Clinical Pharmacokinetics

, Volume 45, Issue 3, pp 253–285

Genetic Polymorphisms of Drug-Metabolising Enzymes and Drug Transporters in the Chemotherapeutic Treatment of Cancer

  • Tessa M. Bosch
  • Irma Meijerman
  • Jos H. Beijnen
  • Jan H. M. Schellens
Review Article

Abstract

There is wide variability in the response of individuals to standard doses of drug therapy. This is an important problem in clinical practice, where it can lead to therapeutic failures or adverse drug reactions. Polymorphisms in genes coding for metabolising enzymes and drug transporters can affect drug efficacy and toxicity. Pharmacogenetics aims to identify individuals predisposed to a high risk of toxicity and low response from standard doses of anti-cancer drugs. This review focuses on the clinical significance of polymorphisms in drug-metabolising enzymes (cytochrome P450 [CYP] 2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, dihydropyrimidine dehydrogenase, uridine diphosphate glucuronosyltransferase [UGT] 1A1, glutathione S-transferase, sulfotransferase [SULT] 1A1, N-acetyltransferase [NAT], thiopurine methyltransferase [TPMT]) and drug transporters (P-glycoprotein [multidrug resistance 1], multidrug resistance protein 2 [MRP2], breast cancer resistance protein [BCRP]) in influencing efficacy and toxicity of chemotherapy.

The most important example to demonstrate the influence of pharmacogenetics on anti-cancer therapy is TPMT. A decreased activity of TPMT, caused by genetic polymorphisms in the TPMT gene, causes severe toxicity with mercaptopurine. Dosage reduction is necessary for patients with heterozygous or homozygous mutation in this gene.

Other polymorphisms showing the influence of pharmacogenetics in the chemotherapeutic treatment of cancer are discussed, such as UGT1A1*28. This polymorphism is associated with an increase in toxicity with irinotecan. Also, polymorphisms in the DPYD gene show a relation with fluorouracil-related toxicity; however, in most cases no clear association has been found for polymorphisms in drug-metabolising enzymes and drug transporters, and pharmacokinetics or pharmacodynamics of anti-cancer drugs. The studies discussed evaluate different regimens and tumour types and show that polymorphisms can have different, sometimes even contradictory, pharmacokinetic and pharmacodynamic effects in different tumours in response to different drugs.

The clinical application of pharmacogenetics in cancer treatment will therefore require more detailed information of the different polymorphisms in drug-metabolising enzymes and drug transporters. Larger studies, in different ethnic populations, and extended with haplotype and linkage disequilibrium analysis, will be necessary for each anti-cancer drug separately.

References

  1. 1.
    Dorne JL. Impact of inter-individual differences in drug metabolism and pharmacokinetics on safety evaluation. Fundam Clin Pharmacol 2004 Dec; 18(6): 609–20PubMedGoogle Scholar
  2. 2.
    Nebert DW. Suggestions for the nomenclature of human alleles: relevance to ecogenetics, pharmacogenetics and molecular epidemiology. Pharmacogenetics 2000 Jun; 10(4): 279–90PubMedGoogle Scholar
  3. 3.
    Erichsen HC, Chanock SJ. SNPs in cancer research and treatment. Br J Cancer 2004 Feb; 90(4): 747–51PubMedGoogle Scholar
  4. 4.
    van den Bongard HJ, Mathot RA, Beijnen JH, et al. Pharmacokinetically guided administration of chemotherapeutic agents. Clin Pharmacokinet 2000 Nov; 39(5): 345–67PubMedGoogle Scholar
  5. 5.
    de Jonge ME, Huitema AD, Schellens JH, et al. Individualised cancer chemotherapy: strategies and performance of prospective studies on therapeutic drug monitoring with dose adaptation: a review. Clin Pharmacokinet 2005; 44(2): 147–73PubMedGoogle Scholar
  6. 6.
    Dai D, Zeldin DC, Blaisdell JA, et al. Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. Pharmacogenetics 2001 Oct; 11(7): 597–607PubMedGoogle Scholar
  7. 7.
    Soyama A, Saito Y, Hanioka N, et al. Non-synonymous single nucleotide alterations found in the CYP2C8 gene result in reduced in vitro paclitaxel metabolism. Biol Pharm Bull 2001 Dec; 24(12): 1427–30PubMedGoogle Scholar
  8. 8.
    Bahadur N, Leathart JB, Mutch E, et al. CYP2C8 polymorphisms in Caucasians and their relationship with paclitaxel 6α-hydroxylase activity in human liver microsomes. Biochem Pharmacol 2002 Dec; 64(11): 1579–89PubMedGoogle Scholar
  9. 9.
    Garcia-Martin E, Martinez C, Pizarro RM, et al. CYP3A4 variant alleles in white individuals with low CYP3A4 enzyme activity. Clin Pharmacol Ther 2002 Mar; 71(3): 196–204PubMedGoogle Scholar
  10. 10.
    Lee SJ, Usmani KA, Chanas B, et al. Genetic findings and functional studies of human CYP3A5 single nucleotide polymorphisms in different ethnic groups. Pharmacogenetics 2003 Aug; 13(8): 461–72PubMedGoogle Scholar
  11. 11.
    Yasar U, Eliasson E, Dahl ML, et al. Validation of methods for CYP2C9 genotyping: frequencies of mutant alleles in a Swedish population. Biochem Biophys Res Commun 1999; 254(3): 628–31PubMedGoogle Scholar
  12. 12.
    Goldstein JA. Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br J Clin Pharmacol 2001; 52(4): 349–55PubMedGoogle Scholar
  13. 13.
    Gaikovitch EA, Cascorbi I, Mrozikiewicz PM, et al. Polymorphisms of drug-metabolizing enzymes CYP2C9, CYP2C19, CYP2D6, CYP1A1, NAT2 and of P-glycoprotein in a Russian population. Eur J Clin Pharmacol 2003; 59(4): 303–12PubMedGoogle Scholar
  14. 14.
    van Kuilenburg AB, De Abreu RA, Van Gennip AH. Pharmacogenetic and clinical aspects of dihydropyrimidine dehydroge-nase deficiency. Ann Clin Biochem 2003; 40(Pt 1): 41–5PubMedGoogle Scholar
  15. 15.
    Totah RA, Rettie AE. Cytochrome P450 2C8: substrates, inhibitors, pharmacogenetics, and clinical relevance. Clin Pharmacol Ther 2005 May; 77(5): 341–52PubMedGoogle Scholar
  16. 16.
    Lee CR, Goldstein JA, Pieper JA. Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics 2002 Apr; 12(3): 251–63PubMedGoogle Scholar
  17. 17.
    Chang TK, Yu L, Goldstein JA, et al. Identification of the polymorphically expressed CYP2C19 and the wild-type CYP2C9-ILE359 allele as low-Km catalysts of cyclophosphamide and ifosfamide activation. Pharmacogenetics 1997 Jun; 7(3): 211–21PubMedGoogle Scholar
  18. 18.
    Watters JW, Kloss EF, Link DC, et al. A mouse-based strategy for cyclophosphamide pharmacogenomic discovery. J Appl Physiol 2003 Oct; 95(4): 1352–60PubMedGoogle Scholar
  19. 19.
    Goldstein JA, Ishizaki T, Chiba K, et al. Frequencies of the defective CYP2C19 alleles responsible for the mephenytoin poor metabolizer phenotype in various Oriental, Caucasian, Saudi Arabian and American black populations. Pharmacogenetics 1997; 7(1): 59–64PubMedGoogle Scholar
  20. 20.
    Xie HG, Stein CM, Kim RB, et al. Allelic, genotypic and phenotypic distributions of S-mephenytoin 4’′-hydroxylase (CYP2C19) in healthy Caucasian populations of European descent throughout the world. Pharmacogenetics 1999; 9(5): 539–49PubMedGoogle Scholar
  21. 21.
    Ando Y, Price DK, Dahut WL, et al. Pharmacogenetic associations of CYP2C19 genotype with in vivo metabolisms and pharmacological effects of thalidomide. Cancer Biol Ther 2002 Nov; 1(6): 669–73PubMedGoogle Scholar
  22. 22.
    Daly AK, Brockmoller J, Broly F, et al. Nomenclature for human CYP2D6 alleles. Pharmacogenetics 1996 Jun; 6(3): 193–201PubMedGoogle Scholar
  23. 23.
    Human Cytochrome P450 (CYP) Allele Nomenclature Committee. CYP2D6 allele nomenclature [online]. Available from URL: http://www.imm.ki.se/CYPalleles/cyp2d6.htm [Accessed 2005 Dec 11]
  24. 24.
    Dehal SS, Kupfer D. CYP2D6 catalyzes tamoxifen 4-hydroxylation in human liver. Cancer Res 1997 Aug; 57(16): 3402–6PubMedGoogle Scholar
  25. 25.
    Jin Y, Desta Z, Stearns V, et al. CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst 2005 Jan; 97(1): 30–9PubMedGoogle Scholar
  26. 26.
    Goetz MP, Rae JM, Suman VJ, et al. Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. J Clin Oncol 2005; 23(36): 9312–8PubMedGoogle Scholar
  27. 27.
    Relling MV, Evans WE, Fonne-Pfister R, et al. Anticancer drugs as inhibitors of two polymorphic cytochrome P450 enzymes, debrisoquin and mephenytoin hydroxylase, in human liver microsomes. Cancer Res 1989 Jan; 49(1): 68–71PubMedGoogle Scholar
  28. 28.
    Human Cytochrome P450 (CYP) Allele Nomenclature Committee. CYP3A4 allele nomenclature [online]. Available from URL: http://www.imm.ki.se/CYPalleles/cyp3a4.htm [Accessed 2005 Dec 11]
  29. 29.
    Ball SE, Scatina J, Kao J, et al. Population distribution and effects on drug metabolism of a genetic variant in the 5′ promoter region of CYP3A4. Clin Pharmacol Ther 1999 Sep; 66(3): 288–94PubMedGoogle Scholar
  30. 30.
    Hamzeiy H, Vahdati-Mashhadian N, Edwards HJ, et al. Mutation analysis of the human CYP3A4 gene 5′ regulatory region: population screening using non-radioactive SSCP. Mutat Res 2002 Mar; 500(1–2): 103–10PubMedGoogle Scholar
  31. 31.
    van Schaik RH, de Wildt SN, van Iperen NM, et al. CYP3A4-V polymorphism detection by PCR-restriction fragment length polymorphism analysis and its allelic frequency among 199 Dutch Caucasians. Clin Chem 2000 Nov; 46(11): 1834–6PubMedGoogle Scholar
  32. 32.
    Sata F, Sapone A, Elizondo G, et al. CYP3A4 allelic variants with amino acid substitutions in exons 7 and 12: evidence for an allelic variant with altered catalytic activity. Clin Pharmacol Ther 2000 Jan; 67(1): 48–56PubMedGoogle Scholar
  33. 33.
    Walker AH, Jaffe JM, Gunasegaram S, et al. Characterization of an allelic variant in the nifedipine-specific element of CYP3A4: ethnic distribution and implications for prostate cancer risk. Human Mutation: mutation in brief no. 191 (1998) [online]. Available from URL: http://www3.interscience.wiley.com/homepages/38515/pdf/mutation/191.pdf [Accessed 2006 Jan 16]
  34. 34.
    Goh BC, Lee SC, Wang LZ, et al. Explaining interindividual variability of docetaxel pharmacokinetics and pharmacodynamics in Asians through phenotyping and genotyping strategies. J Clin Oncol 2002 Sep; 20(17): 3683–90PubMedGoogle Scholar
  35. 35.
    Wandel C, Witte JS, Hall JM, et al. CYP3A activity in African American and European American men: population differences and functional effect of the CYP3A4*1B5′-promoter region polymorphism. Clin Pharmacol Ther 2000 Jul; 68(1): 82–91PubMedGoogle Scholar
  36. 36.
    Westlind A, Lofberg L, Tindberg N, et al. Interindividual differences in hepatic expression of CYP3A4: relationship to genetic polymorphism in the 5′-upstream regulatory region. Biochem Biophys Res Commun 1999 May; 259(1): 201–5PubMedGoogle Scholar
  37. 37.
    Dai D, Tang J, Rose R, et al. Identification of variants of CYP3A4 and characterization of their abilities to metabolize testosterone and chlorpyrifos. J Pharmacol Exp Ther 2001 Dec; 299(3): 825–31PubMedGoogle Scholar
  38. 38.
    Eiselt R, Domanski TL, Zibat A, et al. Identification and functional characterization of eight CYP3A4 protein variants. Pharmacogenetics 2001 Jul; 11(5): 447–58PubMedGoogle Scholar
  39. 39.
    Rodriguez-Antona C, Donato MT, Pareja E, et al. Cytochrome P-450 mRNA expression in human liver and its relationship with enzyme activity. Arch Biochem Biophys 2001 Sep; 393(2): 308–15PubMedGoogle Scholar
  40. 40.
    Miyoshi Y, Ando A, Takamura Y, et al. Prediction of response to docetaxel by CYP3A4 mRNA expression in breast cancer tissues. Int J Cancer 2002 Jan; 97(1): 129–32PubMedGoogle Scholar
  41. 41.
    Felix CA, Walker AH, Lange BJ, et al. Association of CYP3A4 genotype with treatment-related leukemia. Proc Natl Acad Sci U S A 1998 Oct; 95(22): 13176–81PubMedGoogle Scholar
  42. 42.
    Aplenc R, Glatfelter W, Han P, et al. CYP3A genotypes and treatment response in paediatric acute lymphoblastic leukaemia. Br J Haematol 2003 Jul; 122(2): 240–4PubMedGoogle Scholar
  43. 43.
    Blanco JG, Edick MJ, Hancock ML, et al. Genetic polymorphisms in CYP3A5, CYP3A4 and NQO1 in children who developed therapy-related myeloid malignancies. Pharmacogenetics 2002 Nov; 12(8): 605–11PubMedGoogle Scholar
  44. 44.
    Lamba JK, Lin YS, Schuetz EG, et al. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev 2002 Nov; 54(10): 1271–94PubMedGoogle Scholar
  45. 45.
    Hustert E, Zibat A, Presecan-Siedel E, et al. Natural protein variants of pregnane X receptor with altered transactivation activity toward CYP3A4. Drug Metab Dispos 2001 Nov; 29(11): 1454–9PubMedGoogle Scholar
  46. 46.
    Koyano S, Kurose K, Saito Y, et al. Functional characterization of four naturally occurring variants of human pregnane X receptor (PXR): one variant causes dramatic loss of both DNA binding activity and the transactivation of the CYP3A4 promoter/enhancer region. Drug Metab Dispos 2004 Jan; 32(1): 149–54PubMedGoogle Scholar
  47. 47.
    Fukushima-Uesaka H, Saito Y, Watanabe H, et al. Haplotypes of CYP3A4 and their close linkage with CYP3A5 haplotypes in a Japanese population. Hum Mutat 2004 Jan; 23(1): 100–7PubMedGoogle Scholar
  48. 48.
    Lee SJ, Usmani KA, Chanas B, et al. Genetic findings and functional studies of human CYP3A5 single nucleotide polymorphisms in different ethnic groups. Pharmacogenetics 2003; 13(8): 461–72PubMedGoogle Scholar
  49. 49.
    Xie HG, Wood AJ, Kim RB, et al. Genetic variability in CYP3A5 and its possible consequences. Pharmacogenomics 2004 Apr; 5(3): 243–72PubMedGoogle Scholar
  50. 50.
    Puisset F, Chatelut E, Dalenc F, et al. Dexamethasone as a probe for docetaxel clearance. Cancer Chemother Pharmacol 2004 Sep; 54(3): 265–72PubMedGoogle Scholar
  51. 51.
    Kishi S, Yang W, Boureau B, et al. Effects of prednisone and genetic polymorphisms on etoposide disposition in children with acute lymphoblastic leukemia. Blood 2004 Jan; 103(1): 67–72PubMedGoogle Scholar
  52. 52.
    Tuchman M, Stoeckeler JS, Kiang DT, et al. Familial pyrimidinemia and pyrimidinuria associated with severe fluorouracil toxicity. N Engl J Med 1985 Jul; 313(4): 245–9PubMedGoogle Scholar
  53. 53.
    Diasio RB, Beavers TL, Carpenter JT. Familial deficiency of dihydropyrimidine dehydrogenase: biochemical basis for familial pyrimidinemia and severe 5-fluorouracil-induced toxicity. J Clin Invest 1988 Jan; 81(1): 47–51PubMedGoogle Scholar
  54. 54.
    Takimoto CH, Lu ZH, Zhang R, et al. Severe neurotoxicity following 5-fluorouracil-based chemotherapy in a patient with dihydropyrimidine dehydrogenase deficiency. Clin Cancer Res 1996 Mar; 2(3): 477–81PubMedGoogle Scholar
  55. 55.
    Harris BE, Song R, Soong SJ, et al. Relationship between dihydropyrimidine dehydrogenase activity and plasma 5-fluorouracil levels with evidence for circadian variation of enzyme activity and plasma drug levels in cancer patients receiving 5-fluorouracil by protracted continuous infusion. Cancer Res 1990 Jan; 50(1): 197–201PubMedGoogle Scholar
  56. 56.
    Fleming RA, Milano G, Thyss A, et al. Correlation between dihydropyrimidine dehydrogenase activity in peripheral mononuclear cells and systemic clearance of fluorouracil in cancer patients. Cancer Res 1992 May; 52(10): 2899–902PubMedGoogle Scholar
  57. 57.
    Di Paolo A, Danesi R, Falcone A, et al. Relationship between 5-fluorouracil disposition, toxicity and dihydropyrimidine dehydrogenase activity in cancer patients. Ann Oncol 2001 Sep; 12(9): 1301–6PubMedGoogle Scholar
  58. 58.
    Etienne MC, Lagrange JL, Dassonville O, et al. Population study of dihydropyrimidine dehydrogenase in cancer patients. J Clin Oncol 1994 Nov; 12(11): 2248–53PubMedGoogle Scholar
  59. 59.
    Wei X, McLeod HL, McMurrough J, et al. Molecular basis of the human dihydropyrimidine dehydrogenase deficiency and 5-fluorouracil toxicity. J Clin Invest 1996 Aug; 98(3): 610–5PubMedGoogle Scholar
  60. 60.
    Meinsma R, Fernandez-Salguero P, van Kuilenburg AB, et al. Human polymorphism in drug metabolism: mutation in the dihydropyrimidine dehydrogenase gene results in exon skipping and thymine uracilurea. DNA Cell Biol 1995 Jan; 14(1): 1–6PubMedGoogle Scholar
  61. 61.
    van Kuilenburg AB, Haasjes J, Richel DJ, et al. Clinical implications of dihydropyrimidine dehydrogenase (DPD) deficiency in patients with severe 5-fluorouracil-associated toxicity: identification of new mutations in the DPD gene. Clin Cancer Res 2000 Dec; 6(12): 4705–12PubMedGoogle Scholar
  62. 62.
    van Kuilenburg AB, Vreken P, Beex LV, et al. Heterozygosity for a point mutation in an invariant splice donor site of dihydropyrimidine dehydrogenase and severe 5-fluorouracil related toxicity. Eur J Cancer 1997 Nov; 33(13): 2258–64PubMedGoogle Scholar
  63. 63.
    van Kuilenburg AB, Muller EW, Haasjes J, et al. Lethal outcome of a patient with a complete dihydropyrimidine dehydrogenase (DPD) deficiency after administration of 5-fluorouracil: frequency of the common IVS14+1G>A mutation causing DPD deficiency. Clin Cancer Res 2001 May; 7(5): 1149–53PubMedGoogle Scholar
  64. 64.
    Raida M, Schwabe W, Hausler P, et al. Prevalence of a common point mutation in the dihydropyrimidine dehydrogenase (DPD) gene within the 5’-splice donor site of intron 14 in patients with severe 5-fluorouracil (5-FU)- related toxicity compared with controls. Clin Cancer Res 2001 Sep; 7(9): 2832–9PubMedGoogle Scholar
  65. 65.
    van Kuilenburg AB, Meinsma R, Zoetekouw L, et al. High prevalence of the IVS14 + 1G>A mutation in the dihydropyrimidine dehydrogenase gene of patients with severe 5-fluorouracil-associated toxicity. Pharmacogenetics 2002 Oct; 12(7): 555–8PubMedGoogle Scholar
  66. 66.
    Johnson MR, Hageboutros A, Wang K, et al. Life-threatening toxicity in a dihydropyrimidine dehydrogenase-deficient patient after treatment with topical 5-fluorouracil. Clin Cancer Res 1999 Aug; 5(8): 2006–11PubMedGoogle Scholar
  67. 67.
    Maring JG, van Kuilenburg AB, Haasjes J, et al. Reduced 5-FU clearance in a patient with low DPD activity due to heterozygosity for a mutant allele of the DPYD gene. Br J Cancer 2002 Apr; 86(7): 1028–33PubMedGoogle Scholar
  68. 68.
    van Kuilenburg AB, Meinsma R, Zoetekouw L, et al. Increased risk of grade IV neutropenia after administration of 5-fluorouracil due to a dihydropyrimidine dehydrogenase deficiency: high prevalence of the IVS14+1g>a mutation. Int J Cancer 2002 Sep; 101(3): 253–8PubMedGoogle Scholar
  69. 69.
    van Kuilenburg AB, Baars JW, Meinsma R, et al. Lethal 5-fluorouracil toxicity associated with a novel mutation in the dihydropyrimidine dehydrogenase gene. Ann Oncol 2003 Feb; 14(2): 341–2PubMedGoogle Scholar
  70. 70.
    Collie-Duguid ES, Etienne MC, Milano G, et al. Known variant DPYD alleles do not explain DPD deficiency in cancer patients. Pharmacogenetics 2000 Apr; 10(3): 217–23PubMedGoogle Scholar
  71. 71.
    Johnson MR, Wang K, Diasio RB. Profound dihydropyrimidine dehydrogenase deficiency resulting from a novel compound heterozygote genotype. Clin Cancer Res 2002 Mar; 8(3): 768–74PubMedGoogle Scholar
  72. 72.
    Ridge SA, Sludden J, Brown O, et al. Dihydropyrimidine dehydrogenase pharmacogenetics in Caucasian subjects. Br J Clin Pharmacol 1998 Aug; 46(2): 151–6PubMedGoogle Scholar
  73. 73.
    Ridge SA, Sludden J, Wei X, et al. Dihydropyrimidine dehydrogenase pharmacogenetics in patients with colorectal cancer. Br J Cancer 1998; 77(3): 497–500PubMedGoogle Scholar
  74. 74.
    Kouwaki M, Hamajima N, Sumi S, et al. Identification of novel mutations in the dihydropyrimidine dehydrogenase gene in a Japanese patient with 5-fluorouracil toxicity. Clin Cancer Res 1998 Dec; 4(12): 2999–3004PubMedGoogle Scholar
  75. 75.
    Yamaguchi K, Arai Y, Kanda Y, et al. Germline mutation of dihydropyrimidine dehydrogenese gene among a Japanese population in relation to toxicity to 5-fluorouracil. Jpn J Cancer Res 2001 Mar; 92(3): 337–42PubMedGoogle Scholar
  76. 76.
    Innocenti F, Ratain MJ. Prevalence of a common point mutation in the dihydropyrimidine dehydrogenase (DPD) gene within the 5′-splice donor site of intron 14 in patients with severe 5-fluorouracil (5-FU)-related toxicity compared with controls [letter]. Clin Cancer Res 2002 May; 8(5): 1314–6PubMedGoogle Scholar
  77. 77.
    Salonga D, Danenberg KD, Johnson M, et al. Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin Cancer Res 2000 Apr; 6(4): 1322–7PubMedGoogle Scholar
  78. 78.
    van Kuilenburg AB, Meinsma R, Zonnenberg BA, et al. Dihydropyrimidinase deficiency and severe 5-fluorouracil toxicity. Clin Cancer Res 2003 Oct; 9(12): 4363–7PubMedGoogle Scholar
  79. 79.
    Lampe JW, Bigler J, Horner NK, et al. UDP-glucuronosyltransferase (UGT1A1*28 and UGT1A6*2) polymorphisms in Caucasians and Asians: relationships to serum bilirubin concentrations. Pharmacogenetics 1999 Jun; 9(3): 341–9PubMedGoogle Scholar
  80. 80.
    Beutler E, Gelbart T, Demina A. Racial variability in the UDP-glucuronosyltransferase 1 (UGT1A1) promoter: a balanced polymorphism for regulation of bilirubin metabolism?. Proc Natl Acad Sci U S A 1998 Jul; 95(14): 8170–4PubMedGoogle Scholar
  81. 81.
    Iyer L, Hall D, Das S, et al. Phenotype-genotype correlation of in vitro SN-38 (active metabolite of irinotecan) and bilirubin glucuronidation in human liver tissue with UGT1A1 promoter polymorphism. Clin Pharmacol Ther 1999 May; 65(5): 576–82PubMedGoogle Scholar
  82. 82.
    Fertrin KY, Goncalves MS, Saad ST, et al. Frequencies of UDP-glucuronosyltransferase 1 (UGT1A1) gene promoter polymorphisms among distinct ethnic groups from Brazil. Am J Med Genet 2002 Mar; 108(2): 117–9PubMedGoogle Scholar
  83. 83.
    Iolascon A, Faienza MF, Centra M, et al. (TA)8 allele in the UGT1A1 gene promoter of a Caucasian with Gilbert’s syndrome. Haematologica 1999 Feb; 84(2): 106–9PubMedGoogle Scholar
  84. 84.
    Wasserman E, Myara A, Lokiec F, et al. Severe CPT-11 toxicity in patients with Gilbert’s syndrome: two case reports. Ann Oncol 1997 Oct; 8(10): 1049–51PubMedGoogle Scholar
  85. 85.
    Ando Y, Saka H, Asai G, et al. UGT1A1 genotypes and glucuronidation of SN-38, the active metabolite of irinotecan. Ann Oncol 1998 Aug; 9(8): 845–7PubMedGoogle Scholar
  86. 86.
    Raijmakers MT, Jansen PL, Steegers EA, et al. Association of human liver bilirubin UDP-glucuronyltransferase activity with a polymorphism in the promoter region of the UGT1A1 gene. J Hepatol 2000 Sep; 33(3): 348–51PubMedGoogle Scholar
  87. 87.
    Iyer L, Das S, Janisch L, et al. UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics J 2002; 2(1): 43–7PubMedGoogle Scholar
  88. 88.
    Iyer L, Janisch L, Das S, et al. UGT1A1 promoter genotype correlates with pharmacokinetics of irinotecan (CPT-11) [abstract no. 690]. Proceedings of the 36th ASCO Annual Meeting; 2000 May 20–23; New Orleans (LA). Alexandria (VA): American Society of Clinical Oncology, 2000: 19Google Scholar
  89. 89.
    Ando Y, Saka H, Ando M, et al. Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res 2000 Dec; 60(24): 6921–6PubMedGoogle Scholar
  90. 90.
    Marcuello E, Altes A, Menoyo A, et al. UGT1A1 gene variations and irinotecan treatment in patients with metastatic colorectal cancer. Br J Cancer 2004 Aug; 91(4): 678–82PubMedGoogle Scholar
  91. 91.
    Ando Y, Ueoka H, Sugiyama T, et al. Polymorphisms of UDP-glucuronosyltransferase and pharmacokinetics of irinotecan. Ther Drug Monit 2002 Feb; 24(1): 111–6PubMedGoogle Scholar
  92. 92.
    Innocenti F, Undevia SD, Iyer L, et al. Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol 2004 Mar; 22(8): 1382–8PubMedGoogle Scholar
  93. 93.
    Sai K, Saeki M, Saito Y, et al. UGT1A1 haplotypes associated with reduced glucuronidation and increased serum bilirubin in irinotecan-administered Japanese patients with cancer. Clin Pharmacol Ther 2004 Jun; 75(6): 501–15PubMedGoogle Scholar
  94. 94.
    Bomgaars L, Kuttesch N, Bernstein M, et al. Correlation of UGT1A1 promoter genotype with pharmacokinetics and toxicity in pediatric patients receiving irinotecan (CPT-11) [abstract no. 551]. Proceedings of the 39th ASCO Annual Meeting; 2003 May 31–Jun 3; Chicago (IL). Alexandria (VA): American Society of Clinical Oncology, 2003: 138Google Scholar
  95. 95.
    Chowbay B, Zhou Q, Kibat C, et al. Pharmacogenetics of UGT1A1 and ABCG2 in relation to irinotecan (CPT-11) disposition in Chinese nasopharyngeal carcinoma patients [abstract no. 568]. Proceedings of the 39th ASCO Annual Meeting; 2003 May 31–Jun 3; Chicago (IL). Alexandria (VA): American Society of Clinical Oncology, 2003: 142Google Scholar
  96. 96.
    Carlini EJ, Raftogianis RB, Wood TC, et al. Sulfation pharmacogenetics: SULT1A1 and SULT1A2 allele frequencies in Caucasian, Chinese and African-American subjects. Pharmacogenetics 2001 Feb; 11(1): 57–68PubMedGoogle Scholar
  97. 97.
    Butcher NJ, Boukouvala S, Sim E, et al. Pharmacogenetics of the arylamine N-acetyltransferases. Pharmacogenomics J 2002; 2(1): 30–42PubMedGoogle Scholar
  98. 98.
    Viezzer C, Norppa H, Clonfero E, et al. Influence of GSTM1, GSTT1, GSTP1, and EPHX gene polymorphisms on DNA adduct level and HPRT mutant frequency in coke-oven workers. Mutat Res 1999; 431(2): 259–69PubMedGoogle Scholar
  99. 99.
    Krynetski EY, Tai HL, Yates CR, et al. Genetic polymorphism of thiopurine S-methyltransferase: clinical importance and molecular mechanisms. Pharmacogenetics 1996; 6(4): 279–90PubMedGoogle Scholar
  100. 100.
    Ando M, Kitagawa C, Ando Y, et al. Genetic polymorphisms in the phenobarbital-responisve enhancer module of the UDP-glucuronosyltransferase (UGT) 1A1 gene and irinotecan toxicity in Japanese patients [abstract no. 496]. Proceedings of the 39th ASCO Annual Meeting; 2003 May 31–Jun 3; Chicago (IL). Alexandria (VA): American Society of Clinical Oncology, 2003: 124Google Scholar
  101. 101.
    Ciotti M, Basu N, Brangi M, et al. Glucuronidation of 7-ethyl-10-hydroxycamptothecin (SN-38) by the human UDP-glucuronosyltransferases encoded at the UGT1 locus. Biochem Biophys Res Commun 1999 Jun; 260(1): 199–202PubMedGoogle Scholar
  102. 102.
    Ando M, Ando Y, Sekido Y, et al. Genetic polymorphisms of UDP-glucuronosyltransferase (UGT) 1A7 gene and irinotecan toxicity in Japanese cancer patients [abstract no. 415]. Proceedings of the 37th ASCO Annual Meeting; 2001 May 12–15; San Francisco (CA). Alexandria (VA): American Society of Clinical Oncology, 2001: 105AGoogle Scholar
  103. 103.
    Rammohan M, Jeevananthinee J, Zhou QY, et al. The influence of functional polymorphisms in UGT1A7 and UGT1A9 on irinotecan pharmacokinetics in Asian cancer patients [abstract no. 2007]. Proceedings of the 41st ASCO Annual Meeting; 2005 May 14–17; Orlando (FL). Alexandria (VA): American Society of Clinical Oncology, 2005: 136SGoogle Scholar
  104. 104.
    Takahashi T, Fujiwara Y, Yamakido M, et al. The role of glucuronidation in 7-ethyl-10-hydroxycamptothecin resistance in vitro. Jpn J Cancer Res 1997 Dec; 88(12): 1211–7PubMedGoogle Scholar
  105. 105.
    Strassburg CP, Manns MP, Tukey RH. Differential down-regulation of the UDP-glucuronosyltransferase 1A locus is an early event in human liver and biliary cancer. Cancer Res 1997 Jul; 57(14): 2979–85PubMedGoogle Scholar
  106. 106.
    Coles BF, Morel F, Rauch C, et al. Effect of polymorphism in the human glutathione S-transferase A1 promoter on hepatic GSTA1 and GSTA2 expression. Pharmacogenetics 2001 Nov; 11(8): 663–9PubMedGoogle Scholar
  107. 107.
    Sweeney C, Ambrosone CB, Joseph L, et al. Association between a glutathione S-transferase A1 promoter polymorphism and survival after breast cancer treatment. Int J Cancer 2003 Mar; 103(6): 810–4PubMedGoogle Scholar
  108. 108.
    Stanulla M, Schrappe M, Brechlin AM, et al. Polymorphisms within glutathione S-transferase genes (GSTM1, GSTT1, GSTP1) and risk of relapse in childhood B-cell precursor acute lymphoblastic leukemia: a case-control study. Blood 2000 Feb; 95(4): 1222–8PubMedGoogle Scholar
  109. 109.
    Chen CL, Liu Q, Pui CH, et al. Higher frequency of glutathione S-transferase deletions in Black children with acute lymphoblastic leukemia. Blood 1997 Mar; 89(5): 1701–7PubMedGoogle Scholar
  110. 110.
    Autrup JL, Hokland P, Pedersen L, et al. Effect of glutathione S-transferases on the survival of patients with acute myeloid leukaemia. Eur J Pharmacol 2002 Mar; 438(1–2): 15–8PubMedGoogle Scholar
  111. 111.
    Voso MT, D’Alo’ F, Putzulu R, et al. Negative prognostic value of glutathione S-transferase (GSTM1 and GSTT1) deletions in adult acute myeloid leukemia. Blood 2002 Oct; 100(8): 2703–7PubMedGoogle Scholar
  112. 112.
    Dieckvoss BO, Stanulla M, Schrappe M, et al. Polymorphisms within glutathione S-transferase genes in pediatric non-Hodgkin’s lymphoma. Haematologica 2002 Jul; 87(7): 709–13PubMedGoogle Scholar
  113. 113.
    Sweeney C, Nazar-Stewart V, Stapleton PL, et al. Glutathione S-transferase M1, T1, and P1 polymorphisms and survival among lung cancer patients. Cancer Epidemiol Biomarkers Prev 2003 Jun; 12(6): 527–33PubMedGoogle Scholar
  114. 114.
    Peters U, Preisler-Adams S, Hebeisen A, et al. Glutathione S-transferase genetic polymorphisms and individual sensitivity to the ototoxic effect of cisplatin. Anticancer Drugs 2000 Sep; 11(8): 639–43PubMedGoogle Scholar
  115. 115.
    Stoehlmacher J, Park DJ, Zhang W, et al. Association between glutathione S-transferase P1, T1, and M1 genetic polymorphism and survival of patients with metastatic colorectal cancer. J Natl Cancer Inst 2002 Jun; 94(12): 936–42PubMedGoogle Scholar
  116. 116.
    Sweeney C, McClure GY, Fares MY, et al. Association between survival after treatment for breast cancer and glutathione S-transferase P1 Ile105Val polymorphism. Cancer Res 2000 Oct; 60(20): 5621–4PubMedGoogle Scholar
  117. 117.
    Anderer G, Schrappe M, Brechlin AM, et al. Polymorphisms within glutathione S-transferase genes and initial response to glucocorticoids in childhood acute lymphoblastic leukaemia. Pharmacogenetics 2000 Nov; 10(8): 715–26PubMedGoogle Scholar
  118. 118.
    Bellincampi L, Ballerini S, Bernardini S, et al. Glutathione transferase P1 polymorphism in neuroblastoma studied by endonuclease restriction mapping. Clin Chem Lab Med 2001 Sep; 39(9): 830–5PubMedGoogle Scholar
  119. 119.
    Hamdy SI, Hiratsuka M, Narahara K, et al. Genotype and allele frequencies of TPMT, NAT2, GST, SULT1A1 and MDR-1 in the Egyptian population. Br J Clin Pharmacol 2003 Jun; 55(6): 560–9PubMedGoogle Scholar
  120. 120.
    Nowell S, Sweeney C, Winters M, et al. Association between sulfotransferase 1A1 genotype and survival of breast cancer patients receiving tamoxifen therapy. J Natl Cancer Inst 2002 Nov; 94(21): 1635–40PubMedGoogle Scholar
  121. 121.
    Arylamine N-acetyltransferase (NAT) nomenclature [online]. Available from URL: http://www.louisville.edu/medschool/pharmacology/NAT.html [Accessed 2005 Dec 12]
  122. 122.
    Butcher NJ, Ilett KF, Minchin RF. Functional polymorphism of the human arylamine N-acetyltransferase type 1 gene caused by C190T and G560A mutations. Pharmacogenetics 1998 Feb; 8(1): 67–72PubMedGoogle Scholar
  123. 123.
    Dhaini HR, Levy GN. Arylamine N-acetyltransferase 1 (NAT1) genotypes in a Lebanese population. Pharmacogenetics 2000 Feb; 10(1): 79–83PubMedGoogle Scholar
  124. 124.
    Evans DA. N-acetyltransferase. Pharmacol Ther 1989; 42(2): 157–234PubMedGoogle Scholar
  125. 125.
    Hickman D, Risch A, Camilleri JP, et al. Genotyping human polymorphic arylamine N-acetyltransferase: identification of new slow allotypic variants. Pharmacogenetics 1992 Oct; 2(5): 217–26PubMedGoogle Scholar
  126. 126.
    Bell DA, Taylor JA, Butler MA, et al. Genotype/phenotype discordance for human arylamine N-acetyltransferase (NAT2) reveals a new slow-acetylator allele common in African-Americans. Carcinogenesis 1993 Aug; 14(8): 1689–92PubMedGoogle Scholar
  127. 127.
    Cascorbi I, Drakoulis N, Brockmoller J, et al. Arylamine N-acetyltransferase (NAT2) mutations and their allelic linkage in unrelated Caucasian individuals: correlation with phenotypic activity. Am J Hum Genet 1995 Sep; 57(3): 581–92PubMedGoogle Scholar
  128. 128.
    Ratain MJ, Mick R, Berezin F, et al. Paradoxical relationship between acetylator phenotype and amonafide toxicity. Clin Pharmacol Ther 1991 Nov; 50(5 Pt 1): 573–9PubMedGoogle Scholar
  129. 129.
    Ratain MJ, Mick R, Berezin F, et al. Phase I study of amonafide dosing based on acetylator phenotype. Cancer Res 1993 May; 53 (10 Suppl.): 2304–8PubMedGoogle Scholar
  130. 130.
    Ratain MJ, Rosner G, Allen SL, et al. Population pharmacodynamic study of amonafide: a cancer and leukemia group B study. J Clin Oncol 1995 Mar; 13(3): 741–7PubMedGoogle Scholar
  131. 131.
    Lu KH, Cheng KC, Hsia TC, et al. Paclitaxel affects the amounts of the N-acetylation of 2-aminofluorene and DNA-2-aminofluorene adduct formation in Sprague-Dawley rats. In Vivo 2003 Mar; 17(2): 137–44PubMedGoogle Scholar
  132. 132.
    Yang CC, Chen GW, Lu HF, et al. Paclitaxel (taxol) inhibits the arylamine N-acetyltransferase activity and gene expression (mRNA NAT1) and 2-aminofluorene-DNA adduct formation in human bladder carcinoma cells (T24 and TSGH 8301). Pharmacol Toxicol 2003 Jun; 92(6): 287–94PubMedGoogle Scholar
  133. 133.
    Evans WE. Pharmacogenetics of thiopurine S-methyltransferase and thiopurine therapy. Ther Drug Monit 2004 Apr; 26(2): 186–91PubMedGoogle Scholar
  134. 134.
    Armstrong VW, Oellerich M. New developments in the immunosuppressive drug monitoring of cyclosporine, tacrolimus, and azathioprine. Clin Biochem 2001 Feb; 34(1): 9–16PubMedGoogle Scholar
  135. 135.
    Corominas H, Domenech M, Gonzalez D, et al. Allelic variants of the thiopurine S-methyltransferase deficiency in patients with ulcerative colitis and in healthy controls. Am J Gastroenterol 2000 Sep; 95(9): 2313–7PubMedGoogle Scholar
  136. 136.
    McLeod HL, Siva C. The thiopurine S-methyltransferase gene locus: implications for clinical pharmacogenomics. Pharmacogenomics 2002 Jan; 3(1): 89–98PubMedGoogle Scholar
  137. 137.
    Krynetski EY, Schuetz JD, Galpin AJ, et al. A single point mutation leading to loss of catalytic activity in human thiopurine S-methyltransferase. Proc Natl Acad Sci U S A 1995 Feb; 92(4): 949–53PubMedGoogle Scholar
  138. 138.
    Yates CR, Krynetski EY, Loennechen T, et al. Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann Intern Med 1997 Apr; 126(8): 608–14PubMedGoogle Scholar
  139. 139.
    Gardiner SJ, Begg EJ, Barclay ML, et al. Genetic polymorphism and outcomes with azathioprine and 6-mercaptopurine. Adverse Drug React Toxicol Rev 2000 Dec; 19(4): 293–312PubMedGoogle Scholar
  140. 140.
    Schutz E, von Ahsen N, Oellerich M. Genotyping of eight thiopurine methyltransferase mutations: three-color multiplexing, “two-color/shared” anchor, and fluorescence-quenching hybridization probe assays based on thermodynamic nearest-neighbor probe design. Clin Chem 2000 Nov; 46(11): 1728–37PubMedGoogle Scholar
  141. 141.
    Krynetski EY, Evans WE. Pharmacogenetics as a molecular basis for individualized drug therapy: the thiopurine S-methyl-transferase paradigm. Pharm Res 1999 Mar; 16(3): 342–9PubMedGoogle Scholar
  142. 142.
    Tai HL, Krynetski EY, Yates CR, et al. Thiopurine S-methyl-transferase deficiency: two nucleotide transitions define the most prevalent mutant allele associated with loss of catalytic activity in Caucasians. Am J Hum Genet 1996 Apr; 58(4): 694–702PubMedGoogle Scholar
  143. 143.
    Ganiere-Monteil C, Medard Y, Lejus C, et al. Phenotype and genotype for thiopurine methyltransferase activity in the French Caucasian population: impact of age. Eur J Clin Pharmacol 2004 Apr; 60(2): 89–96PubMedGoogle Scholar
  144. 144.
    Rossi AM, Bianchi M, Guarnieri C, et al. Genotype-phenotype correlation for thiopurine S-methyltransferase in healthy Italian subjects. Eur J Clin Pharmacol 2001 Apr; 57(1): 51–4PubMedGoogle Scholar
  145. 145.
    Spire-Vayron de la Moureyre C, Debuysere H, Mastain B, et al. Genotypic and phenotypic analysis of the polymorphic thiopurine S-methyltransferase gene (TPMT) in a European population. Br J Pharmacol 1998 Oct; 125(4): 879–87Google Scholar
  146. 146.
    Yan L, Zhang S, Eiff B, et al. Thiopurine methyltransferase polymorphic tandem repeat: genotype-phenotype correlation analysis. Clin Pharmacol Ther 2000 Aug; 68(2): 210–9PubMedGoogle Scholar
  147. 147.
    Spire-Vayron de la Moureyre C, Debuysere H, Fazio F, et al. Characterization of a variable number tandem repeat region in the thiopurine S-methyltransferase gene promoter. Pharmacogenetics 1999 Apr; 9(2): 189–98Google Scholar
  148. 148.
    Alves S, Amorim A, Ferreira F, et al. Influence of the variable number of tandem repeats located in the promoter region of the thiopurine methyltransferase gene on enzymatic activity. Clin Pharmacol Ther 2001 Aug; 70(2): 165–74PubMedGoogle Scholar
  149. 149.
    Arenas M, Duley JA, Ansari A, et al. Genetic determinants of the pre- and post-azathioprine therapy thiopurine methyltransferase activity phenotype. Nucleosides Nucleotides Nucleic Acids 2004 Oct; 23(8–9): 1403–5PubMedGoogle Scholar
  150. 150.
    Marinaki AM, Arenas M, Khan ZH, et al. Genetic determinants of the thiopurine methyltransferase intermediate activity phenotype in British Asians and Caucasians. Pharmacogenetics 2003 Feb; 13(2): 97–105PubMedGoogle Scholar
  151. 151.
    Lindqvist M, Haglund S, Almer S, et al. Identification of two novel sequence variants affecting thiopurine methyltransferase enzyme activity. Pharmacogenetics 2004 Apr; 14(4): 261–5PubMedGoogle Scholar
  152. 152.
    Hamdan-Khalil R, Gala JL, Allorge D, et al. Identification and functional analysis of two rare allelic variants of the thiopurine S-methyltransferase gene, TPMT*16 and TPMT*19. Biochem Pharmacol 2005 Feb; 69(3): 525–9PubMedGoogle Scholar
  153. 153.
    Schaeffeler E, Fischer C, Brockmeier D, et al. Comprehensive analysis of thiopurine S-methyltransferase phenotype-genotype correlation in a large population of German-Caucasians and identification of novel TPMT variants. Pharmacogenetics 2004 Jul; 14(7): 407–17PubMedGoogle Scholar
  154. 154.
    von Ahsen N, Armstrong VW, Oellerich M. Rapid, long-range molecular haplotyping of thiopurine S-methyltransferase (TPMT) *3A, *3B, and *3C. Clin Chem 2004 Sep; 50(9): 1528–34Google Scholar
  155. 155.
    McLeod HL, Krynetski EY, Relling MV, et al. Genetic polymorphism of thiopurine methyltransferase and its clinical relevance for childhood acute lymphoblastic leukemia. Leukemia 2000 Apr; 14(4): 567–72PubMedGoogle Scholar
  156. 156.
    Coulthard SA, Rabello C, Robson J, et al. A comparison of molecular and enzyme-based assays for the detection of thiopurine methyltransferase mutations. Br J Haematol 2000 Sep; 110(3): 599–604PubMedGoogle Scholar
  157. 157.
    Relling MV, Hancock ML, Rivera GK, et al. Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J Natl Cancer Inst 1999 Dec; 91(23): 2001–8PubMedGoogle Scholar
  158. 158.
    McLeod HL, Coulthard S, Thomas AE, et al. Analysis of thiopurine methyltransferase variant alleles in childhood acute lymphoblastic leukaemia. Br J Haematol 1999 Jun; 105(3): 696–700PubMedGoogle Scholar
  159. 159.
    Black AJ, McLeod HL, Capell HA, et al. Thiopurine methyl-transferase genotype predicts therapy-limiting severe toxicity from azathioprine. Ann Intern Med 1998 Nov; 129(9): 716–8PubMedGoogle Scholar
  160. 160.
    Stanulla M, Schaeffeler E, Flohr T, et al. Thiopurine methyl-transferase (TPMT) genotype and early treatment response to mercaptopurine in childhood acute lymphoblastic leukemia. JAMA 2005 Mar; 293(12): 1485–9PubMedGoogle Scholar
  161. 161.
    Dervieux T, Medard Y, Verpillat P, et al. Possible implication of thiopurine S-methyltransferase in occurrence of infectious episodes during maintenance therapy for childhood lymphoblastic leukemia with mercaptopurine. Leukemia 2001 Nov; 15(11): 1706–12PubMedGoogle Scholar
  162. 162.
    Tavadia SM, Mydlarski PR, Reis MD, et al. Screening for azathioprine toxicity: a pharmacoeconomic analysis based on a target case. J Am Acad Dermatol 2000 Apr; 42(4): 628–32PubMedGoogle Scholar
  163. 163.
    Baker DE. Pharmacogenomics of azathioprine and 6-mercaptopurine in gastroenterologic therapy. Rev Gastroenterol Disord 2003; 3(3): 150–7PubMedGoogle Scholar
  164. 164.
    Oh KT, Anis AH, Bae SC. Pharmacoeconomic analysis of thiopurine methyltransferase polymorphism screening by polymerase chain reaction for treatment with azathioprine in Korea. Rheumatology (Oxford) 2004 Feb; 43(2): 156–63Google Scholar
  165. 165.
    Ambudkar SV, Dey S, Hrycyna CA, et al. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol 1999; 39: 361–98PubMedGoogle Scholar
  166. 166.
    Liu Y, Hu M. P-glycoprotein and bioavailability-implication of polymorphism. Clin Chem Lab Med 2000 Sep; 38(9): 877–81PubMedGoogle Scholar
  167. 167.
    Hoffmeyer S, Burk O, von Richter O, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A 2000 Mar; 97(7): 3473–8PubMedGoogle Scholar
  168. 168.
    Toh S, Wada M, Uchiumi T, et al. Genomic structure of the canalicular multispecific organic anion-transporter gene (MRP2/cMOAT) and mutations in the ATP-binding-cassette region in Dubin-Johnson syndrome. Am J Hum Genet 1999 Mar; 64(3): 739–46PubMedGoogle Scholar
  169. 169.
    Backstrom G, Taipalensuu J, Melhus H, et al. Genetic variation in the ATP-binding cassette transporter gene ABCG2 (BCRP) in a Swedish population. Eur J Pharm Sci 2003 Apr; 18(5): 359–64PubMedGoogle Scholar
  170. 170.
    Nauck M, Stein U, von Karger S, et al. Rapid detection of the C3435T polymorphism of multidrug resistance gene 1 using fluorogenic hybridization probes. Clin Chem 2000 Dec; 46(12): 1995–7PubMedGoogle Scholar
  171. 171.
    Cascorbi I, Gerloff T, Johne A, et al. Frequency of single nucleotide polymorphisms in the P-glycoprotein drug transporter MDR1 gene in white subjects. Clin Pharmacol Ther 2001 Mar; 69(3): 169–74PubMedGoogle Scholar
  172. 172.
    Ameyaw MM, Regateiro F, Li T, et al. MDR1 pharmacogenetics: frequency of the C3435T mutation in exon 26 is significantly influenced by ethnicity. Pharmacogenetics 2001 Apr; 11(3): 217–21PubMedGoogle Scholar
  173. 173.
    Kim RB, Leake BF, Choo EF, et al. Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther 2001 Aug; 70(2): 189–99PubMedGoogle Scholar
  174. 174.
    Sakaeda T, Nakamura T, Horinouchi M, et al. MDR1 genotype-related pharmacokinetics of digoxin after single oral administration in healthy Japanese subjects. Pharm Res 2001 Oct; 18(10): 1400–4PubMedGoogle Scholar
  175. 175.
    Woodahl EL, Yang Z, Bui T, et al. Multidrug resistance gene G1199A polymorphism alters efflux transport activity of P-glycoprotein. J Pharmacol Exp Ther 2004 Sep; 310(3): 1199–207PubMedGoogle Scholar
  176. 176.
    Plasschaert SL, Groninger E, Boezen M, et al. Influence of functional polymorphisms of the MDR1 gene on vincristine pharmacokinetics in childhood acute lymphoblastic leukemia. Clin Pharmacol Ther 2004 Sep; 76(3): 220–9PubMedGoogle Scholar
  177. 177.
    Sugiyama Y, Kato Y, Chu X. Multiplicity of biliary excretion mechanisms for the camptothecin derivative irinotecan (CPT-11), its metabolite SN-38, and its glucuronide: role of canalicular multispecific organic anion transporter and P-glycoprotein. Cancer Chemother Pharmacol 1998; 42 Suppl.: S44-9Google Scholar
  178. 178.
    Mathijssen RH, Marsh S, Karlsson MO, et al. Irinotecan pathway genotype analysis to predict pharmacokinetics. Clin Cancer Res 2003 Aug; 9(9): 3246–53PubMedGoogle Scholar
  179. 179.
    Sparreboom A, Marsh S, Mathijssen RH, et al. Pharmacogenetics of tipifarnib (R115777) transport and metabolism in cancer patients. Invest New Drugs 2004 Aug; 22(3): 285–9PubMedGoogle Scholar
  180. 180.
    Illmer T, Schuler US, Thiede C, et al. MDR1 gene polymorphisms affect therapy outcome in acute myeloid leukemia patients. Cancer Res 2002 Sep; 62(17): 4955–62PubMedGoogle Scholar
  181. 181.
    Goreva OB, Grishanova AY, Mukhin OV, et al. Possible prediction of the efficiency of chemotherapy in patients with lymphoproliferative diseases based on MDR1 gene G2677T and C3435T polymorphisms. Bull Exp Biol Med 2003 Aug; 136(2): 183–5PubMedGoogle Scholar
  182. 182.
    Kafka A, Sauer G, Jaeger C, et al. Polymorphism C3435T of the MDR-1 gene predicts response to preoperative chemotherapy in locally advanced breast cancer. Int J Oncol 2003 May; 22(5): 1117–21PubMedGoogle Scholar
  183. 183.
    Goh BC, Lee SC, Wang LZ, et al. Explaining interindividual variability of docetaxel pharmacokinetics and pharmacodynamics in Asians through phenotyping and genotyping strategies. J Clin Oncol 2002 Sep; 20(17): 3683–90PubMedGoogle Scholar
  184. 184.
    Efferth T, Sauerbrey A, Steinbach D, et al. Analysis of single nucleotide polymorphism C3435T of the multidrug resistance gene MDR1 in acute lymphoblastic leukemia. Int J Oncol 2003 Aug; 23(2): 509–17PubMedGoogle Scholar
  185. 185.
    Suzuki H, Sugiyama Y. Single nucleotide polymorphisms in multidrug resistance associated protein 2 (MRP2/ABCC2): its impact on drug disposition. Adv Drug Deliv Rev 2002 Nov; 54(10): 1311–31PubMedGoogle Scholar
  186. 186.
    Kuwano M, Toh S, Uchiumi T, et al. Multidrug resistance-associated protein subfamily transporters and drug resistance. Anticancer Drug Des 1999 Apr; 14(2): 123–31PubMedGoogle Scholar
  187. 187.
    Ito K, Suzuki H, Sugiyama Y. Charged amino acids in the transmembrane domains are involved in the determination of the substrate specificity of rat MRP2. Mol Pharmacol 2001 May; 59(5): 1077–85PubMedGoogle Scholar
  188. 188.
    Wada M, Toh S, Taniguchi K, et al. Mutations in the canilicular multispecific organic anion transporter (cMOAT) gene, a novel ABC transporter, in patients with hyperbilirubinemia II/ Dubin-Johnson syndrome. Hum Mol Genet 1998 Feb; 7(2): 203–7PubMedGoogle Scholar
  189. 189.
    Tsujii H, Konig J, Rost D, et al. Exon-intron organization of the human multidrug-resistance protein 2 (MRP2) gene mutated in Dubin-Johnson syndrome. Gastroenterology 1999 Sep; 117(3): 653–60PubMedGoogle Scholar
  190. 190.
    Keitel V, Kartenbeck J, Nies AT, et al. Impaired protein maturation of the conjugate export pump multidrug resistance protein 2 as a consequence of a deletion mutation in Dubin-Johnson syndrome. Hepatology 2000 Dec; 32(6): 1317–28PubMedGoogle Scholar
  191. 191.
    Kagawa T, Sato M, Hosoi K, et al. Absence of R1066X mutation in six Japanese patients with Dubin-Johnson syndrome. Biochem Mol Biol Int 1999 Apr; 47(4): 639–44PubMedGoogle Scholar
  192. 192.
    Mor-Cohen R, Zivelin A, Rosenberg N, et al. Identification and functional analysis of two novel mutations in the multidrug resistance protein 2 gene in Israeli patients with Dubin-Johnson syndrome. J Biol Chem 2001 Oct; 276(40): 36923–30PubMedGoogle Scholar
  193. 193.
    Ito S, Ieiri I, Tanabe M, et al. Polymorphism of the ABC transporter genes, MDR1, MRP1 and MRP2/cMOAT, in healthy Japanese subjects. Pharmacogenetics 2001 Mar; 11(2): 175–84PubMedGoogle Scholar
  194. 194.
    Moriya Y, Nakamura T, Horinouchi M, et al. Effects of polymorphisms of MDR1, MRP1, and MRP2 genes on their mRNA expression levels in duodenal enterocytes of healthy Japanese subjects. Biol Pharm Bull 2002 Oct; 25(10): 1356–9PubMedGoogle Scholar
  195. 195.
    Materna V, Lage H. Homozygous mutation Arg768Trp in the ABC-transporter encoding gene MRP2/cMOAT/ABCC2 causes Dubin-Johnson syndrome in a Caucasian patient. J Hum Genet 2003; 48(9): 484–6PubMedGoogle Scholar
  196. 196.
    Ito K, Oleschuk CJ, Westlake C, et al. Mutation of TRP1254 in the multispecific organic anion transporter, multidrug resistance protein 2 (MRP2) (ABCC2), alters substrate specificity and results in loss of methotrexate transport activity. J Biol Chem 2001 Oct; 276(41): 38108–14PubMedGoogle Scholar
  197. 197.
    Young LC, Campling BG, Cole SP, et al. Multidrug resistance proteins MRP3, MRP1, and MRP2 in lung cancer: correlation of protein levels with drug response and messenger RNA levels. Clin Cancer Res 2001 Jun; 7(6): 1798–804PubMedGoogle Scholar
  198. 198.
    Demeule M, Brossard M, Beliveau R. Cisplatin induces renal expression of P-glycoprotein and canalicular multispecific organic anion transporter. Am J Physiol 1999 Dec; 277(6 Pt 2): F832–40PubMedGoogle Scholar
  199. 199.
    Kauffmann HM, Keppler D, Kartenbeck J, et al. Induction of cMRP/cMOAT gene expression by cisplatin, 2-acetylaminofluorene, or cycloheximide in rat hepatocytes. Hepatology 1997 Oct; 26(4): 980–5PubMedGoogle Scholar
  200. 200.
    Schrenk D, Baus PR, Ermel N, et al. Up-regulation of transporters of the MRP family by drugs and toxins. Toxicol Lett 2001 Mar; 120(1–3): 51–7PubMedGoogle Scholar
  201. 201.
    Kauffmann HM, Keppler D, Gant TW, et al. Induction of hepatic MRP2 (cMRP/cMOAT) gene expression in nonhuman primates treated with rifampicin or tamoxifen. Arch Toxicol 1998 Dec; 72(12): 763–8PubMedGoogle Scholar
  202. 202.
    Hinoshita E, Uchiumi T, Taguchi K, et al. Increased expression of an ATP-binding cassette superfamily transporter, multidrug resistance protein 2, in human colorectal carcinomas. Clin Cancer Res 2000 Jun; 6(6): 2401–7PubMedGoogle Scholar
  203. 203.
    Tada Y, Wada M, Migita T, et al. Increased expression of multidrug resistance-associated proteins in bladder cancer during clinical course and drug resistance to doxorubicin. Int J Cancer 2002 Apr; 98(4): 630–5PubMedGoogle Scholar
  204. 204.
    Burger H, Foekens JA, Look MP, et al. RNA expression of breast cancer resistance protein, lung resistance-related protein, multidrug resistance-associated proteins 1 and 2, and multidrug resistance gene 1 in breast cancer: correlation with chemotherapeutic response. Clin Cancer Res 2003 Feb; 9(2): 827–36PubMedGoogle Scholar
  205. 205.
    Materna V, Pleger J, Hoffmann U, et al. RNA expression of MDR1/P-glycoprotein, DNA-topoisomerase I, and MRP2 in ovarian carcinoma patients: correlation with chemotherapeutic response. Gynecol Oncol 2004 Jul; 94(1): 152–60PubMedGoogle Scholar
  206. 206.
    Diestra JE, Scheffer GL, Catala I, et al. Frequent expression of the multi-drug resistance-associated protein BCRP/MXR/ ABCP/ABCG2 in human tumours detected by the BXP-21 monoclonal antibody in paraffin-embedded material. J Pathol 2002 Oct; 198(2): 213–9PubMedGoogle Scholar
  207. 207.
    Bailey-Dell KJ, Hassel B, Doyle LA, et al. Promoter characterization and genomic organization of the human breast cancer resistance protein (ATP-binding cassette transporter G2) gene. Biochim Biophys Acta 2001 Sep; 1520(3): 234–41PubMedGoogle Scholar
  208. 208.
    Allen JD, Schinkel AH. Multidrug resistance and pharmacological protection mediated by the breast cancer resistance protein (BCRP/ABCG2). Mol Cancer Ther 2002 Apr; 1(6): 427–34PubMedGoogle Scholar
  209. 209.
    Zamber CP, Lamba JK, Yasuda K, et al. Natural allelic variants of breast cancer resistance protein (BCRP) and their relationship to BCRP expression in human intestine. Pharmacogenetics 2003 Jan; 13(1): 19–28PubMedGoogle Scholar
  210. 210.
    Mitomo H, Kato R, Ito A, et al. A functional study on polymorphism of the ATP-binding cassette transporter ABCG2: critical role of arginine-482 in methotrexate transport. Biochem J 2003 Aug; 373 (Pt 3): 767–74PubMedGoogle Scholar
  211. 211.
    Xu J, Liu Y, Yang Y, et al. Characterization of oligomeric human half-ABC transporter ATP-binding cassette G2. J Biol Chem 2004 May; 279(19): 19781–9PubMedGoogle Scholar
  212. 212.
    Kruijtzer CM, Beijnen JH, Rosing H, et al. Increased oral bioavailability of topotecan in combination with the breast cancer resistance protein and P-glycoprotein inhibitor GF120918. J Clin Oncol 2002 Jul; 20(13): 2943–50PubMedGoogle Scholar
  213. 213.
    Imai Y, Nakane M, Kage K, et al. C421A polymorphism in the human breast cancer resistance protein gene is associated with low expression of Q141K protein and low-level drug resistance. Mol Cancer Ther 2002 Jun; 1(8): 611–6PubMedGoogle Scholar
  214. 214.
    Iida A, Saito S, Sekine A, et al. Catalog of 605 single-nucleotide polymorphisms (SNPs) among 13 genes encoding human ATP-binding cassette transporters: ABCA4, ABCA7, ABCA8, ABCD1, ABCD3, ABCD4, ABCE1, ABCF1, ABCG1, ABCG2, ABCG4, ABCG5, and ABCG8. J Hum Genet 2002; 47(6): 285–310PubMedGoogle Scholar
  215. 215.
    Honjo Y, Morisaki K, Huff LM, et al. Single-nucleotide polymorphism (SNP) analysis in the ABC half-transporter ABCG2 (MXR/BCRP/ABCP1). Cancer Biol Ther 2002 Nov; 1(6): 696–702PubMedGoogle Scholar
  216. 216.
    Bosch TM, Kjellberg LM, Bouwers A, et al. Detection of SNPs in the ABCG2 gene in a Dutch population. Am J Pharmacogenomics 2005; 5(2): 123–31PubMedGoogle Scholar
  217. 217.
    Mizuarai S, Aozasa N, Kotani H. Single nucleotide polymorphisms result in impaired membrane localization and reduced atpase activity in multidrug transporter ABCG2. Int J Cancer 2004 Mar; 109(2): 238–46PubMedGoogle Scholar
  218. 218.
    Sparreboom A, Gelderblom H, Marsh S, et al. Diflomotecan pharmacokinetics in relation to ABCG2 421C>A genotype. Clin Pharmacol Ther 2004 Jul; 76(1): 38–44PubMedGoogle Scholar
  219. 219.
    de Jong FA, Marsh S, Mathijssen RH, et al. ABCG2 pharmacogenetics: ethnic differences in allele frequency and assessment of influence on irinotecan disposition. Clin Cancer Res 2004 Sep; 10(17): 5889–94PubMedGoogle Scholar
  220. 220.
    Ross DD, Yang W, Abruzzo LV, et al. Atypical multidrug resistance: breast cancer resistance protein messenger RNA expression in mitoxantrone-selected cell lines. J Natl Cancer Inst 1999 Mar; 91(5): 429–33PubMedGoogle Scholar
  221. 221.
    Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2002 Jan; 2(1): 48–58PubMedGoogle Scholar
  222. 222.
    Sargent JM, Williamson CJ, Maliepaard M, et al. Breast cancer resistance protein expression and resistance to daunorubicin in blast cells from patients with acute myeloid leukaemia. Br J Haematol 2001 Nov; 115(2): 257–62PubMedGoogle Scholar
  223. 223.
    van den Heuvel-Eibrink MM, Wiemer EA, Prins A, et al. Increased expression of the breast cancer resistance protein (BCRP) in relapsed or refractory acute myeloid leukemia (AML). Leukemia 2002 May; 16(5): 833–9PubMedGoogle Scholar
  224. 224.
    Steinbach D, Sell W, Voigt A, et al. BCRP gene expression is associated with a poor response to remission induction therapy in childhood acute myeloid leukemia. Leukemia 2002 Aug; 16(8): 1443–7PubMedGoogle Scholar
  225. 225.
    Faneyte IF, Kristel PM, Maliepaard M, et al. Expression of the breast cancer resistance protein in breast cancer. Clin Cancer Res 2002 Apr; 8(4): 1068–74PubMedGoogle Scholar
  226. 226.
    Ross DD, Karp JE, Chen TT, et al. Expression of breast cancer resistance protein in blast cells from patients with acute leukemia. Blood 2000 Jul; 96(1): 365–8PubMedGoogle Scholar
  227. 227.
    Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2002 Jan; 2(1): 48–58PubMedGoogle Scholar
  228. 228.
    van der Kolk DM, Vellenga E, Scheffer GL, et al. Expression and activity of breast cancer resistance protein (BCRP) in de novo and relapsed acute myeloid leukemia. Blood 2002 May; 99(10): 3763–70PubMedGoogle Scholar
  229. 229.
    Kawabata S, Oka M, Soda H, et al. Expression and functional analyses of breast cancer resistance protein in lung cancer. Clin Cancer Res 2003 Aug; 9(8): 3052–7PubMedGoogle Scholar
  230. 230.
    Yoh K, Ishii G, Yokose T, et al. Breast cancer resistance protein impacts clinical outcome in platinum-based chemotherapy for advanced non-small cell lung cancer. Clin Cancer Res 2004 Mar; 10(5): 1691–7PubMedGoogle Scholar
  231. 231.
    Kanzaki A, Toi M, Nakayama K, et al. Expression of multidrug resistance-related transporters in human breast carcinoma. Jpn J Cancer Res 2001 Apr; 92(4): 452–8PubMedGoogle Scholar
  232. 232.
    Scheffer GL, Pijnenborg AC, Smit EF, et al. Multidrug resistance related molecules in human and murine lung. J Clin Pathol 2002 May; 55(5): 332–9PubMedGoogle Scholar
  233. 233.
    Innocenti F, Undevia SD, Rosner GL, et al. Irinotecan (CPT-11) pharmacokinetics (PK) and neutropenia: interaction among UGT1A1 and transporter genes [abstract no. 2006]. Proceedings of the 41st ASCO Annual Meeting; 2005 May 14–17; Orlando (FL). Alexandria (VA): American Society of Clinical Oncology, 2005: 136SGoogle Scholar
  234. 234.
    Woodahl EL, Ho RJ. The role of MDR1 genetic polymorphisms in interindividual variability in P-glycoprotein expression and function. Curr Drug Metab 2004 Feb; 5(1): 11–9PubMedGoogle Scholar

Copyright information

© Adis Data Information BV 2006

Authors and Affiliations

  • Tessa M. Bosch
    • 1
  • Irma Meijerman
    • 2
  • Jos H. Beijnen
    • 1
    • 2
  • Jan H. M. Schellens
    • 2
    • 3
  1. 1.Department of Pharmacy & PharmacologyThe Netherlands Cancer Institute/Slotervaart HospitalAmsterdamThe Netherlands
  2. 2.Department of Biomedical Analysis, Faculty of Pharmaceutical SciencesUniversity of UtrechtUtrechtThe Netherlands
  3. 3.Department of Medical OncologyAntoni van Leeuwenhoek Hospital/The Netherlands Cancer InstituteAmsterdamThe Netherlands

Personalised recommendations