combination therapy.

Satisfactory clinical responses occurred in over 86% of patients treated with cefotaxime (often in conjunction with surgical procedures) for skin and soft tissue infections (average dose 4 g/day) or osteomyelitis (average dose 9 g/day) caused by Gram-positive aerobes (such as S. aureus), Gram-negative aerobes and by anaerobes.

In general, over 90% of women with a variety of obstetric and gynaecological infections have responded to cefotaxime, sometimes in conjunction with surgery. Similar response rates of 96 to 100% have been reported in patients (usually male) treated with a single intramuscular injection of cefotaxime for uncomplicated gonorrhoea caused by penicillinase-producing or non-penicillinase-producing strains of Neisseria gonorrhoeae.

Encouraging results have been obtained with cefotaxime used alone or in combination with another antibiotic in the treatment of patients (mainly neonates and infants) with meningitis caused by the major meningeal pathogens, H. influenzae, S. pneumoniae and N. meningitidis, and also by Gram-negative bacilli (e.g. E. coli and Klebsiella species), including strains resistant to traditional therapy. To date, published clinical experience in other difficult therapeutic areas such as endocarditis, or suspected or proven infections in granulocytopenic and/or cancer patients is rather limited.

Several hundred children with various other types of serious infections have also been treated in open studies with cefotaxime alone or in combination with another antibiotic such as an aminoglycoside or penicillin. In general, clinical response rates varied from about 90% for children with septicaemia, gastrointestinal or multiple infections, to 100% for infections of the respiratory and urinary tracts treated with cefotaxime alone. Several studies in children with bacteriologically confirmed infections found that over 90% of the pathogens (predominantly cefotaxime-sensitive Gram-negative bacteria) were eradicated with cefotaxime alone. Dosages usually ranged between 50 and 100 mg/kg/day, given at 6-, 8-, or 12-hourly intervals.

In some countries cefotaxime is approved for perioperative use to reduce the incidence of postoperative infections in patients undergoing contaminated or potentially contaminated surgery, and in women undergoing caesarean section. Favourable results after prophylactic perioperative treatment with cefotaxime have been reported in several branches of surgery, such as genitourinary, abdominal, gynaecological and obstetric surgery.

Side effects: Cefotaxime has generally been well tolerated by adults and children following intravenous or intramuscular injection. The most commonly reported adverse clinical effects were reactions at the injection site such as pain on intramuscular injection (similar in intensity and incidence to that occurring with procaine penicillin G), and phlebitis (5%). Rash (2%), diarrhoea (1%) and variations in laboratory test results including transient elevations of renal and liver function tests have occurred with cefotaxime, but symptomatic drug-related nephrotoxicity or hepatotoxicity have not been reported. Superinfection (1.2%) and colonisation (1.6%) caused by cefotaxime-resistant Pseudomonas species or other Gram-negative bacilli, group D streptococci or Candida have occurred in patients treated with cefotaxime, particularly those who were seriously ill.

Dosage: Cefotaxime can be administered intravenously or intramuscularly. For adults with uncomplicated infections the usual dosage is 1g 12-hourly, while for those with moderate to severe infections 1 to 2g may be given 6-or 8-hourly, up to a maximum of 12 g/day. The recommended dose in neonates, infants and children usually varies between 50 and 150 mg/kg/day given 6-to 12-hourly, up to a maximum of 200 mg/kg/day in serious infections.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, D. and Struck, E.: Cefotaxim zur perioperativen Kurzzeitprophylaxe bei herzchirurgischen Angriffen. Deutsche Medizinische Wochenschrift 107:1314 (1982).PubMedGoogle Scholar
  2. Aguirre, M.; Torres, A. and Ales, J.M.: Cefotaxima en infecciones por microorganismos multirresistentes. Revista Clinica Espanola 160: 15–18 (1981).PubMedGoogle Scholar
  3. Ahonkhai, V.I.; Sierra, M.F.; Cherubin, C.E. and Shulman, M.A.: The comparative activities of N-formimidoyl thienamycin (MK0787), moxalactam, cefotaxime and cefoperazone against Yersinia enterocolitica and Listeria monocytogenes. Journal of Antimicrobial Chemotherapy 9: 411–412 (1982).PubMedGoogle Scholar
  4. Anders, A.; Raetzel, G.; Nordhausen, B. and Wagner, J.: Perioperative Antibiotika-prophylaxe in der Kolonchirurgie — Erfahrungsbericht zur Kurzzeit- und Ultrakurzzeitprophylaxe; in Eckert and Zwank (Eds) Perioperative Antibiotikatherapie pp. 51–72 (Zuchschwerdt Verlag, Munich 1982).Google Scholar
  5. Angehrn, P.; Probst, P.J.; Reiner, R. and Then R.L.: Ro 13-9904, a long-acting broad-spectrum cephalosporin: In vitro and in vivo studies. Antimicrobial Agents and Chemotherapy 18: 913–921 (1980).PubMedGoogle Scholar
  6. Applebaum, P.C.; Tamim, J.; Stavitz, J.; Aber, R.C. and Pankuch, G.A.: Sensitivity of 341 non-fermentative Gram-negative bacteria to seven beta-lactam antibiotics. European Journal of Clinical Microbiology 1: 159–165 (1982).Google Scholar
  7. Aranoff, G.R.; Sloan, R.S. and Luft, F.C.: Elimination kinetics of moxalactam in patients with renal impairment. Clinical Pharmacology and Therapeutics 29: 232 (1981).Google Scholar
  8. Armengaud, M.; Massip, P.; Aubertin, J.; Ragnaud, J.M.; Bertrand A.; and Lepeu, G.: Cefotaxime Journal of Antimicrobial Chemotherapy 6(Suppl. A): 263–268 (1980).PubMedGoogle Scholar
  9. Aufrant, C.; Lambert-Zechovsky, N.; Aujard, Y.; Bingen, E.; Blum, C.; Beaufils, F. and Mathieu, H.: Le cefotaxime dans les infections à bacille à Gram négatif de l’enfant: Efficacité, tolérance. Nouvelle Presse Médicale 10: 639–646 (1981).PubMedGoogle Scholar
  10. Aznar, J.; Munoz, E.; Garcia-Iglesias, M.C. and Perea, E.J.: Clinical experience with cefotaxime (HR-756) in surgical patients. Methods and Findings in Experimental and Clinical Pharmacology 3: 183–187 (1981).PubMedGoogle Scholar
  11. Backhaus, A. and Meyer-Rohn, J.: The treatment of gonococcal urethritis with cefotaxime. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 291 (1980).PubMedGoogle Scholar
  12. Baker, C.N.; Thornsberry, C. and Jones, R.N.: In vitro antimicrobial activity of cefoperazone, cefotaxime, moxalactam (LY127935), azlocillin, mezlocillin, and other β-lactam antibiotics against Neisseria gonorrhoeae and Haemophilus influenzae, including β-lactamase-producing strains. Antimicrobial Agents and Chemotherapy 17: 757–761 (1980).PubMedGoogle Scholar
  13. Barry, A.L.; Thornsberry, C. and Jones, R.N.; In vitro evaluation of LY 127935 (6059S) compared with cefotaxime, eight other β-lactams and two aminoglycosides. Journal of Antimicrobial Chemotherapy 6: 775–784 (1980).PubMedGoogle Scholar
  14. Bartlett, J.G.; Louie, T.J.; Gorbach, S.L. and Onderdonk, A.B.: Therapeutic efficacy of 29 antimicrobial regimens in experimental intraabdominal sepsis. Reviews of Infectious Diseases 3: 535–541 (1981).PubMedGoogle Scholar
  15. Bartmann, K. and Tarbuc, R.: Untersuchungen zue Wirksamkeit von Cefotaxim gegen gramnegative Stäbchen in vitro. Infection 8(Suppl. 4): S372–S384 (1980).Google Scholar
  16. Bastin, R.; Frottier, J.; Vilde, J.L. and Bure, A.: Place du cefotaxime dans le traitement des septicémies à entérobactéries: 10 observations. Nouvelle Presse Médicale 10: 598–600 (1981).PubMedGoogle Scholar
  17. Bax, R.P.: Cefotaxime clinical trial results in septicaemic patients in Ireland and the UK. Irish Medical Journal (May Suppl.): 10–12 (1982).Google Scholar
  18. Bax, R.: Renal tolerance of cefotaxime. Abstract No. 768 of paper presented at 20th ICAAC, Sept 1980, New Orleans (American Society for Microbiology, Washington, D.C. 1980).Google Scholar
  19. Bax, R.P. and Young, J.P.W.: Cefotaxime: United Kingdom clinical trial results in the treatment of severe infections. Current Medical Research and Opinion 7: 401–409 (1981).PubMedGoogle Scholar
  20. Bax, R.; White, L.; Reeves, D.; Ings, R.; Bywater, M. and Holt, H.: Pharmacokinetics of cefotaxime and its desacetyl metabolite; in Nelson and Grassi (Eds) Current Chemotherapy and Infectious Disease, pp. 155–157 (American Society for Microbiology, Washington, D.C. 1980).Google Scholar
  21. Belli, L.; Gennaro, E.A. and Pizarro, R.M.: Tratamiento de la uretritis gonocócica aguda con un nuevo antibiótico β-lactamico: cefotaxime. Prensa Médica Argentina 67: 32–34 (1980).Google Scholar
  22. Belohradsky, B.H.; Bruch, K.; Geiss, D.; Kafetzis, D.; Marget, W. and Peters, G.: Intravenous cefotaxime in children with bacterial meningitis. Lancet 1: 61–63 (1980).PubMedGoogle Scholar
  23. Bergan, T.; Kâlâger, T.; Helium, K.B. and Solberg, C.O.: Penetration of cefotaxime and desacetylcefotaxime into skin blister fluid. Journal of Antimicrobial Chemotherapy 10: 193–196 (1982a).PubMedGoogle Scholar
  24. Bergan, T.; Larsen, W. and Brodwall, E.K.: Pharmacokinetics of a new cephalosporin, cefotaxime (HR 756) in patients with different renal functions. Chemotherapy (Basel) 28: 85–104 (1982b).Google Scholar
  25. Bernard, C.; Coppens, L.; Mombelli, G. and Klastersky, J.: Bactericidal activity of serum in volunteers receiving cefotaxime (HR-756) with or without amikacin; in Nelson and Grassi (Eds) Current Chemotherapy and Infectious Disease, pp. 140–141 (American Society for Microbiology, Washington, D.C. 1980).Google Scholar
  26. Berndt, V.; Sander, J. and Hungerberg, W.: Klinische Erfahrungen mit Cefotaxim in der Chirurgie. Infection 8(Suppl. 4): S487–S491 (1980).Google Scholar
  27. Bint, A.J.; Hamilton, P.J.; Charlton, J. and Hiller, G: Cefotaxime plus gentamicin therapy for febrile neutropenic patients. Abstract No. 21 of paper presented at 20th ICAAC, Sept 1980, New Orleans (American Society for Microbiology, Washington, D.C. 1980).Google Scholar
  28. Blind, R.; Bikfalvi, A.; Seeger, K.; Seidel, G. and Sâvopoulos, G: Cefotaxime in lung tissue. Arzneimittel-Forschung 32: 1319–1321 (1982).PubMedGoogle Scholar
  29. Blomer, R.; Bruch, K. and Bax, R.P.: Renal tolerance of the combination of cefotaxime (HR-756) with various aminoglycoside antibiotics. Pharmatherapeutica 10: 623–627 (1981).Google Scholar
  30. Boakes, A.J.; Barrow, J.; Eykyn, S.J. and Phillips, I.: Cefotaxime for spectinomycin resistant Neisseria gonorrhoeae. Lancet 2: 96 (1981).PubMedGoogle Scholar
  31. Borderon, J.-C.; Despert, F.; Santini, J.J.; Laugier, J.; Grenier, B. and Boulard, P.: Le cefotaxime dans le traitement des méningites purulentes de l’enfant. Nouvelle Presse Médicale 10: 634–638 (1981a).PubMedGoogle Scholar
  32. Borderon, J.-C.; Prieur, D. and Huguet, M.B.: Concentration du cefotaxime dans le liquide cephalorachidien chez des enfants atteints de méningite purulente. Nouvelle Presse Médicale 26: 580–584 (1981b).Google Scholar
  33. Borobio, M.V.; Aznar, J.; Jimenez, R.; Garcia, F. and Perea, E.J.: Comparative in vitro activity of 1-oxa-β-lactam (LY 127935) and cefoperazone with other β-lactam antibiotics against anaerobic bacteria. Antimicrobial Agents and Chemotherapy 17: 129–131 (1980).PubMedGoogle Scholar
  34. Bradsher, R.W.: Relapse of Gram-negative bacillary meningitis after cefotaxime therapy. Journal of the American Medical Association 248: 1214–1215 (1982).PubMedGoogle Scholar
  35. Braveny, I. and Dickert, H.: In-vitro activity of cefotaxime against gentamicin and mezlocillin resistant strains. Lancet 2: 1023–1024 (1979).PubMedGoogle Scholar
  36. Brayeny, I. and Machka, K.: Multiply resistant Haemophilus influenzae and parainfluenzae in West Germany. Lancet 2: 752–753 (1980).Google Scholar
  37. Braveny, I.; Dicket, H. and Machka, K.: Antibakterielle Aktivität von Cefotaxim im Vergleich mit sieben Cephalosporinen. Infection 7: 231–236 (1979).PubMedGoogle Scholar
  38. Braveny, I.; Machka, K. and Elsser, R.: Antibacterial activity of N-formimidoyl thienamycin in comparison with cefotaxime, lamoxactam, cefoperazone, piperacillin and gentamicin. Infection 10: 45–49 (1982).PubMedGoogle Scholar
  39. Braveny, I.; Machka, K.; Bartmann, K.; Fabricius K.; Daschner, F.; Petersen, K.F.; Grimm, H.; Ullmann, U. and Freiesleben, H.: Antibiotikaresistenz von Haemophilus influenzae in der Bundesrepublik Deutschland. Deutsche Medizinische Wochenschrift 105: 1341–1344 (1980).PubMedGoogle Scholar
  40. Brown, W.M. and Fallon, R.J.: Cefotaxime for bacterial meningitis. Lancet 1: 1246 (1979).PubMedGoogle Scholar
  41. Bruch, K. and Blomer, R.: Cefotaxime treatment of patients who failed to respond to previous antibiotics. British Journal of Clinical Practice 34: 276–278 (1980).PubMedGoogle Scholar
  42. Bruckner, I.; Collmann, H. and Hoffmann, H.G.: Cefotaxime in treatment of meningitis and ventriculitis? Evaluation of drug concentrations in human cerebrospinal fluid. Intensive Care Medicine 8: 33–38 (1982).PubMedGoogle Scholar
  43. Bundtzen, R.; Craig, W.; Toothaker, R.; Brodey, M.; Gerber, A. and Welling, P.: Cefoperazone: Single dose pharmacokinetics. Abstract No. 112 of paper presented at 20th ICAAC, p. 14 (Excerpta Medica, Amsterdam 1980).Google Scholar
  44. Busse, H.; Seeger, K. and Wreesmann, P.: Concentrations of cefotaxime in the anterior chamber of the eye in rabbits and humans. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 143–145 (1980).PubMedGoogle Scholar
  45. Casellas, J.M.; Ortiz, R.G.; Matteucci, A.; Iribarren, M.A. and Farinati, A.: Cefotaxime therapy of urinary tract infections. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 225–230 (1980).PubMedGoogle Scholar
  46. Chamberlain, J.; Coombes, J.D.; Dell, D.; Fromson, J.M.; Ings, R.J.; Macdonald, C.M. and McEwen, J.: Metabolism of cefotaxime in animals and man. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 69–78 (1980).PubMedGoogle Scholar
  47. Chandler, J.W.; Brooks, W.R. and Snow, R.M.: Cefotaxime in the treatment of infections of the skin and skin structure. Drug Therapy (Suppl.) (In press 1982).Google Scholar
  48. Cherubin, C.E.; Corrado, M.L.; Nair, S.R.; Gombert, M.E.; Landesman, S. and Humbert, G.: Treatment of Gram-negative bacillary meningitis: Role of the new cephalosporin antibiotics. Reviews of Infectious Diseases 4 (Suppl. Sep): 5453–5460 (1982).Google Scholar
  49. Cherubin, C.E.; Corrado, M.L.; Sierra, M.F.; Gombert, M.E. and Shulman, M.: Susceptibility of Gram-positive cocci to various antibiotics, including cefotaxime, moxalactam, and N-formimidoyl thienamycin. Antimicrobial Agents and Chemotherapy 20: 553–555 (1981).PubMedGoogle Scholar
  50. Childs, S.J. and Kosola, J.W.: Update of safety of cefotaxime. Clinical Therapeutics 5(Suppl. A): 97–111 (1982).PubMedGoogle Scholar
  51. Childs, S.J.; Wood, P.D. and Kosola, J.W.: Antibiotic prophylaxis in genitourinary surgery. Clinical Therapeutics 4(Suppl. A): 111–123 (1981).PubMedGoogle Scholar
  52. Childs, S.J.; Wood, P.D. and Kosola, J.W.: Antibiotic prophylaxis in genitourinary surgery: A comparison of cefotaxime and cefazolin. Clinical Therapeutics 5(Suppl. A): 48–57 (1982).PubMedGoogle Scholar
  53. Clumeck, N.; Vanhoof, R.; Van Laethem, Y. and Butzler, J.P.: Cefotaxime and nephrotoxicity. Lancet 1: 835 (1979).PubMedGoogle Scholar
  54. Clumeck, N.; Van Laethem, Y.; Vanhoof, R.; George, G; Rapin, M. and Butzler, J.P.: Cefotaxime therapy of serious infections with multiresistant Gram-negative bacilli. Scandinavian Journal of Infectious Diseases 14: 57–60 (1982).PubMedGoogle Scholar
  55. Clumeck, N.; Van Laethem, Y.; Vanhoof, R.; Jasper, N.; George, G.; Rapin, M. and Butzler, J.P.: Le céfotaxime: Traitement des infections sévères par bacilles à Gram négatif multirésistants. Nouvelle Presse Médicale 10: 622–624 (1981).PubMedGoogle Scholar
  56. Cone, L.A.; Woodard, D. and Helm, N.A.: Clinical experience in the diagnosis and treatment of infections in the compromised host. Clinical Therapeutics 4(Suppl. A): 45–54 (1981).PubMedGoogle Scholar
  57. Connelly, K.: Cefotaxime (‘Claforan’) in routine hospital use. Current Medical Research and Opinion 8: 104–112 (1982).PubMedGoogle Scholar
  58. Coombes, J.D.: Metabolism of cefotaxime in animals and humans. Reviews of Infectious Diseases 4 (Suppl. Sep): S325–S332 (1982).PubMedGoogle Scholar
  59. Corrado, M.L.; Landesman, S.H. and Cherubin, C.E.: Influence of inoculum size on activity of cefoperazone, cefotaxime, moxalactam, piperacillin, and N-formimidoyl thienamycin (MK0787) against Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 18: 893–896 (1980).PubMedGoogle Scholar
  60. Counts, G.W. and Turck, M.: Antibacterial activity of a new parenteral cephalosporin — HR 756: Comparison with cefamandole and ceforanide. Antimicrobial Agents and Chemotherapy 16: 64–68 (1979).PubMedGoogle Scholar
  61. Cox, C.E. and Simmons, J.R.: Clinical evaluation of cefotaxime for the treatment of urinary tract infections. Drug Therapy (Suppl.) (In press 1982).Google Scholar
  62. Craig, W.A.: Single-dose pharmacokinetics of cefoperazone following intravenous administration. Clinical Therapeutics 3 (Special Issue): 46–49 (1980).PubMedGoogle Scholar
  63. Cuchural, G.; Jacobus, N.; Gorbach, S.L. and Tally, F.P.: A survey of Bacteroides susceptibility in the United States. Journal of Antimicrobial Chemotherapy 8(Suppl. D): 27–31 (1981).PubMedGoogle Scholar
  64. Daikos, G.K.; Kosmidis, J.; Giamarellou, H.; Dranidis, B.; Stathakis Ch. and Mantopoulos, K.: Evaluation of cefotaxime in a hospital with high antibiotic resistance rates. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 255–261 (1980).PubMedGoogle Scholar
  65. Daikos, G.K.; Kosmidis, J.; Stathakis, C.; Anyfantis, A.; Plakoutsis, T. and Papathanassiou, B.: Bioavailability of cefuroxime in various sites including bile, sputum and bone. Proceedings of the Royal Society of Medicine 70(Suppl. 9): 38–41 (1977).PubMedGoogle Scholar
  66. Danon, J.: Cefotaxime concentrations in otitis media effusions. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 131–132 (1980).PubMedGoogle Scholar
  67. Daschner F. and Nopper S.: Susceptibility of nosocomial Acinetobacter anitratus strains to 14 antibiotics. Journal of Antimicrobial Chemotherapy 6: 415–416 (1980).PubMedGoogle Scholar
  68. Dayer, P.; Balant, L.; Rudhardt, M.; Allaz, A.-F. and Fabre, J.: Behaviour of cefoperazone (a new cephalosporin) in man: Influence of renal insufficiency. Kidney International 17(6): 857 (1980).Google Scholar
  69. Delgado, D.G.; Brau, C.J.; Cobbs, C.G. and Dismukes, W.E.: In vitro activity of LY127935, a new 1-oxa cephalosporin, against aerobic Gram-negative bacilli. Antimicrobial Agents and Chemotherapy 16: 864–868 (1979).PubMedGoogle Scholar
  70. Doerr, B.I.; Glomot, R.; Kief, H.; Kramer, M. and Sakaguchi, T.: Toxicology of cefotaxime in comparison to other cephalosporins. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 79–82 (1980).PubMedGoogle Scholar
  71. Dolmann, A.: Bataglia, A.; Giugno, E.; Farias, E.; Lacoppola, J. and Forti I.: Tratamiento de las infecciones respiratorias agudas con cefotaxime. Prensa Médica Argentina 68: 639–642 (1981).Google Scholar
  72. Doluisio, J.T.: Clinical pharmacokinetics of cefotaxime in patients with normal and reduced renal function. Reviews of Infectious Diseases 4 (Suppl. Sep): S333–S346 (1982).PubMedGoogle Scholar
  73. Dornbusch, K.; Olsson-Liljequist, B. and Nord, C.E.: Antibacterial activity of new β-lactam antibiotics on cefoxitin-resistant strains of Bacteroides fragilis. Journal of Antimicrobial Chemotherapy 6: 207–216 (1980).PubMedGoogle Scholar
  74. Draser, F.A.; Farrell, W.; Howard, A.J.; Hince, C.; Leung, T. and Williams, J.D.: Activity of HR 756 against Haemophilus influenzae, Bacteroides fragilis and gram-negative rods. Journal of Antimicrobial Chemotherapy 4: 445–450 (1978).Google Scholar
  75. Drennan, D.P.: Comparison of cefotaxime and cefazolin in the treatment of urinary tract infections. Drug Therapy (Suppl.) (In press 1982).Google Scholar
  76. Dureux, J.-B.; Canton, Ph.; Roche, G.; Weber, M. and Gérard, A.: Utilisation du céfotaxime dans les septicémies et états infectieux sévères à bacilles à Gram négatif multirésistants. Nouvelle Presse Médicale 10: 601–606 (1981).PubMedGoogle Scholar
  77. Dutoy, J.P. and Wauters, G.: The treatment of bone and joint infections with cefotaxime. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 275 (1980).PubMedGoogle Scholar
  78. Egere, J.U.; Mbonu, O.O.; Okaro, J.; Anozie, S.O. and Balakrishnan, P.: Cefotaxime (Claforan) in the treatment of gonococcal urethritis in Nigeria. Clin. Trials J. 19: 162–169 (1982).Google Scholar
  79. Fabian, T.C.; Hoefling, S.J.; Strom, P.R. and Stone, H.H.: Use of antibiotic prophylaxis in penetrating abdominal trauma. Clinical Therapeutics 5(Suppl. A): 38–47 (1982).PubMedGoogle Scholar
  80. Fabricius K. and Riegel, H.: Klinische Erfahrungen mit Cefotaxim. Medizinische Welt 31: 885–889 (1980).PubMedGoogle Scholar
  81. Fernandez-Guerrero, M.L.; Torres, A. and Soriano, F.: Cefotaxime in Gram-negative meningitis. Journal of Infection 5: 101–102 (1982).Google Scholar
  82. Fillastre, J.P.; Ings, R.M.J.; Leroy, A.; Humbert, G. and Godin, M.: Pharmacocinetique du céfotaxime chez les insuffisants rénaux chroniques. Nouvelle Presse Médicale 26: 574–579 (1981).Google Scholar
  83. Fillastre, J.P.; Leroy, A.; Godin, M.; Oskenhendler, G. and Humbert, G.: Pharmacokinetics of cefoxitim sodium in normal subjects and in uremic patients. Journal of Antimicrobial Chemotherapy 4(Suppl. B): 79–83 (1978).PubMedGoogle Scholar
  84. Foord, R.D.: Cefuroxime: Human pharmacokinetics. Antimicrobial Agents and Chemotherapy 9: 741–747 (1976).PubMedGoogle Scholar
  85. Francke, E.L. and Neu, H.C.: Use of cefotaxime, a β-lactamase stable cephalosporin, in the therapy of serious infections, including those due to multiresistant organisms. American Journal of Medicine 71: 435–442 (1981).PubMedGoogle Scholar
  86. Fraschini, F.; Braga, P.C.; Copponi, V.; Maccari, M.; Piovani, D.; Scaglione, F. and Scarpazza, G.: Bactericidal activity of erythromycin in the respiratory system. Current Medical Research and Opinion 7: 429–439 (1981).PubMedGoogle Scholar
  87. Frongillo, R.F.; Galuppo, L. and Moretti, A.: Suction skin blister, skin window, and skin chamber techniques to determine extravascular passage of cefotaxime in humans. Antimicrobial Agents and Chemotherapy 19: 22–28 (1981).PubMedGoogle Scholar
  88. Fu, K.P. and Neu, H.C.: Beta-lactamase stability of HR 756, a novel cephalosporin, compared to that of cefuroxime and cefoxitin. Antimicrobial Agents and Chemotherapy 14: 322–326 (1978).PubMedGoogle Scholar
  89. Fu, K.P. and Neu, H.C.: The comparative β-lactamase resistance and inhibitory activity of 1-oxa cephalosporin, cefoxitin and cefotaxime. Journal of Antibiotics 9: 909–914 (1979).Google Scholar
  90. Fu, K.P. and Neu, H.C.: Antibacterial activity of ceftizoxime, a β-lactamase-stable cephalosporin. Antimicrobial Agents and Chemotherapy 17: 583–590 (1980).PubMedGoogle Scholar
  91. Fu, K.P. and Neu, H.C.: The role of inducible β-lactamases in the antagonism seen with cerfain cephalosporin combinations. Journal of Antimicrobial Chemotherapy 7: 104–107 (1981).PubMedGoogle Scholar
  92. Fu, K.P.; Aswapokee, P.; Ho, I.; Matthijssen, C. and Neu H.C.: Pharmacokinetics of cefotaxime. Antimicrobial Agents and Chemotherapy 16: 592–597 (1979).PubMedGoogle Scholar
  93. Fuchs, P.C.; Barry, A.L.; Thornsberry, C.; Jones, R.N.; Gavan, T.L.; Gerlach E.H. and Sommers H.M.: Cefotaxime: In vitro activity and tentative interpretive standards for disk susceptibility testing. Antimicrobial Agents and Chemotherapy 18: 88–93 (1980).PubMedGoogle Scholar
  94. Gamier, J.M. and Giraud, F.: Utilisation du cefotaxime dans les maladies infectieuses de l’enfant. Nouvelle Presse Médicale 10: 629–633 (1981).Google Scholar
  95. Gekle, D.; Rangoonwala and Seeger, K.: Klinische und kinetische Untersuchungen zur Behandlung bakterieller Infektionen im Kindesalter mit Cefotaxim. Infection 8(Suppl. 4): S509–S512 (1980).Google Scholar
  96. Gentry, L.O.; Chappell, C.L. and Ives, R.T.: In vitro antibacterial activity of moxalactam (LY127935) against Gram-negative bacteria from hospitalized patients. Current Therapeutic Research 28: 611–617 (1980).Google Scholar
  97. Germann, G. and Hottenrott, C.: Perioperative Antibiotikaprophylaxe in der Dickdarmchirurgie; in Eckert and Zwank (Eds) Perioperative Antibiotikatherapie pp. 102–107 (Zuckschwerdt Verlag, Munich 1982).Google Scholar
  98. Gialdroni, G.; Dionigi, R.; Ferrara, A. and Pozzi E.: Penetration of HR-756 (cefotaxime) in lung tissue and bronchial secretions; in Nelson and Grassi (Eds) Current Chemotherapy and Infectious Disease, pp. 120–121 (American Society for Microbiology, Washington, D.C. 1980).Google Scholar
  99. Gillett, A.P. and Wise, R.: Penetration of four cephalosporins into tissue fluid in man. Lancet 1: 962–964 (1978).PubMedGoogle Scholar
  100. Gillissen, G.: Nouveaux antibiotiques beta-lactam et response immunitaire. Médecine et Hygiène 39: 122–128 (1981).Google Scholar
  101. Gillissen, G.: Non-specific influence of antibiotics on the course of infectious processes. Infection 10: 128–130 (1982).PubMedGoogle Scholar
  102. Gineston, J.L. and Henry, X.: Recto-colite pseudomembraneuse après traitement par le cefotaxime. Nouvelle Presse Médicale 11: 1951–1952 (1982).PubMedGoogle Scholar
  103. Goldstein, E.J.C.; Cherubin, C.E.; Corrado, M.L. and Sierra, M.F.: Comparative susceptibility of Yersinia enterocolitica, Eikenella corrodens, and penicillin-resistant and penicillin-susceptible Streptococcus pneumoniae to β-lactam and alternative antimicrobial agents. Reviews of Infectious Diseases 4 (Suppl. Sep): S406–S410 (1982).PubMedGoogle Scholar
  104. Gombert, M.E.: Susceptibility of Nocardia asteroides to various antibiotics, including newer beta-lactams, trimethoprim-sulfamethoxazole, amikacin, and N-formimidoyl thienamycin. Antimicrobial Agents and Chemotherapy 21:1011–1012 (1982).PubMedGoogle Scholar
  105. Goodwin, C.S.; Raftery, E.B.; Goldberg, A.D.; Skeggs, H.; Till, A.E. and Martin, C.M.: Effects of rate of infusion and probenecid on serum levels, renal excretion, and tolerance, of intravenous doses of cefoxitin in humans. Antimicrobial Agents and Chemotherapy 6: 338–346 (1974).PubMedGoogle Scholar
  106. Goullon, J.-E.: Klinische Erfahrungen mit Cefotaxim. Infection 8(Suppl. 4): S492–S494 (1980).Google Scholar
  107. Goulon, M.; Gajdos, Ph. and Pilliot, J.: Traitement des septicémies à bacilles à Gram négatif par le céfotaxime: 16 observations. Nouvelle Presse Médicale 10: 613–616 (1981).PubMedGoogle Scholar
  108. Gower, P.E. and Dash, C.H.: The pharmacokinetics of cefuroxime after intravenous injection. European Journal of Clinical Pharmacology 12: 221–227 (1977).PubMedGoogle Scholar
  109. Gower, P.E.; Dash, C.H. and Kennedy, M.R.K.: The effect of renal failure and haemodialysis on the pharmacokinetics of cefuroxime; in Snell et al. (Eds) The Early Evaluation of Cefuroxime, pp. 69–77 (Glaxo, Middlesex 1977).Google Scholar
  110. Grabe, M.; Andersson, K.-E.; Forsgren, A. and Hellsten, S.: Concentrations of cefotaxime in serum, urine and tissues of urological patients. Infection 9: 154–158 (1981).Google Scholar
  111. Graninger, W.; Breyer, S.; Pichler, H.; Rameis, H.; Diem, E.; Böhm, M. and Spitzy, K.H.: Cefotaxime: In vitro activity against cephalothin-resistant isolates and use in the treatment of septicemia, pneumonia, urinary tract and other severe infections. Infection 9: 29–33 (1981).Google Scholar
  112. Greenfield, R.A.; Kurzynski, T.A. and Craig, W.A.: In vitro susceptibility of Clostridium difficile isolates to cefotaxime, moxalactam, and cefoperazone. Antimicrobial Agents and Chemotherapy 21: 846–847 (1982).PubMedGoogle Scholar
  113. Greenwood, D. and Eley, A.: Comparative antipseudomonal activity of some newer β-lactam agents. Antimicrobial Agents and Chemotherapy 21: 204–209 (1982).PubMedGoogle Scholar
  114. Gründer, K.; Malerczyk, V.; Petzoldt, D.; Seeger, K. and Seidel, G.: Concentrations of cefotaxime in skin. Infection 8(Suppl. 3): S280–S283 (1980).Google Scholar
  115. Guibert, J.; Acar, J.F.; Justin, C. and Kitzis, M.D.: Evaluation clinique du cefotaxime à différents dosages thérapeutiques dans les infections urinaires. Nouvelle Presse Médicale 10: 625–627 (1981).PubMedGoogle Scholar
  116. Guy, H.; Chavanet, P.; Portier, H.; Kazmierczak, A. and Cortet, P.: Traitement par une association céfotaxime-amikacine des épisodes infectieux des leucémies aiguës de l’adulte en aplasie thérapeutique. Nouvelle Presse Médicale 10: 654–656 (1981).PubMedGoogle Scholar
  117. Hall, W.H.; Opfer, B.J. and Gerding, D.N.: Comparative activities of the oxa-β-lactam LY127935, cefotaxime, cefoperazone, cefamandole, and ticarcillin against multiply resistant Gram-negative bacilli. Antimicrobial Agents and Chemotherapy 17: 273–279 (1980a).PubMedGoogle Scholar
  118. Hall, W.H.; Opfer, B. and Gerding, D.N.: Comparative antibacterial activity of the cephalosporins LY 127935 (a 1-oxacephem), cefotaxime (HR-756), and cefoperazone (T-1551); in Nelson and Grassi (Eds) Current Chemotherapy and Infectious Disease, pp. 89–91 (American Society for Microbiology, Washington, D.C. 1980b).Google Scholar
  119. Hamilton-Miller, J.M.T.; Brumfitt, W. and Reynolds, A.V.: Cefotaxime (HR-756) a new cephalosporin with exceptional broad-spectrum activity in vitro. Journal of Antimicrobial Chemotherapy 4: 437–444 (1978).PubMedGoogle Scholar
  120. Handsfield, H.H.: Treatment of uncomplicated gonorrhea with cefotaxime. Reviews of Infectious Diseases 4 (Suppl. Sep): S448–S452 (1982).PubMedGoogle Scholar
  121. Handsfield, H.H. and Holmes, K.K.: Treatment of uncomplicated gonorrhea with cefotaxime. Sexually Transmitted Diseases 8: 187–191 (1981).PubMedGoogle Scholar
  122. Hänninen, P.; Toivanen, A.; Vainio, O. and Toivanen, P.: Cefotaxime in the treatment of lower respiratory tract infections. Journal of Antimicrobial Chemotherapy 6(Suppl. A.): 181–185 (1980).PubMedGoogle Scholar
  123. Hanslo, D.; King, A.; Shannon, K.; Warren, C. and Phillips, I.: N-formimidoyl thienamycin (MKO787): in vitro antibacterial activity and susceptibility to beta-lactamases compared with that of cefotaxime, moxalactam and other beta-lactam antibiotics. Journal of Antimicrobial Chemotherapy 7: 607–617 (1981).PubMedGoogle Scholar
  124. Hansman, D.: Susceptibility of penicillin-insensitive pneumococci to new cephalosporins. Drugs 22(Suppl. 1): 13–14 (1981).Google Scholar
  125. Hard, S.; Moberg, I. and Wennberg, K.: Treatment of gonococcal urethritis in males with a single dose of cefotaxime. Journal of Antimicrobial Chemotherapy 6(Suppl. A.): 289 (1980).PubMedGoogle Scholar
  126. Hargreave, T.B.; Hindmarsh, J.R.; Elton, R.; Chisholm, G.D. and Gould, J.C.: Short-term prophylaxis with cefotaxime for prostatic surgery. British Medical Journal 284: 1008–1010 (1982).PubMedGoogle Scholar
  127. Härle, A.: Die kombinierte lokale und systemische Antibiotika-Therapie bei durch multiresistente Keime hervorgerufener chronischer Mischinfektion des Knochengewebes: Eine klinische Fallstudie. Infection 8(Suppl. 4): S495–S500 (1980).Google Scholar
  128. Hashira, S.; Koike, Y. and Fujii, R.: Fundamental and clinical investigations of cefotaxime in neonates. Japanese Journal of Antibiotics 35: 1737–1748 (1982).PubMedGoogle Scholar
  129. Hattingberg, H.M. von; Marget, W.; Belohradsky, B.H. and Roos, R.: Pharmacokinetics of cefotaxime in neonates and children: Clinical aspects. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 113–118 (1980).Google Scholar
  130. Heimann, G.; Eickschen, M. and Seeger, K.: Pharmakokinetik von Cefotaxim im Kindesalter. Infection 8(Suppl. 4): S454–S459 (1980).Google Scholar
  131. Helwig, H.F.: Cefotaxime in pediatrics; in Nelson and Grassi (Eds) Current Chemotherapy and Infectious Disease, pp. 128–129 (American Society for Microbiology, Washington, D.C. 1980a).Google Scholar
  132. Helwig, H.: Erfahrungen mit Cefotaxim im Kindesalter. Infection 8(Suppl. 4): S506–S508 (1980b).Google Scholar
  133. Helwig, H. and Daschner, F.: Cefotaxim — eine Alternative zur Behandlung der eitrigen Meningitis im Kindesalter? Deutsche Medizinische Wochenschrift 36: 1343–1346 (1982).Google Scholar
  134. Hemsell, D.L. and Cunningham, F.G.: Combination antimicrobial therapy for serious gynecological and obstetrical infections — obsolete? Clinical Therapeutics 4(Suppl. A): 81–88 (1981).PubMedGoogle Scholar
  135. Hemsell, D.L.; Cunningham, F.G.; Nolan, C.M. and Miller, T.T.: Clinical experience with cefotaxime in obstetric and gynaecologic infections. Reviews of Infectious Diseases 4 (Suppl. Sep): S432–S438 (1982).PubMedGoogle Scholar
  136. Henry, M.M.; Allen, S.D.; Siders, J.A.; Reynolds, J.K.; Cromer, M.D. and Fischer, J.A.: Susceptibility of clinical isolates of Clostridium difficile to new beta-lactam and other antibiotics; in Nelson and Grassi (Eds) Current Chemotherapy and Infectious Disease, pp. 959–961 (American Society for Microbiology, Washington, D.C. 1980).Google Scholar
  137. Ho, I.; Aswapokee, P.; Fu, K.P.; Matthijssen, C. and Neu, H.C.: Pharmacokinetic parameters of cefotaxime following intravenous and intramuscular administration of single and multiple doses; in Nelson and Grassi (Eds) Current Chemotherapy and Infectious Diseases, pp. 116–118 (American Society for Microbiology, Washington, D.C. 1980).Google Scholar
  138. Hoffler and Piper, C.: Cefotaxime and cefuroxime, a controlled therapeutic comparison in urinary tract infections. Pharmatherapeutica 2: 637–641 (1981).Google Scholar
  139. Höffler, U.; Niederau, W. and Pulverer, G.: Susceptibility of cutaneous propionibacteria to newer antibiotics. Chemotherapy 26: 7–11 (1980).PubMedGoogle Scholar
  140. Hoffstedt, B. and Wälder, M.: Influence of serum protein binding and mode of administration on penetration of five cephalosporins into subcutaneous tissue fluid in humans. Antimicrobial Agents and Chemotherapy 20: 783–786 (1981).PubMedGoogle Scholar
  141. Howard, A.J.; Hince, C. and Williams, J.D.: The susceptibility of Haemophilus influenzae to HR-756 compared with four other cephalosporins and cefoxitin and the influence of a new compound CP-45,899 on the inhibitory activity of ampicillin on beta-lactamase producing strains. Drugs under Experimental and Clinical Research 5: 7–11 (1979).Google Scholar
  142. Hubrechts, J.M.; Vanhoof, R.; Denolf, R.; Ghosen, V.; Foulon, W. and Butzler, J.P.: Treatment of uncomplicated gonorrhea with cefotaxime; in Nelson and Grassi (Eds) Current Chemotherapy and Infectious Disease, pp. 1269–1270 (American Society for Microbiology, Washington, D.C. 1980a).Google Scholar
  143. Hubrechts, J.M.; Vanhoof, R.; Denolf, R.; Khodjasteh, F. and Butzler, J.P.: In vitro and in vivo activity of cefotaxime on gonococcal strains. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 51–54 (1980b).PubMedGoogle Scholar
  144. Hyams, K.C.; Mader, J.T.; Pollard, R.B.; Parks, D.H.; Thomson, P.D. and Reinarz, J.A.: Serratia endocarditis in a pediatric burn patient: Cure with cefotaxime. Journal of the American Medical Association 246: 983–984 (1981).PubMedGoogle Scholar
  145. Iannini, P.B. and Kunkel, M.J.: Cefotaxime failure in group A streptococcal meningitis. Journal of the American Medical Association 248: 1878 (1982).PubMedGoogle Scholar
  146. Ikeuchi, M.; Takashima, E.; Asano, S.; Haruta, T.; Morikawa, Y. and Kobayashi, Y.: Transfer of cefotaxime to the pelvic organs. Japanese Journal of Antibiotics 34: 532–536 (1981).PubMedGoogle Scholar
  147. Ings, R.M.J.; Fillastre, J.-P.; Godin, M.; Leroy, A. and Humbert, G.: The pharmacokinetics of cefotaxime and its metabolites in subjects with normal and impaired renal function. Reviews of Infectious Diseases 4 (Suppl. Sep): S379–S391 (1982).PubMedGoogle Scholar
  148. Ishii, Y.; Nawachi, K.; Okuda, H. and Sekiba, K.: Laboratory and clinical studies on cefotaxime in obstetrics and gynecology. Japanese Journal of Antibiotics 34: 537–544 (1981).PubMedGoogle Scholar
  149. Iversen, P. and Madsen, P.O.: Short-term cephalosporin prophylaxis in transurethral surgery. Clinical Therapeutics 5(Suppl. A): 58–66 (1982).PubMedGoogle Scholar
  150. Jacobus, N.V.; Tally, F.P.; Barza, M. and Gorbach, S.L.: Susceptibility of anaerobic bacteria to cefoperazone and other beta-lactam antibiotics. Clinical Therapeutics 3 (Special Issue): 34–38 (1980).PubMedGoogle Scholar
  151. Jagelman, D.G.; Fazio, V.W.; Lavery, I.C.; Weakley, F.L. and Chaney, T.L.: A prospective randomized study of prophylactic mannitol (10%) — neomycin-cefotaxime therapy in patients undergoing elective colonic and rectal surgery. Clinical Therapeutics 5(Suppl. A): 32–37 (1982).PubMedGoogle Scholar
  152. Jenkins, S.G.; Birk, R.J. and Zabransky, R.J.: Differences in susceptibilities of species of the Bacteroides fragilis group to several β-lactam antibiotics: Indole production as an indicator of resistance. Antimicrobial Agents and Chemotherapy 22: 628–634 (1982).PubMedGoogle Scholar
  153. Jenkinson, S.G.; Briggs, M.S. and Bryn, R.D.: Cefotaxime in the treatment of pneumococcal pneumonia. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 177–180 (1980).PubMedGoogle Scholar
  154. Jenkinson, S.G.; Briggs, M.S. and Bryn, R.D.: Low-dose cefotaxime therapy in the treatment of pneumococcal pneumonia. Drug Therapy (Suppl.) (In press 1982).Google Scholar
  155. Johnston, H.H. and Griffiths, D.T.: Assay of gentamicin in the presence of cefotaxime. Journal of Antimicrobial Chemotherapy 10: 225–256 (1982).Google Scholar
  156. Jones, R.N.; Barry, A.L. and Thornsberry, C.: Antimicrobial activity of desacetylcefotaxime alone and in combination with cefotaxime: Evidence of synergy. Reviews of Infectious Diseases 4 (Suppl. Sep): S366–S373 (1982).PubMedGoogle Scholar
  157. Jorgensen, J.H.; Crawford, S.A. and Alexander, G.A.: Comparison of moxalactam (LY127935) and cefotaxime against anaerobic bacteria. Antimicrobial Agents and Chemotherapy 17: 901–904 (1980a).PubMedGoogle Scholar
  158. Jorgensen, J.H.; Crawford, S.A. and Alexander, G.A.: In vitro activities of moxalactam and cefotaxime against aerobic Gram-negative bacilli. Antimicrobial Agents and Chemotherapy 17: 937–942 (1980b).PubMedGoogle Scholar
  159. Jorgensen, J.H.; Crawford, S.A. and Alexander, G.A.: In vitro activities of cefotaxime and moxalactam (LY127935) against Haemophilus influenzae. Antimicrobial Agents and Chemotherapy 17: 516–517 (1980c).PubMedGoogle Scholar
  160. Jostarndt, L; Thiede, A.; Sonntag, H.G. and Hamelmann, H.: Systemic antibiotic prophylaxis in elective colon surgery — results of a controlled study. Chirurg 52: 398–402 (1981).PubMedGoogle Scholar
  161. Kafetzis, D.A.: Penetration of cefotaxime into empyema fluid. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 153 (1980).Google Scholar
  162. Kafetzis, D.A.; Brater, D.C.; Kanarios, J.; Sinaniotis, C.A.; Papadatos, C.J.: Clinical pharmacology of cefotaxime in pediatric patients. Antimicrobial Agents and Chemotherapy 20: 487–490 (1981).PubMedGoogle Scholar
  163. Kafetzis, D.A.; Brater, D.C.; Kapiki, A.N.; Papas, C.V.; Dellagrammaticas, H. and Papadatos, C.J.: Treatment of severe neonatal infections with cefotaxime. Efficacy and pharmacokinetics. Journal of Pediatrics 100: 483–489 (1982).PubMedGoogle Scholar
  164. Kafetzis, D.A.; Lazarides, C.V.; Siafas, C.A.; Georgakopoulos, P.A. and Papadatos, C.J.: Transfer of cefotaxime in human milk and from mother to foetus. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 135–141 (1980).PubMedGoogle Scholar
  165. Kalager, T.; Digranes, A.; Bakke, K.; Helium, K.B.; Bergan, T. and Solberg, C.O.: Cefotaxime in serious infections — a clinical and pharmacokinetic study. Journal of Antimicrobial Chemotherapy 9: 157–163 (1982).PubMedGoogle Scholar
  166. Kamimura, T.; Matsumoto, Y.; Okada, N.; Mine, Y.; Nishida, M.; Goto, S. and Kuwahara, S.: Ceftizoxime (FK 749), a new parenteral cephalosporin: In vitro and in vivo antibacterial activities. Antimicrobial Agents and Chemotherapy 16: 540–548 (1979).PubMedGoogle Scholar
  167. Karakusis, P.H.; Feczko, J.M.; Goodman, L.J.; Hanlon, D.M.; Harris, A.A.; Levin, S. and Trenholme, G.M.: Clinical efficacy of cefotaxime in serious infections. Antimicrobial Agents and Chemotherapy 21: 119–124 (1982).PubMedGoogle Scholar
  168. Karimi, A.; Seeger, K.; Stolke, D.; and Knothe, H.: Cefotaxime concentration in cerebrospinal fluid. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 119–120 (1980).PubMedGoogle Scholar
  169. Kasai, Y.; Nakanishi, M.; Sawada, Y.; Nakamura, T.; Hashimoto, I.; Mikami, J.; Bekki, E.; Hirasawa, S.; Abe, H.; Kasai, K. and Omusu, M.: Studies on cefotaxime (HR 756) concentration in human biliary tract and clinical effect for acute or subacute cholecystitis with cholelithiasis. Japanese Journal of Antibiotics 34: 447–453 (1981).PubMedGoogle Scholar
  170. Katsu, K.; Kitoh, K.; Inoue, M. and Mitsuhashi, S.: In vitro antibacterial activity of E-0702, a new semisynthetic cephalosporin. Antimicrobial Agents and Chemotherapy 22: 181–185 (1982).PubMedGoogle Scholar
  171. Kawada, Y.; Shimizu, Y. and Nishiura, T.: Comparative studies of cefotaxime and sulbenicillin in complicated urinary tract infections. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 213–218 (1980).PubMedGoogle Scholar
  172. Kayser, F.H.: Die Resistenz methicillinresistenter Staphylokokken gegenüber neuen Cephalosporin-Antibiotika. Infection 8: 165–170 (1980a).PubMedGoogle Scholar
  173. Kayser, F.H.: Microbiological studies on cefoperazone. Clinical Therapeutics 3 (Special Issue): 24–33 (1980b).PubMedGoogle Scholar
  174. Keaney, M.; Caister, H.; Bax, R. and Noone, P.: Clinical experience with cefotaxime in hospitalized patients. Journal of Antimicrobial Chemotherapy 9: 313–317 (1982).PubMedGoogle Scholar
  175. Kees, F.; Strehl, E.; Seeger, K.; Dominiak, P. and Grobecker, H.: Comparative determination of cefotaxime and desacetyl cefotaxime in serum and bile by bioassay and high performance liquid chromatography. Arzneimittel-Forschung 31: 362–365 (1981).PubMedGoogle Scholar
  176. Kemmerich, B. and Lode, H.: Clinical experience with cefoperazone and cefotaxime in respiratory tract infections. Proceedings of Second International Symposium on cefoperazone sodium, August 1980, Hamburg, pp. 51–57 (Academy Professional Information Services, New York, 1981).Google Scholar
  177. Kennedy, J.R. and Lauffer, R.M.: Possible interaction of cefotaxime with a glucose-testing method. American Journal of Hospital Pharmacy 39: 406 (1982).PubMedGoogle Scholar
  178. Khan, M.Y.; Siddiqui, Y.; Simpson, M.L. and Gruninger, R.P.: Comparative in vitro activity of cefmenoxime, cefotaxime, cefuroxime, cefoxitin, and penicillin against Neisseria gonorrhoeae. Antimicrobial Agents and Chemotherapy 20: 681–682 (1981).PubMedGoogle Scholar
  179. Khan, W.N.; Willert, B.; Ahmad, S.; Rodriguez, W.J. and Ross, S.: Comparative inhibition of β-lactamase-producing Haemophilus strains by newer cephalosporins; in Nelson and Grassi (Eds) Current Chemotherapy and Infectious Disease, pp. 82–84 (American Society for Microbiology, Washington, D.C. 1980).Google Scholar
  180. King, A.; Warren, C.; Shannon, K. and Phillips, I.: The in vitro antibacterial activity of cefotaxime compared with that of cefuroxime and cefoxitin. Journal of Antimicrobial Chemotherapy 6: 479–494 (1980).PubMedGoogle Scholar
  181. Klastersky, J.; Gaya, H.; Zinner, S.H.; Bernard, C. and Ryff, J.C. (Writing Committee for EORTC International Antimicrobial Therapy Project Group): Cefotaxime and amikacin: Results of in vitro and in vivo studies against Gram-negative bacteria and Staphylococcus aureus. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 55–61 (1980).PubMedGoogle Scholar
  182. Kleinstein, J. and Neubüser, D.: Über die Gewebekonzentration von Cefotaxim am inneren Genitale. Infection 8(Suppl. 4): S445–S447 (1980).Google Scholar
  183. Knothe, H.: Sensitivity testing and synergy. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 31–35 (1980).PubMedGoogle Scholar
  184. Kobayashi, Y.; Haruta, T.; Okura, K.; Kuroki, S.; Fujiwara, T. and Goto, K.: Evaluation of cefotaxime in treatment of infections in newborns. Japanese Journal of Antibiotics 35: 1801–1815 (1982).PubMedGoogle Scholar
  185. Kobayashi, Y.; Morikawa, Y.; Haruta, T.; Fujii, R.; Meguro, H.; Hori, M.; Kurosu, Y.; Toyonaga, Y.; Iwai, N.; Kitamura, I.; Hamawaki, M. and Ozaki, H.: Clinical evaluation of cefotaxime in the treatment of purulent meningitis in children. Japanese Journal of Antibiotics 34: 946–954 (1981a).PubMedGoogle Scholar
  186. Kobayashi, Y.; Morikawa, Y.; Haruta, T.; Fujii, R.; Meguro, H.; Hori, M.; Kurosu, Y.; Toyonaga, Y.; Iwai, N.; Kitamura, I.; Hamawaki, M.; Ozaki, H. and Nishimura, T.: Clinical evaluation of cefotaxime in the treatment of purulent meningitis in children. Clinical Therapeutics 4(Suppl. A): 89–110 (1981b).PubMedGoogle Scholar
  187. Kosmidis, J.; Stathakis, C.; Anyfantis, A. and Daikos, G.K.: Cefuroxime in renal insufficiency: Therapeutic results in various infections and pharmacokinetics including the effects of dialysis. Proceedings of the Royal Society of Medicine 70(Suppl. 9): 139–143 (1977).PubMedGoogle Scholar
  188. Kosmidis, J.; Stathakis, Ch.; Mantopoulos, K.; Pouriezi, T.; Papathanassiou, B. and Daikos, G.K.: Clinical pharmacology of cefotaxime including penetration into bile, sputum, bone and cerebrospinal fluid. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 147–151 (1980).PubMedGoogle Scholar
  189. Kowalsky, S.F. and Wishnoff, F.G.: Evaluation of potential interaction of new cephalosporins with Clinitest. American Journal of Hospital Pharmacy 39: 1499–1501 (1982).PubMedGoogle Scholar
  190. Kropp, H.; Sundelof, J.G.; Kahan, J.S.; Kahan, F.M. and Birnbaum, J.: MK0787 (N-formimidoyl thienamycin): Evaluation of in vitro and in vivo activities. Antimicrobial Agents and Chemotherapy 17: 993–1000 (1980).PubMedGoogle Scholar
  191. Krüger, E.; Fischer, M.; Schleicher, P. and Braveny, I.: Klinische Erfahrungen bei der Behandlung schwerer Infektionen mit Cefotaxim. Infection 8(Suppl. 4): S462–S465 (1980).Google Scholar
  192. Kuhlmann, J.; Seidel, G. and Grötsch, H.: Tobramycin nephrotoxicity: Failure of cefotaxime to potentiate renal toxicity. Infection 10: 233–239 (1982a).PubMedGoogle Scholar
  193. Kuhlmann, J.; Seidel, G.; Grötsch, H.; Richter, E. and Seeger, K.: Comparative studies of nephrotoxicity of antibiotic combinations with tobramycin, cefotaxime and azlocillin in man. Drugs under Experimental and Clinical Research 8: 137–148 (1982b).Google Scholar
  194. Kumazawa, J.; Momose, S. and Nakamuta, S.: Antibiotic treatment of urinary tract infections. Clinical Therapeutics 4(Suppl. A): 18–24 (1981).PubMedGoogle Scholar
  195. Kurtz, T.O.; Winston, D.J.; Bruckner, D.A. and Martin, W.J.: Comparative in vitro synergistic activity of new beta-lactam antimicrobial agents and amikacin against Pseudomonas aeruginosa and Serratia marcescens. Antimicrobial Agents and Chemotherapy 20: 239–243 (1981).PubMedGoogle Scholar
  196. Kurtz, T.O.; Winston, D.J.; Hindler, J.A.; Young, L.S.; Hewitt, W.L. and Martin, W.J.: Comparative in vitro activity of moxalactam, cefotaxime, cefoperazone, piperacillin, and aminoglycosides against Gram-negative bacilli. Antimicrobial Agents and Chemotherapy 18: 645–648 (1980).PubMedGoogle Scholar
  197. Labia, R.; Kazmierczak, A.; Guionie, M. and Masson, J.M.: Some bacterial proteins with affinity for cefotaxime. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 19–23 (1980).PubMedGoogle Scholar
  198. Lagast, H.; Zinner, S.H. and Klastersky, J.: Serum bactericidal activity of moxalactam and cefotaxime with and without tobramycin against Pseudomonas aeruginosa and Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 20: 539–541 (1981).PubMedGoogle Scholar
  199. Lancaster, D.J.; Berg, S.W. and Harrison, W.O.: Parenteral cefotaxime versus penicillin in the treatment of uncomplicated gonococcal urethritis. Abstract No. 675 of paper presented at 20th ICAAC, Sept 1980, New Orleans (American Society for Microbiology, Washington, D.C 1980).Google Scholar
  200. Lancaster, D.J.; Berg, S.W.; Harrison, W.O. and Ockermann, K.O.: Treatment of penicillin-resistant gonorrhoea with cefotaxime. Drug Therapy (Suppl.) (In press 1982).Google Scholar
  201. Landesman, S.H.; Corrado, M.L.; Cherubin, C.E. and Sierra, M.F.: Activity of moxalactam and cefotaxime alone and in combination with ampicillin or penicillin against group B streptococci. Antimicrobial Agents and Chemotherapy 19: 794–797 (1981a).PubMedGoogle Scholar
  202. Landesman, S.H.; Corrado, M.L.; Shah, P.M.; Armengaud, M.; Barza, M. and Cherubin, C.E.: Past and current roles for cephalosporin antibiotics in treatment of meningitis: Emphasis on use in Gram-negative bacillary meningitis. American Journal of Medicine 71: 693–703 (1981b).PubMedGoogle Scholar
  203. Landesman, S.H.; Cummings, M.; Gruarin, A. and Bernheimer, H.: Susceptibility of multiply antibiotic-resistant pneumococci to the new beta-lactam drugs and rosaramicin. Antimicrobial Agents and Chemotherapy 19: 675–677 (1981c).PubMedGoogle Scholar
  204. Lang, S.D.R.; Edwards, D.J. and Durack, D.T.: Comparison of cefoperazone, cefotaxime and moxalactam (LY127935) against aerobic Gram-negative bacilli. Antimicrobial Agents and Chemotherapy 17: 488–493 (1980).PubMedGoogle Scholar
  205. Lee, C.H. and Ngeow, Y.F.: The use of cefotaxime (Claforan) in gonorrhoea. Clinical Trials Journal 19: 116–123 (1982).Google Scholar
  206. LeFrock, J.L. and Carr, B.B.: Clinical experience with cefotaxime in the treatment of serious bone and joint infections. Reviews of Infectious Diseases 4 (Suppl. Sep): S465–S471 (1982).PubMedGoogle Scholar
  207. LeFrock, J.L. and McCloskey, R.V.: Cefotaxime treatment of skin and skin structure infections: A multicenter study. Clinical Therapeutics 5(Suppl. A): 19–25 (1982).PubMedGoogle Scholar
  208. LeFrock, J.L.; McCloskey, R.V. and Paparone, P.: Cefotaxime therapy of skin and soft-tissue infections in 102 patients. Drug Therapy (Suppl.) (In press 1982).Google Scholar
  209. Legakis, N.J.; Kafetzis, D.A.; Papadatos, C.J. and Papavassiliou, J.Th.: Antibacterial activity of HR-756, cefoxitin and cefuroxime against multiply antibiotic-resistant strains of Enterobacteriaceae and Pseudomonas aeruginosa. Chemotherapy 26: 334–343 (1980).PubMedGoogle Scholar
  210. Lepeu, G.; Bertrand, A.; Armengaud, M. and Aubertin, J.: Utilisation du céfotaxime en cliniques des maladies infectieuses. Nouvelle Presse Médicale 10: 594–597 (1981).PubMedGoogle Scholar
  211. Leroy, A.; Fillastre, J.P.; Oskenhendler, G. and Humbert, G.: Pharmacokinetics of cefoxitin in normal subjects and in uremic patients; in Siegenthaler and Luthy (Eds) Current Chemotherapy, pp. 763–764 (American Society for Microbiology, Washington, D.C. 1978).Google Scholar
  212. Leroy, A.; Humbert, G. and Fillastre, J.P.: Pharmacokinetics of moxalactam in subjects with normal and impaired renal function. Antimicrobial Agents and Chemotherapy 19: 965–971 (1981).PubMedGoogle Scholar
  213. Limbert, M.; Seibert, G. and Schrinner, E.: The cooperation of cefotaxime and desacetyl-cefotaxime with respect to antibacterial activity and β-lactamase stability. Infection 10: 97–100 (1982).PubMedGoogle Scholar
  214. Livermore, D.M.; Williams, R.J.; Lindridge, M.A.; Slack, R.C.B. and Williams, J.D.: Pseudomonas aeruginosa isolates with modfied beta-lactamase inducibility. Effects on beta-lactamase sensitivity. Lancet 1: 1466–1467 (1982).PubMedGoogle Scholar
  215. Lode, H.; Gruhlke, G.; Hallermann, W. and Dzwillo, G.: Significance of pleural and sputum concentrations for antibiotic therapy of bronchopulmonary infections. Infection 8(Suppl. 1): S49–S53 (1980a).Google Scholar
  216. Lode, H.; Kemmerich, B.; Gruhlke, G.; Dzwillo, G.; Koeppe, P. and Wagner, I.: Cefotaxime in bronchopulmonary infections — a clinical and pharmacological study. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 193–198 (1980b).PubMedGoogle Scholar
  217. Lode, H.; Kemmerich, B.; Koeppe, P.; Belmega, D. and Jendroschek, H.: Comparative pharmacokinetics of cefoperazone and cefotaxime. Clinical Therapeutics 3 (Special Issue): 80–89 (1980c).PubMedGoogle Scholar
  218. Lopez, E.L.; Bonesana, N.F.; Rubeglio, E.; Schugurensky, A.; Sommersguter, G. and Grinstein, S.: Cefotaxime therapy in children with serious infections associated with reduced host defense mechanisms. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 249–253 (1980).PubMedGoogle Scholar
  219. Louie, T.J.; Binns, B.A.O.; Basken, T.F.; Ross, J. and Koss, J.: Cefotaxime, cefazolin, or ampicillin prophylaxis of febrile morbidity in emergency cesarean sections. Clinical Therapeutics 5(Suppl. A): 83–96 (1982).PubMedGoogle Scholar
  220. Ludwig, G. and Knebel, L.: Cefotaxime in urinary tract infections — comparative clinical studies with gentamicin and with cefoxitin. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 207–211 (1980).PubMedGoogle Scholar
  221. Ludwig, R. and Wille, L.: Behandlung einer therapierefraktären Ventrikulitis bei einem Neugeborenen mit Cefotaxim. Infection 8(Suppl. 4): S516–S518 (1980).Google Scholar
  222. Ludwig, F.H.; Zieger, H. and Wallhäusser, K.H.: Utersuchungen über die Gewebegängigkeit (Adnexe and Uterus) nach präoperativer intravenöser Gabe von Cefotaxim. Infection 8(Suppl. 4): S448–S450 (1980).Google Scholar
  223. Luft, F.C.; Aranoff, G.R.; Evan, A.P.; Connors, B.A.; Blase, D.K. and Gattone, V.H.: Effects of moxalactam and cefotaxime on rabbit renal tissue. Antimicrobial Agents and Chemotherapy 21: 830–835 (1982).PubMedGoogle Scholar
  224. Lüthy, R.; Blaser, J.; Bonetti, A.; Simmen, H.; Wise, R. and Siegenthaler, W.: Human pharmacokinetics of ceftazidime in comparison to moxalactam and cefotaxime. Journal of Antimicrobial Chemotherapy 8(Suppl. B): 273–276 (1981a).Google Scholar
  225. Lüthy, R.; Blaser, J.; Bonetti, A.; Simmen, H.; Wise, R. and Siegenthaler, W.: Comparative multiple-dose pharmacokinetics of cefotaxime, moxalactam and ceftazidine. Antimicrobial Agents and Chemotherapy 20: 567–575 (1981b).PubMedGoogle Scholar
  226. Lüthy, R.; Münch, R.; Blaser, J.; Bhend, H. and Siegenthaler, W.: Human pharmacology of cefotaxime (HR-756), a new cephalosporin. Antimicrobial Agents and Chemotherapy 16: 127–133 (1979).PubMedGoogle Scholar
  227. Lutz, B.; Pauling, B.; Kosola, J. and Mogabgab, W.J.: A comparative study of cefotaxime and aqueous procaine penicillin G in the treatment of uncomplicated gonorrhea. Drug Therapy (Suppl.) (In press 1982).Google Scholar
  228. Machka, K.; Franz, J. and Braveny, I.: In-vitro-Eigenschaften von Moxalactam (LY127935). Infection 8: 204–209 (1980).Google Scholar
  229. Mader, J.T.; LeFrock, J.L.; Hyams, K.C.; Molavi, A. and Reinarz, J.A.: Cefotaxime therapy for patients with osteomyelitis and septic arthritis. Reviews of Infectious Diseases 4 (Suppl. Sep): S472–S480 (1982).PubMedGoogle Scholar
  230. Madsen, P.O.: Treatment of urinary tract infections with cefotaxime: Noncomparative and prospective comparative trials. Reviews of Infectious Diseases 4 (Suppl. Sep): S416–S420 (1982).PubMedGoogle Scholar
  231. Madsen, P.O. and Iversen, P.: Cefotaxime and cefazolin in the treatment of complicated urinary tract infections: A comparative study. Clinical Therapeutics 4: 7–11 (1981).PubMedGoogle Scholar
  232. Maesen, F.P.V.; Davies, B.I.; Drenth, B.M.H. and Elfers, H.: Treatment of acute exacerbations of chronic bronchitis with cefotaxime: A controlled clinical trial. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 187–192 (1980).PubMedGoogle Scholar
  233. Marget, W.; Belohradsky, B. and Roos, R.: Effect of revised drug schedules with the cephalosporin HR756 on the treatment of severe infections. Abstract No. 296 of a paper presented at 18th ICAAC, Oct 1978, Atlanta (American Society for Microbiology, Washington, D.C. 1978).Google Scholar
  234. Marklein, G. and Mattias, M.: Antibakterielle Aktivität von Cefotaxim in Vergleich zu anderen Beta-Laktam-Antibiotika sowie Gentamycin und Tobramycin. Infection 8(Suppl. 4): S417–S424 (1980).Google Scholar
  235. Markowitz, S.M. and Sibilla, D.J.: Comparative susceptibilities of clinical isolates of Serratia marcescens to newer cephalosporins, alone and in combination with various aminoglycosides. Antimicrobial Agents and Chemotherapy 18: 651–655 (1980).PubMedGoogle Scholar
  236. Marre, R. and Sack, K.: Animal experiments on therapeutic efficacy in relation to pharmacokinetics and on renal tolerance of cefamandole, cefuroxime, cefoxitin and HR 756. Drugs under Experimental and Clinical Research 5: 31–35 (1979).Google Scholar
  237. Martinez-Beltran, J.; Ledesma, M.A.; Loza, E.; Bouza, E. and Baquera, F.: In vitro activity of the new cephalosporins HR-756, LY127935, and T-1551; in Nelson and Grassi (Eds) Current Chemotherapy and Infectious Disease, pp. 91–93 (American Society for Microbiology, Washington, D.C. 1980).Google Scholar
  238. Masuyoshi, S.; Arai, S.; Miyamoto, M. and Mitsuhashi, S.: In vitro antimicrobial activity of cefotaxime, a new cephalosporin. Antimicrobial Agents and Chemotherapy 18: 1–8 (1980).PubMedGoogle Scholar
  239. Matsuura, M.; Nakazawa, H.; Inoue, M. and Mitsuhashi, S.: Purification and biochemical properties of β-lactamase produced by Proteus rettgeri. Antimicrobial Agents and Chemotherapy 18: 687–690 (1980).PubMedGoogle Scholar
  240. Matsubara, N.; Yotsuji, A.; Kumano, K.; Inoue, M. and Mitsuhashi, S.: Purification and some properties of a cephalosporinase from Proteus vulgaris. Antimicrobial Agents and Chemotherapy 19: 185–187 (1981).PubMedGoogle Scholar
  241. McCloskey, R.V.; Goren, R.; Bissen, D.; Bentley, J. and Tutlane, U.: Cefotaxime in the treatment of infections of the skin and skin structure. Reviews of Infectious Diseases 4 (Suppl. Sep): S444–S447 (1982).PubMedGoogle Scholar
  242. McCracken, G.H.; Threlkeld, N.E. and Thomas, M.L.: Pharmacokinetics of cefotaxime in newborn infants. Antimicrobial Agents and Chemotherapy 21: 683–684 (1982).PubMedGoogle Scholar
  243. McKendrick, M.W.: Clinical experience with cefotaxime with particular reference to septicaemia. Irish Medical Journal 75 (Suppl. May): 8–9 (1982).PubMedGoogle Scholar
  244. McKendrick, M.W. and Legg, E.F.: In vivo and in vitro interference due to cefotaxime on the assay of creatinine. Journal of Clinical Pathology 34: 224–225 (1981).PubMedGoogle Scholar
  245. McKendrick, M.W.; Geddes, A.M. and Wise, R.: Clinical experience with cefotaxime (HR-756); in Nelson and Grassi (Eds) Current Chemotherapy and Infectious Disease, pp. 123–125 (American Society for Microbiology, Washington, D.C. 1980a).Google Scholar
  246. McKendrick, M.W.; Geddes, A.M.; Wise, R. and Andrews, J.A.: Cefotaxime — a clinical study. Journal of Antimicrobial Chemotherapy 7: 405–414 (1981).PubMedGoogle Scholar
  247. McKendrick, M.W.; Geddes, A.M.; Wise, R. and Bax, R.: Cefotaxime in septicaemia including typhoid fever. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 277–282 (1980b).PubMedGoogle Scholar
  248. Meyers, B.R.: Clinical experience with cefotaxime in the treatment of patients with bacteremia. Reviews of Infectious Diseases 4 (Suppl. Sep): S411–S415 (1982).PubMedGoogle Scholar
  249. Miki, F. and Shiota, K.: Cefotaxime in lower respiratory tract infections compared to cefazolin. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 169–175 (1980).PubMedGoogle Scholar
  250. Minami, S.; Inoue, M. and Mitsuhashi, S.: Purification and properties of cephalosporinase in Escherichia coli. Antimicrobial Agents and Chemotherapy 18: 77–80 (1980a).PubMedGoogle Scholar
  251. Minami, S.; Inoue, M. and Mitsuhashi, S.: Purification and properties of a cephalosporinase from Enterobacter cloacae. Antimicrobial Agents and Chemotherapy 18: 853–857 (1980b).PubMedGoogle Scholar
  252. Minami, S.; Yotsuji, A.; Inoue, M. and Mitsuhashi, S.: Induction of β-lactamase by various β-lactam antibiotics in Enterobacter cloacae. Antimicrobial Agents and Chemotherapy 18: 382–385 (1980c).PubMedGoogle Scholar
  253. Mintz, L. and Drew, W.L.: Comparative synergistic activity of cefoperazone, cefotaxime, moxalactam, and carbenicillin, combined with tobramycin, against Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 19: 332–334 (1981).PubMedGoogle Scholar
  254. Miyamoto, N.; Nakamura, H. and Hayashi, S.: Laboratory and clinical studies on cefotaxime in obstetrics and gynaecology. Japanese Journal of Antibiotics 34: 495–499 (1981).PubMedGoogle Scholar
  255. Mogabgab, W.F.; Hanna, B.; Holmes, B.; Pollack, B.; Pauling, B. and Beville, R.: Treatment of complicated urinary tract infections with cefotaxime and comparison of cefotaxime with cefazolin in the management of uncomplicated cystitis and pyelonephritis. Drug Therapy (Suppl.) (In press 1982).Google Scholar
  256. Mondorf, A.W.; Burk, P.; Stefanescu, T.; Scherberich, J.E. and Schoeppe, W.: Effects of cefotaxime on the proximal tubules of the human kidney. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 155–159 (1980).PubMedGoogle Scholar
  257. Monson, T.P.; Miller, T.T. and Nolan, C.M.: Cefotaxime treatment of pelvic inflammatory disease. Antimicrobial Agents and Chemotherapy 20: 847–849 (1981).PubMedGoogle Scholar
  258. Moreau, L.; Durand, H. and Biclet, P.: Cefotaxime concentrations in ascites. Journal of Antimicrobial Agents and Chemotherapy 6(Suppl. A): 121–122 (1980).Google Scholar
  259. Morioka, H.; Kobayashi, T. and Hayashi, S.: Nephrotoxicity of combinations of cefotaxime and gentamicin or furosemide given to rats for 28 consecutive days. Pharmacometrics 21: 161–174 (1981a).Google Scholar
  260. Morioka, H.; Yajima, R.; Inazu, M.; Kobayashi, T. and Hayashi, S.: Study of chronic subcutaneous toxicity of cefotaxime in rats. Pharmacometrics 21: 143–158 (1981b).Google Scholar
  261. Morioka, H.; Yajima, R.; Inazu, M.; Kobayashi, T. and Hayashi, S.: Subacute subcutaneous toxicity of cefotaxime in rats. Pharmacometrics 20: 1247–1262 (1980).Google Scholar
  262. Motin, J.; Bouletreau, P.; Auboyer, G; Bui-Xuan, B.; Flandrois, J.-P. and Reverdy, M.E.: Traitement par le cefotaxime de 25 infections graves à entérobactéries observées en réanimation polyvalante. Nouvelle Press Médicale 10: 617–621 (1981).Google Scholar
  263. Motomura, R.; Mori, H.; Teramoto, G; Nishimura, Y.; Souda, Y. and Yamabe, T.: Fundamental and clinical studies on cefotaxime in the field of obstetrics and gynecology. Japanese Journal of Antibiotics 34: 521–531 (1981).PubMedGoogle Scholar
  264. Mouton, R.P.; Bongaerts, G.P.A. and van Gestel, M.: Comparison of activity and beta-lactamase stability of cefotaxime with those of six other cephalosporins. Antimicrobial Agents and Chemotherapy 16: 757–760 (1979).PubMedGoogle Scholar
  265. Mühlberg, W. and Platt, D.: Cefotaxim: Pharmacokinetik bei geriatrischen Patient mit Multimorbidität. Medizinische Welt 33: 557–560 (1982).Google Scholar
  266. Mullaney, D.T. and John, J.F.: Cefotaxime therapy of serious bacterial infection in adults. Antimicrobial Agents and Chemotherapy 21: 421–425 (1982).PubMedGoogle Scholar
  267. Murakawa, T.; Sakamoto, H.; Fukada, S.; Nakmoto, S.; Hirose, T.; Itoh, N. and Nishida, M.: Pharmacokinetics of ceftizoxime in animals after parenteral dosing. Antimicrobial Agents and Chemotherapy 17: 157–164 (1980).PubMedGoogle Scholar
  268. Murray, P.R.: Activity of cefotaxime-aminoglycoside combinations against aminoglycoside-resistant Pseudomonas. Antimicrobial Agents and Chemotherapy 17: 474–476 (1980).PubMedGoogle Scholar
  269. Naber, K. and Adam, O.: Pharmakokinetik von Cefotaxim bei geriatrischen Patienten. Munchener Medizinische Wochenschrift 122: 1651–1654 (1980).PubMedGoogle Scholar
  270. Neu, H.C.: Bacteremia in the 1980s with special reference to the role of cefotaxime. Clinical Therapeutics 4(Suppl. A): 55–66 (1981).PubMedGoogle Scholar
  271. Neu, H.C.: Antibacterial activity of desacetylcefotaxime alone and in combination with cefotaxime. Reviews of Infectious Diseases 4 (Suppl. Sep): S374–S378 (1982).PubMedGoogle Scholar
  272. Neu, H.C. and Francke, E.L.: A new β-lactamase-stable cephalosporin in the therapy of bacteremia, including cases due to multiresistant organisms. Drug Therapy (Suppl.) (In press 1982).Google Scholar
  273. Neu, H.C.; Aswapokee, N.; Aswapokee, P. and Fu, K.P.: HR 756, a new cephalosporin active against Gram-positive and Gram-negative aerobic and anaerobic bacteria. Antimicrobial Agents and Chemotherapy 15: 273–281 (1979a).PubMedGoogle Scholar
  274. Neu, H.C.; Aswapokee, N.; Fu, K.P. and Aswapokee, P.: Antibacterial activity of a new 1-oxa cephalosporin compared with that of other β-lactam compounds. Antimicrobial Agents and Chemotherapy 16: 141–149 (1979b).PubMedGoogle Scholar
  275. Neu, H.C.; Aswapokee, P.; Fu, K.P.; Ho, I. and Matthijssen, G: Cefotaxime kinetics after intravenous and intramuscular injection of single and multiple doses. Clinical Pharmacology and Therapeutics 27: 677–685 (1980).PubMedGoogle Scholar
  276. Neu, H.C.; Fu, K.P.; Aswapokee, N.; Aswapokee, P. and Kung, K.: Comparative activity and β-lactamase stability of cefoperazone, a piperazine cephalosporin. Antimicrobial Agents and Chemotherapy 16: 159–157 (1979c).Google Scholar
  277. Newsom, S.W.B.; Connellan, S.J. and Bax, R.P.: Cefotaxime for chloramphenicol/ampicillin resistant Haemophilus infections. Lancet 1: 667 (1981).PubMedGoogle Scholar
  278. Newsom, S.W.B.; Matthews, J.; Connellan, S.J. and Pearce, V.R.: Clinical studies with cefotaxime; in Nelson and Grassi (Eds) Current Chemotherapy and Infectious Disease, pp. 125–126 (American Society for Microbiology, Washington, D.C 1980).Google Scholar
  279. Ng, W.S.; Anton, P. and Arnold, K.: Neisseria gonorrhoeae strains isolated in Hong Kong: In vitro susceptibility to 13 antibiotics. Antimicrob. Ag. Chemother. 19: 12–17 (1981).Google Scholar
  280. Niebel, J. and Rinke, H.: Die schwer therapierbare infektiöse Endokarditis: Drei Fallberichte. Infection 8(Suppl. 4): S466–S468 (1980).Google Scholar
  281. Niederau, W.; Höffler, U. and Pulverer, G.: Susceptibility of Bacteroides fragilis, Bacteroides thetaiotaomicron, and Fusobacteria to antibacterial agents. Arzneimittel-Forschung 30: 2093–2098 (1980a).PubMedGoogle Scholar
  282. Niederau, W.; Höffler, U. and Pulverer, G.: Susceptibility of Bacteroides melaninogenicus to 45 antibiotics. Chemotherapy 26: 121–127 (1980b).PubMedGoogle Scholar
  283. Ninane, G.: Cefotaxime (HR 756) and nephrotoxicity. Lancet 1: 332 (1979).PubMedGoogle Scholar
  284. Nishimura, T.; Takashima, T.; Hiromatsu, K. and Tabuki, K.: Studies on the pharmacokinetics of cefotaxime in neonates. Japanese Journal of Antibiotics 35: 1793–1800 (1982).PubMedGoogle Scholar
  285. O’Callaghan, C.H.; Acred, P.; Harper, P.B.; Ryan, D.M.; Kirby, S.M. and Harding, S.M.: GR 20263, a new broad-spectrum cephalosporin with antipseudomonal activity. Antimicrobial Agents and Chemotherapy 17: 876–883 (1980).PubMedGoogle Scholar
  286. Ohkawa, M. and Kuroda, K.: A double blind clinical trial of cefotaxime and cefazolin in complicated urinary tract infections. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 231–233 (1980).PubMedGoogle Scholar
  287. Ohkawa, M. and Kuroda, K.: Doses of antibiotic in patients with renal insufficiency. Clinical Therapeutics 4(Suppl. A): 124–132 (1981).PubMedGoogle Scholar
  288. Okubadejo, O.A. and Bax, R.P.: Cefotaxime in severe pseudomonas infection. Journal of Antimicrobial Chemotherapy 9: 86 (1982).PubMedGoogle Scholar
  289. Panikabutra, K.; Ariyarit, C.; Chitwarakorn, A. and Warnisorn, T.: Cefotaxime in the treatment of gonorrhoea caused by penicillinase producing N. gonorrhoeae (PPNG) and non penicillinase producing N. gonorrhoeae (NON PPNG). Journal of the Medical Association of Thailand 65: 271–274 (1982).PubMedGoogle Scholar
  290. Papadatos, C.J.; Kafetzis, D.A. and Kanarios, J.: Cefotaxime in the treatment of severe pediatric infections. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 243–248 (1980).PubMedGoogle Scholar
  291. Papathanassiou, B.; Kosmidis, J.; Stathakis, C.; Mantopoulos, K. and Daikos, G.K.: Penetration of two new cephalosporins, cefuroxime and cefotaxime in bone; in Nelson and Grassi (Eds) Current Chemotherapy and Infectious Disease, pp. 666–667 (American Society for Microbiology, Washington, D.C. 1980).Google Scholar
  292. Paradisi, F.; Cristiano, P.; Mirone, V.; D’Armiento, V. and Iovene, M.R.: Cefotaxime (HR-756) in urinary tract infections. Chemotherapy 28: 64–69 (1982).PubMedGoogle Scholar
  293. Paris, J.; Paris, J.C. and Gérard, A.: Le céfotaxime dans le traitement des infections en pathologie digestive. Nouvelle Presse Médicale 10: 647–649 (1981).PubMedGoogle Scholar
  294. Parsons, J.N.; Romano, J.M. and Levison, M.E.: Pharmacology of a new 1-oxa-β-lactam (LY127935) in normal volunteers. Antimicrobial Agents and Chemotherapy 17: 226–228 (1980).PubMedGoogle Scholar
  295. Pelz, K.; Marcushen, M.; Erhart, K.P.; Kaiser, O.; Hartung, H.G.; Petersen, E.; Schleinzer, P. and Wolfart, W.: Konzentration von Cefotaxim in verschiedenen menschlichen Geweben. Infection 8(Suppl. 4): S442–S444 (1980).Google Scholar
  296. Perea, E.J.; Nogales, M.C.; Aznar, J.; Martin, E. and Iglesias, M.C.: Synergy between cefotaxime, cefsulodin, azlocillin, mezlocillin and aminoglycosides against carbenicillin resistant or sensitive Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy 6: 471–477 (1980).PubMedGoogle Scholar
  297. Perkins, R.L.: Clinical trials of cefotaxime for the treatment of bacterial infections of the lower respiratory tract. Reviews of Infectious Diseases 4 (Suppl. Sep): S421–S431 (1982).PubMedGoogle Scholar
  298. Peters, H.H.; Tillmann, W. and Schröter, W.: Klinische Erfahrungen mit Cefotaxim bei antiinfektiöser Therapie zytostatisch behandelter Kinder. Infection 8(Suppl. 4): S513–S515 (1980).Google Scholar
  299. Peterson, L.R.; Bean, B.; Fasching, C.E.; Korchik, W.P. and Gerding, D.N.: Pharmacokinetics, protein binding and predicted extravascular distribution of moxalactam in normal and renal failure subjects. Antimicrobial Agents and Chemotherapy 20: 378–381 (1981).PubMedGoogle Scholar
  300. Phillips, I.; Warren, C.; Shannon, K.; King, A. and Hanslo, D.: Ceftazidime: in vitro antibacterial activity and susceptibility to β-lactamases compared with that of cefotaxime, moxalactam and other β-lactam antibiotics. Journal of Antimicrobial Chemotherapy 8(Suppl. B): 23–31 (1981).PubMedGoogle Scholar
  301. Pierre, J.; Bergogne-Berezin, E.; Ravina, J. and Vernant, D.: Étude du passage transplacentaire du cefotaxime. Nouvelle Presse Médicale 10: 587–589 (1981).PubMedGoogle Scholar
  302. Piot, P.; Van Dyck, E.; Colaert, J. and Ursi, J.-P.: In vitro activity of cefotaxime and other cephalosporins against Neisseria gonorrhoeae. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 47–50 (1980).PubMedGoogle Scholar
  303. Piot, P.; Van Dyck, E.; Colaert, J.; Ursi, J.-P.; Bosmans, E. and Meheus, A.: Antibiotic susceptibility of Neisseria gonorrhoeae strains from Europe and Africa. Antimicrobial Agents and Chemotherapy 15: 535–539 (1979).PubMedGoogle Scholar
  304. Portier, H.; Carbon, C.; Boussougant, Y. and Destaing, F.: Expérience clinique du cefotaxime: A propos de 55 observations. Nouvelle Presse Médicale 10: 607–611 (1981).PubMedGoogle Scholar
  305. Preiss, J.: Cefotaxim bei Infektionen während einer Granulozytopenie im Rahmen von malignen Hämoblastosen and Knochenmarksinsuffizienz. Infection 8(Suppl. 4): S473–S474 (1980).Google Scholar
  306. Rajan, V.S.; Sng, E.H.; Pang, R.; Tan, N.J.; Thirumoorthy, T. and Yeo, K.L.: HR 756 — a new cephalosporin in the treatment of gonorrhoea caused by ordinary and penicillinase-producing strains of Neisseria gonorrhoeae. British Journal of Veneral Diseases 56: 255–258 (1980).Google Scholar
  307. Ramirez, G.P.; Calderón, E.M.; Fernández, J.G. and Astorga, S.A.: Ensayo clinico de cefotaxime en infecciones severas en pediatria. Investigatión Médica Internacional 9: 51–61 (1981).Google Scholar
  308. Reeves, D.S.; Bint, A.J.; Holt, H.A. and Stocks, P.J.; Cefoxitin sodium: a clinical and pharmacological study. Journal of Antimicrobial Chemotherapy 4(Suppl. B): 155–160 (1978).PubMedGoogle Scholar
  309. Reeves, D.S.; Bywater, M.J.; Holt, H.A.; White, L.O.; Davies, A.J.; Elliot, P.J. and Foulds, G.: Pharmacokinetics of cefoperazone in man. Abstract No. 113 of paper presented at 20th ICAAC, p. 14 (Excerpta Medica, Amsterdam 1980a).Google Scholar
  310. Reeves, D.S.; White, L.O.; Holt, H.A.; Bahari, D.; Bywater, M.J. and Bax, R.P.: Human metabolism of cefotaxime. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 93–101 (1980b).PubMedGoogle Scholar
  311. Regamey, C. and Lavanchy, A.: In vitro, pharmacokinetic, and clinical evaluation of cefotaxime; in Nelson and Grassi (Eds) Current Chemotherapy and Infectious Disease, pp. 126–128 (American Society for Microbiology, Washington, D.C. 1980).Google Scholar
  312. Regensburger, D. and Podszus, G.: Problematik der perioperativen Infektionsprophylaxe in der Kardiochirurgie; in Eckert and Zwank (Eds) Perioperative Antibiotikatherapie pp. 151–154 (Zuckschwerdt Verlag, Munich 1982).Google Scholar
  313. Richmond, M.H.: β-lactamase stability of cefotaxime. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 13–17 (1980).PubMedGoogle Scholar
  314. Rimmer, D.: Cefotaxime in the treatment of severe septicaemia. Drugs under Clinical and Experimental Research 7: 383–384 (1981).Google Scholar
  315. Roos, R.; Marget, W.; Trujillo, H.; Kafetzis, D.A.; Papadatos, C.J.; Hattingberg, H.M. von; Belohradsky, B.H. and Bruch, K.: Multizentrische Studie über Cefotaxim bei Meningitis and Sepsis im Kindesalter. Klinische Ergebnisse Serum-Pharmakokinetik und Liquor-speigel. Infection 8(Suppl. 4): S501–S505 (1980).Google Scholar
  316. Rosin, H. and Uphaus, W.: Evaluation of so-called bone levels for instance for cefotaxime (HR-756) concentrations in bone under critical conditions; in Nelson and Grassi (Eds) Current Chemotherapy and Disease, pp. 148–150 (American Society for Microbiology, Washington, D.C. 1980).Google Scholar
  317. Rosin, H.; Uphaus, W. and Vent, J.: Determination of cefotaxime concentrations in non-infected bone. Journal of Antimicrobial Chemotherapy. 6(Suppl. A): 133 (1980).PubMedGoogle Scholar
  318. Roy, S. and Wilkins, J.: Comparison of cefotaxime with cefazolin for prophylaxis of vaginal or abdominal hysterectomy. Clinical Therapeutics 5(Suppl. A): 74–82 (1982).PubMedGoogle Scholar
  319. Sack, K.; Lepére, A. and Schwieder, G.: Nierenverträglichkeit von Cephalosporinantibiotika: Cefoxitin und HR 756. Medizinische Welt 29: 1233–1236 (1978).PubMedGoogle Scholar
  320. Saito, Y.; Kushima, T.; Seimori, T.; Narita, J.; Taguchi, K.; Shitara, Y.; Ohtomo, K.; Gotoh, K.; Takeuchi, Y. and Taguchi, J.: Absorption and excretion of cefotaxime and its levels in uterine arterial blood, female internal genital organ tissue and pelvic cavity fluid. Japanese Journal of Antibiotics 34: 481–488 (1981).PubMedGoogle Scholar
  321. Sato, K.; Inoue, M. and Mitsuhashi, S.: Activity of β-lactamase produced by Bacteroides fragilis against newly introduced cephalosporins. Antimicrobial Agents and Chemotherapy 17: 736–737 (1980).PubMedGoogle Scholar
  322. Schaad, U.B.; McCracken, G.H.; Loock, C.A. and Thomas, M.L.: Pharmacokinetics and bacteriologic efficacy of moxalactam, cefotaxime, cefoperazone, and rocephin in experimental bacterial meningitis. Journal of Infectious Diseases 143: 156–163 (1981).PubMedGoogle Scholar
  323. Schalkhäuser, K. and Adam, D.: Zur Diffusion von Cefotaxim in verschiedene Gewebe des urologischen Bereichs. Infection 8(Suppl. 3):S327–S329 (1980).Google Scholar
  324. Schalkhäuser and Fegg, R.: Ist eine perioperative Chemoprophylaxe bei prostatachirurgischen Eingriffen sinnvoll? Therapiewoche 31: 1384–1387 (1981).Google Scholar
  325. Schleupner, C.J. and Engle, J.C.: Clinical evaluation of cefotaxime for therapy of lower respiratory tract infections. Antimicrobial Agents and Chemotherapy 21: 327–333 (1982).PubMedGoogle Scholar
  326. Schulz, W.: Antibiotika-Therapie bei nephrologischen problempatienten mit akuter und chronischer Niereninsuffizienz. Diagnostik und Intensivtherapie 5: 60–63 (1980).Google Scholar
  327. Schurig, R.: Gahl et al. (Eds) Advances in Peritoneal Dialysis. Proceedings of an international symposium on peritoneal dialysis, West Berlin, June 1981, pp. 96–98 (Excerpta Medica, 1981).Google Scholar
  328. Schwartz, S.; Pazin, G.J.; Pasculle, A.W. and Ho, M.: Clinical and pharmacokinetic experience with cefoxitin (Cx) in patients with normal and abnormal renal function. Abstract of paper presented at 16th ICAAC, Oct 1976, Chicago.Google Scholar
  329. Schwigon, C.-D. and Barckow, D.: Blutgerinnungsstörungen unter Cefoperazon und Lamoxactam. Diagnostik und Intensivtherapie 7: 221–225 (1982).Google Scholar
  330. Scribner, R.K.; Marks, M.I.; Weber, A. and Pai, C.H.: Yersinia enterocolitica: Comparative in vitro activities of seven new β-lactam antibiotics. Antimicrobial Agents and Chemotherapy 22: 140–142 (1982a).PubMedGoogle Scholar
  331. Scribner, R.K.; Wedro, B.C.; Weber, A.H. and Marks, ML: Activites of eight new β-lactam antibiotics and seven antibiotic combinations against Neisseria meningitidis. Antimicrobial Agents and Chemotherapy 21: 678–680 (1982b).PubMedGoogle Scholar
  332. Shah, P.M.; Helm, E.B. and Stille, W.: Klinische Erfahrungen mit Cefotaxim, einem neuen Cephalosporin-Derivat. Medizinische Welt 30: 298–301 (1979a).PubMedGoogle Scholar
  333. Shah, P.M.; Helm, E.B. and Stille, W.: Klinische Erfahrungen mit Cefotaxim, einem neuen Cephalosporin — Derivat. Medizinische Welt 30: 298–301 (1979c).PubMedGoogle Scholar
  334. Shah, P.M.; Helm, E.B. and Stille, W.: Management of severe systemic infections caused by multiple resistant organisms. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 269–272 (1980).PubMedGoogle Scholar
  335. Shah, P.M.; Troche, G. and Stille, W.: In vitro activity of HR 756, a new cephalosporin compound. Journal of Antibiotics 31: 1170–1174 (1978).PubMedGoogle Scholar
  336. Shah, P.M.; Troche, G. and Stille, W.: Effect of concentration on bactericidal activity of cefotaxime. Journal of Antimicrobial Chemotherapy 5: 419–422 (1979b).PubMedGoogle Scholar
  337. Shimizu, K.: Cefoperazone: Absorption, excretion, distribution, and metabolism. Clinical Therapeutics 3 (Special Issue): 60–79 (1980).PubMedGoogle Scholar
  338. Shishido, H.; Matsumoto, K.; Watanabe, K. and Uzuka, Y.: In vitro activity of β-lactam antibiotics against Bordetella pertussis: Unusually high anti-B. pertussis activity of piperazine β-lactams; in Nelson and Grassi (Eds) Current Chemotherapy and Infectious Disease, pp. 84–87 (American Society for Microbiology, Washington, D.C. 1980).Google Scholar
  339. Simon, C. and Malerczyk, V.: Serum and skin blister concentrations of cefuroxime in relation to dose and in comparison to cephalothin. Proceedings of the Royal Society of Medicine 70(Suppl. 9): 19–21 (1977).PubMedGoogle Scholar
  340. Simpson, M.L.; Khan, M.Y.; Siddiqui, Y.; Gruninger, R.P. and Wigren, D.I.: Treatment of gonorrhea: Comparison of cefotaxime and penicillin. Antimicrobial Agents and Chemotherapy 19: 798–800 (1981).PubMedGoogle Scholar
  341. Slack, R.C.B.; Bittiner, J.B. and Finch, R.: Treatment of gonorrhoea caused by β-lactamase producing strain of Neisseria gonorrhoeae with cefotaxime. Lancet 1: 431–432 (1980).PubMedGoogle Scholar
  342. Smith, C.R.: Considerations regarding clinical safety and tolerability of antibiotics in serious and nosocomial infections. Clinical Therapeutics 4(Suppl. A): 133–145 (1981).PubMedGoogle Scholar
  343. Smith, C.R.: Cefotaxime and cephalosporins: Adverse reactions in perspective. Reviews of Infectious Diseases 4 (Suppl. Sep): S481–S488 (1982).PubMedGoogle Scholar
  344. Sng, E.H.; Rajan, V.S.; Pang, R. and Yeo, K.L.: Susceptibility of Neisseria gonorrhoeae to cefotaxime and ceftizoxime. British Journal of Veneral Diseases 57: 162–164 (1981).Google Scholar
  345. Sonneville, P.F.; Kartodirdjo, R.R.; Skeggs, H.; Till, A.E. and Martin, C.M.: Comparative clinical pharmacology of intravenous cefoxitin and cephalothin. European Journal of Clinical Pharmacology 9: 397–403 (1976).Google Scholar
  346. Sosna, J.P.; Murray, P.R. and Medoff, G.: Comparison of the in vitro activities of HR 756 with cephalothin, cefoxitin, and cefamandole. Antimicrobial Agents and Chemotherapy 14: 876–879 (1978).PubMedGoogle Scholar
  347. Soussy, C.J.; Deforges, L.P.; Le Van Thoi, J.; Feghali, W. and Duval, J.R.: Cefotaxime concentration in the bile and the wall of the gallbladder. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 125–130 (1980).PubMedGoogle Scholar
  348. Soussy, C.J.; Thibault, M. and Duval, J.: Activité antibactérienne in vitro du cefotaxime sur les bactéries anaérobies. Nouvelle Presse Médicale 10: 556–558 (1981).PubMedGoogle Scholar
  349. Soutoul, J.H.; Quentin, R.; Boscq, G.; Chazara, Ch. and Prieur, D.: Study of cefotaxime in the treatment of obstetric and gynaecological infections. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 283–285 (1980).PubMedGoogle Scholar
  350. Srinivasan, S.; Francke, E.L. and Neu, H.C.: Comparative pharmacokinetics of moxalactam, cefoperazone, cefotaxime, cefamandole and cefazolin in normal individuals. Abstract No. 241 of a paper presented at 20th ICAAC, pp. 18–19 (Excerpta Medica, Amsterdam 1980).Google Scholar
  351. Srinivasan, S.; Fu, K.P. and Neu, H.C.: Pharmacokinetics of moxalactam and cefazolin compared in normal volunteers. Antimicrobial Agents and Chemotherapy 19: 302–305 (1981).PubMedGoogle Scholar
  352. Stephens, M.; Potten, M. and Bint, A.J.: The sensitivity of gentamicin-resistant Gram-negative bacilli to cefotaxime, other cephalosporins and aminoglycosides. Infection 7: 109–112 (1979).PubMedGoogle Scholar
  353. Stone, H.H.; Geheber, C.E.; Kolb, L.D. and Dunlop, W.E.: Clinical comparison of cefotaxime versus the combination of gentamicin plus clindamycin in the treatment of peritonitis and similar polymicrobial soft-tissue surgical sepsis. Clinical Therapeutics 4(Suppl. A): 67–80 (1981).PubMedGoogle Scholar
  354. Sugisaki, T.; Akaike, M. and Hayashi, S.: Teratological study of cefotaxime given intravenously in rabbits. Pharmacometrics 21: 375–382 (1981a).Google Scholar
  355. Sugisaki, T.; Kitatani, T.; Takagi, S.; Akaike, M. and Hayashi, S.: Reproduction studies of cefotaxime in mice. Pharmacometrics 21: 351–374 (1981b).Google Scholar
  356. Swarz, H.; Fay, O. and Fishman, S.K.; Clinical pharmacological and microbiological evaluation of cefoperazone, a new broad spectrum cephalosporin antibiotic. Paper presented at the 12th International Congress of Chemotherapy, Florence, July (1981).Google Scholar
  357. Takase, Z.: Experience with cefotaxime in gynecology and obstetrics. Clinical Therapeutics 4(Suppl. A): 25–44 (1981)PubMedGoogle Scholar
  358. Trollfors, B.; Norrby, R. and Kristianson, K.: Effects on renal function of treatment with cefoxitin sodium alone or in combination with furosemide. Journal of Antimicrobial Chemotherapy 4(Suppl. B): 85–89 (1978).PubMedGoogle Scholar
  359. Tsuchiya, K.; Kondo, M.; Kida, M.; Nakao, M.; Iwahi, T.; Nishi, T.; Noji, Y.; Takeuchi, M. and Nozaki, Y.: Cefmenoxime (SCE-1365), a novel broad-spectrum cephalosporin: In vitro and in vivo antibacterial activities. Antimicrobial Agents and Chemotherapy 19: 56–65 (1981).PubMedGoogle Scholar
  360. Trager, G.M.; White, G.W.; Zimelis, V.M.; Bryk, D.A. and Panwalker, A.P.: In vitro comparison of three new cephalosporins: LY-127935, cefotaxime and cefoperazone. Chemotherapy 27: 34–38 (1981).PubMedGoogle Scholar
  361. Usuda, Y.; Sekine, O.; Aoki, N.; Shimizu, T.; Hirasawa, Y.; Aoki, T. and Fujimoto, K.: Serum and urine levels of cefotaxime and desacetyl cefotaxime, and cefotaxime dosage in patients with various degrees of renal function. Drugs under Experimental and Clinical Research 7: 249–251 (1981).Google Scholar
  362. Usuda, Y.; Sekine, O.; Aoki, N.; Shimizu, T.; Hirasawa, Y.; Aoki, T.; Omosu, M. and Kasai, K.: Serum and urine levels of cefotaxime (HR-756) and desacetyl cefotaxime in patients with various degrees of renal function; in Nelson and Grassi (Eds) Current Chemotherapy and Infectious Disease, pp. 137–140 (American Society for Microbiology, Washington, D.C. 1980).Google Scholar
  363. Vanhoof, R.; Gordts, B.; Dierickx, R.; Coignau, H. and Butzler, J.P.: Bacteriostatic and bactericidal activities of 24 antimicrobial agents against Campylobacter fetus subsp. jejuni. Antimicrobial Agents and Chemotherapy 18: 118–121 (1980).PubMedGoogle Scholar
  364. Van Laethem, Y.; Clumeck, N.; Vanderauwera, P.; Jaspar, N. and Butzler, J.P.: Clinical experiences with ‘third generation’ cephalosporins: Cefotaxime and moxalactam in severe Gram-negative multi-resistant infections. Critical Care Medicine 9: 261 (1981).Google Scholar
  365. Verbist, L.: Antibacterial activity of moxalactam (LY-127935) compared with cefotaxime and other β-lactam antibiotics against clinical isolates of Enterobacteriaceae and non-fermenters. Arzneimittel-Forschung 31: 982–986 (1981a).PubMedGoogle Scholar
  366. Verbist, L.: Comparison of in vitro activities of eight β-lactamasestable cephalosporins against β-Mactamase-producing Gram-negative bacilli. Antimicr. Ag. Chemo. 19: 407–413 (1981b).Google Scholar
  367. Verbist, L. and Verhaegen, J.: GR-20263: A new aminothiazolyl cephalosporin with high activity against Pseudomonas and Enterobacteriaceae. Antimicrobial Agents and Chemotherapy 17: 807–812 (1980).PubMedGoogle Scholar
  368. Verbist, L. and Verhaegen, J.: In vitro activity of N-formimidoyl thienamycin in comparison with cefotaxime, moxalactam, and ceftazidine. Antimicrobial Agents and Chemotherapy 19: 402–406 (1981).PubMedGoogle Scholar
  369. Wälder, M.: Susceptibility of Campylobacter fetus subsp. jejuni to twenty antimicrobial agents. Antimicrobial Agents and Chemotherapy 16: 37–39 (1979).PubMedGoogle Scholar
  370. Wasilauskas, B.L.: Comparative in vitro activity of 5 cephalosporins with other antibiotics tested against 887 recent clinical isolates. Chemotherapy 27: 416–422 (1981).PubMedGoogle Scholar
  371. Werner, H.; Krasemann, C. and Ungerechts, J.: Cefotaxim-Empfindlichkeit von Bacteroidaceae. Infection 8(Suppl. 4): S425–S429 (1980).Google Scholar
  372. White, L.O.; Holt, H.A.; Reeves, D.S.; Bywater, M.J. and Bax, R.P.: Separation and assay of cefotaxime (HR-756) and its metabolites in serum, urine and bile; in Nelson and Grassi (Eds) Current Chemotherapy and Infectious Disease, pp. 153–154 (American Society for Microbiology, Washington, D.C. 1980).Google Scholar
  373. Wideman, G.L. and Matthijssen, C.: Comparative efficacy of cefotaxime and cefazolin as prophylaxis against infections following elective hysterectomy. Clinical Therapeutics 5(Suppl. A): 67–73 (1982).PubMedGoogle Scholar
  374. Wise, R.; Andrews, J.M. and Bedford, K.A.: Comparison of in vitro activity of GR 20263, a novel cephalosporin derivative, with activities of other beta-lactam compounds. Antimicrobial Agents and Chemotherapy 17: 884–889 (1980a).PubMedGoogle Scholar
  375. Wise, R.; Baker, S. and Livingston, R.: Comparison of cefotaxime and moxalactam pharmacokinetics and tissue levels. Antimicrobial Agents and Chemotherapy 18: 369–371 (1980b).PubMedGoogle Scholar
  376. Wise, R.; Rollason, T.; Logan, M.; Andrews, J.M. and Bedford, K.A.: HR 756, a highly active cephalosporin: Comparison with cefazolin and carbenicillin. Antimicrobial Agents and Chemotherapy 14: 807–811 (1978).PubMedGoogle Scholar
  377. Wise, R.; Wills, P.J.; Andrews, J.M. and Bedford, K.A.: Activity of the cefotaxime (HR 756) desacetyl metabolite compared with those of cefotaxime and other cephalosporins. Antimicrobial Agents and Chemotherapy 17: 84–86 (1980c).PubMedGoogle Scholar
  378. Wise, R.; Wright, N. and Wills, P.J.: Pharmacology of cefotaxime and its desacetyl metabolite in renal and hepatic disease. Antimicrobial Agents and Chemotherapy 19: 526–531 (1981).PubMedGoogle Scholar
  379. Wittmann, D.H.: Chemotherapeutic principles of difficult-to-treat infections in surgery: II. Bone and joint infections. Infection 8: 330–333 (1980a).Google Scholar
  380. Wittmann, D.H.: Chemotherapeutic principles of difficult-to-treat infections in surgery: I. Peritonitis. Infection 8: 323–329 (1980b).Google Scholar
  381. Wittmann, D.H.; Erich, M.; Freitag, V.; Kopf, P.O.; Kult, K.; Pröpper, H. and Welter, J.: Antimikrobielle Chemotherapie bei schweren Infektionen. Therapie der Gegenwart 119: 558–570 (1980a).PubMedGoogle Scholar
  382. Wittmann, D.H.; Schassan, H.H. and Freitag, V.: Pharmacokinetic studies and results of a clinical trial with cefotaxime (HR-756); in Nelson and Grassi (Eds) Current Chemotherapy and Infectious Disease, pp. 114–116 (American Society for Microbiology, Washington, D.C. 1980b).Google Scholar
  383. Wittmann, D.H.; Schassan, H.-H.; Welter, J. and Seidel, H.: Verfügbarkeit von Cefotaxim. Pharmakokinetische Untersuchungen über die Verteilung in zentralen und verschiedenen peripheren Kompartimenten. Münchener Medizinische Wochenschrift 122: 637–641 (1980c).PubMedGoogle Scholar
  384. Woolfrey, B.F.; Fox, J.M.K. and Quail, C.O.: Susceptibility of Pseudomonas aeruginosa to cefoperazone, cefotaxime and moxalactam, with special reference to isolates resistant to amingolycosdes, carbenicillin and ticarcillin. Journal of Antimicrobial Chemotherapy 8: 205–211 (1981).PubMedGoogle Scholar
  385. Wright, N. and Wise, R.: Cefotaxime elimination in patients with renal and liver dysfunction; in Nelson and Grassi (Eds) Current Chemotherapy and Infectious Disease, pp. 133–134 (American Society for Microbiology, Washington, D.C. 1980).Google Scholar
  386. Yakabow, A.L. and Wood, P.D.: Clinical experience with cefotaxime: A review; in Neu (Ed) New beta-lactam antibiotics: A review from chemistry to clinical efficacy of the new cephalosporins, pp. 287–328 (College of Physicians of Philadelphia, Philadelphia, 1982).Google Scholar
  387. Young, J.P.W.; Husson, J.M.; Bruch, K.; Blomer, R.J. and Savopoulos, C.: The evaluation of efficacy and safety of cefotaxime: A review of 2500 cases. Journal of Antimicrobial Chemotherapy 6(Suppl. A): 293–300 (1980).PubMedGoogle Scholar
  388. Yourassowsky, E.; Van Der Linden, M.P.; Lismont, M.J. and Crokaert, F.: The antimicrobial activity of the cephalosporin CGP 7174/E against Pseudomonas aeruginosa in comparison to carbenicillin, piperacillin and cefotaxime. Current Therapeutic Research 28: 203–207 (1980).Google Scholar
  389. Yu, V.L.; Vickers, R.M. and Zuravleff, J.J.: Comparative susceptibilities of Pseudomonas aeruginosa to 1-oxacephalosporin (LY 127935) and eight other antipseudomonal antimicrobial agents (old and new). Antimicrobial Agents and Chemotherapy 17: 96–98 (1980).PubMedGoogle Scholar
  390. Zinner, S.H.; Klastersky, J.; Gaya, H.; Bernard, C.; Ryff, J.C. and the EORTC Antimicrobial Therapy Project Group: In vitro and in vivo studies of three antibiotic combinations against Gram-negative bacteria and Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 20: 463–469 (1981).PubMedGoogle Scholar

Copyright information

© ADIS Press Australasia Pty Ltd 1983

Authors and Affiliations

  • A. A. Carmine
    • 1
  • R. N. Brogden
    • 1
  • R. C. Heel
    • 1
  • T. M. Speight
    • 1
  • G. S. Avery
    • 1
  1. 1.ADIS Drug Information ServicesBirkenhead, Auckland 10New Zealand

Personalised recommendations