Clinical Pharmacokinetics

, Volume 44, Issue 10, pp 1009–1034

Antimicrobial Therapy in Critically Ill Patients

A Review of Pathophysiological Conditions Responsible for Altered Disposition and Pharmacokinetic Variability
Review Article

Abstract

Antimicrobials are among the most important and commonly prescribed drugs in the management of critically ill patients. Selecting the appropriate antimicrobial at the commencement of therapy, both in terms of spectrum of activity and dose and frequency of administration according to concentration or time dependency, is mandatory in this setting. Despite appropriate standard dosage regimens, failure of the antimicrobial treatment may occur because of the inability of the antimicrobial to achieve adequate concentrations at the infection site through alterations in its pharmacokinetics due to underlying pathophysiological conditions.

According to the intrinsic chemicophysical properties of antimicrobials, hydrophilic antimicrobials (β-lactams, aminoglycosides, glycopeptides) have to be considered at much higher risk of inter- and intraindividual pharmacokinetic variations than lipophilic antimicrobials (macrolides, fluoroquinolones, tetracyclines, chloramphenicol, rifampicin [rifampin]) in critically ill patients, with significant frequent fluctuations of plasma concentrations that may require significant dosage adjustments. For example, underexposure may occur because of increased volume of distribution (as a result of oedema in sepsis and trauma, pleural effusion, ascites, mediastinitis, fluid therapy or indwelling post-surgical drainage) and/or enhanced renal clearance (as a result of burns, drug abuse, hyperdynamic conditions during sepsis, acute leukaemia or use of haemodynamically active drugs). On the other hand, overexposure may occur because of a drop in renal clearance caused by renal impairment. Care with all these factors whenever choosing an antimicrobial may substantially improve the outcome of antimicrobial therapy in critically ill patients. However, since these situations may often coexist in the same patient and pharmacokinetic variability may be unpredictable, the antimicrobial policy may further benefit from real-time application of therapeutic drug monitoring, since this practice, by tailoring exposure to the individual patient, may consequently be helpful both in improving the outcome of antimicrobial therapy and in containing the spread of resistance in the hospital setting.

References

  1. 1.
    Vincent JL, Bihari DJ, Suter PM, et al. The prevalence of nosocomial infection in intensive care units in Europe. Results of the European Prevalence of Infection in Intensive Care (EPIC) Study. EPIC International Advisory Committee. JAMA 1995; 274(8): 639–44PubMedCrossRefGoogle Scholar
  2. 2.
    Weber DJ, Raasch R, Rutala WA. Nosocomial infections in the ICU: the growing importance of antibiotic-resistant pathogens. Chest 1999; 115(3 Suppl.): 34–41SCrossRefGoogle Scholar
  3. 3.
    Vincent JL. Nosocomial infections in adult intensive-care units. Lancet 2003; 361(9374): 2068–77PubMedCrossRefGoogle Scholar
  4. 4.
    Paterson DL. Restrictive antibiotic policies are appropriate in intensive care units. Crit Care Med 2003; 31 (1 Suppl.): S25–8PubMedCrossRefGoogle Scholar
  5. 5.
    Emmerson M. Antibiotic usage and prescribing policies in the intensive care unit. Intensive Care Med 2000; 26 Suppl. 1: S26–30PubMedCrossRefGoogle Scholar
  6. 6.
    Eggimann P, Pittet D. Infection control in the ICU. Chest 2001; 120(6): 2059–93PubMedCrossRefGoogle Scholar
  7. 7.
    Cohen ML. Epidemiology of drug resistance: implications for a post-antimicrobial era. Science 1992; 257(5073): 1050–5PubMedCrossRefGoogle Scholar
  8. 8.
    Marchese A, Schito GC, Debbia EA. Evolution of antibiotic resistance in gram-positive pathogens. J Chemother 2000; 12(6): 459–62PubMedGoogle Scholar
  9. 9.
    Hooper DC. Emerging mechanisms of fluoroquinolone resistance. Emerg Infect Dis 2001; 7(2): 337–41PubMedCrossRefGoogle Scholar
  10. 10.
    Bartley J. First case of VRSA identified in Michigan. Infect Control Hosp Epidemiol 2002; 23(8): 480PubMedGoogle Scholar
  11. 11.
    Vancomycin-resistant Staphylococcus aureus: Pennsylvania, 2002. MMWR Morb Mortal Wkly Rep 2002; 51 (40): 902Google Scholar
  12. 12.
    Alvarez-Lerma F. Modification of empiric antibiotic treatment in patients with pneumonia acquired in the intensive care unit. ICU-Acquired Pneumonia Study Group. Intensive Care Med 1996; 22(5): 387–94PubMedCrossRefGoogle Scholar
  13. 13.
    Luna CM, Vujacich P, Niederman MS, et al. Impact of BAL data on the therapy and outcome of ventilator-associated pneumonia. Chest 1997; 111(3): 676–85PubMedCrossRefGoogle Scholar
  14. 14.
    Leibovici L, Shraga I, Drucker M, et al. The benefit of appropriate empirical antibiotic treatment in patients with bloodstream infection. J Intern Med 1998; 244(5): 379–86PubMedCrossRefGoogle Scholar
  15. 15.
    Kollef MH, Ward S. The influence of mini-BAL cultures on patient outcomes: implications for the antibiotic management of ventilator-associated pneumonia. Chest 1998; 113(2): 412–20PubMedCrossRefGoogle Scholar
  16. 16.
    Barcenilla F, Gasco E, Rello J, et al. Antibacterial treatment of invasive mechanical ventilation-associated pneumonia. Drugs Aging 2001; 18(3): 189–200PubMedCrossRefGoogle Scholar
  17. 17.
    Bergogne-Berezin E. Guidelines on antimicrobial chemotherapy for prevention and treatment of infections in the intensive care unit. J Chemother 2001; 13 Spec. No. 1(1): 134–49Google Scholar
  18. 18.
    Carter AB, Hornick DB. Therapy for ventilator-associated pneumonia. Clin Chest Med 1999; 20(3): 681–91PubMedCrossRefGoogle Scholar
  19. 19.
    Singh N, Yu VL. Rational empiric antibiotic prescription in the ICU. Chest 2000; 117(5): 1496–9PubMedCrossRefGoogle Scholar
  20. 20.
    Antonelli M, Mercurio G, Di Nunno S, et al. De-escalation antimicrobial chemotherapy in critically ill patients: pros and cons. J Chemother 2001; 13 Spec. No. 1(1): 218–23Google Scholar
  21. 21.
    Hoffken G, Niederman MS. Nosocomial pneumonia: the importance of a de-escalating strategy for antibiotic treatment of pneumonia in the ICU. Chest 2002; 122(6): 2183–96PubMedCrossRefGoogle Scholar
  22. 22.
    Niederman MS. Appropriate use of antimicrobial agents: challenges and strategies for improvement. Crit Care Med 2003; 31(2): 608–16PubMedCrossRefGoogle Scholar
  23. 23.
    Houghton D. Antimicrobial resistance in the intensive care unit: understanding the problem. AACN Clin Issues 2002; 13(3): 410–20PubMedCrossRefGoogle Scholar
  24. 24.
    Pujol M, Gudiol F. Evidence for antibiotic cycling in control of resistance. Curr Opin Infect Dis 2001; 14(6): 711–5PubMedCrossRefGoogle Scholar
  25. 25.
    McGowan Jr JE. Strategies for study of the role of cycling on antimicrobial use and resistance. Infect Control Hosp Epidemiol 2000; 21(1 Suppl.): S36–43PubMedCrossRefGoogle Scholar
  26. 26.
    Gerding DN. Antimicrobial cycling: lessons learned from the aminoglycoside experience. Infect Control Hosp Epidemiol 2000; 21(1 Suppl.): S12–7PubMedCrossRefGoogle Scholar
  27. 27.
    Kollef MH. Is there a role for antibiotic cycling in the intensive care unit? Crit Care Med 2001; 29(4 Suppl.): N135–42PubMedCrossRefGoogle Scholar
  28. 28.
    Gruson D, Hilbert G, Vargas F, et al. Strategy of antibiotic rotation: long-term effect on incidence and susceptibilities of Gram-negative bacilli responsible for ventilator-associated pneumonia. Crit Care Med 2003; 31(7): 1908–14PubMedCrossRefGoogle Scholar
  29. 29.
    Himmelberg CJ, Pleasants RA, Weber DJ, et al. Use of antimicrobial drugs in adults before and after removal of a restriction policy. Am J Hosp Pharm 1991; 48(6): 1220–7PubMedGoogle Scholar
  30. 30.
    John Jr JF, Fishman NO. Programmatic role of the infectious diseases physician in controlling antimicrobial costs in the hospital. Clin Infect Dis 1997; 24(3): 471–85PubMedCrossRefGoogle Scholar
  31. 31.
    Evans RS, Pestotnik SL, Classen DC, et al. A computer-assisted management program for antibiotics and other antiinfective agents. N Engl J Med 1998; 338(4): 232–8PubMedCrossRefGoogle Scholar
  32. 32.
    Hyatt JM, McKinnon PS, Zimmer GS, et al. The importance of pharmacokinetic/pharmacodynamic surrogate markers to outcome: focus on antibacterial agents. Clin Pharmacokinet 1995; 28(2): 143–60PubMedCrossRefGoogle Scholar
  33. 33.
    Hyatt JM, Schentag JJ. Potential role of pharmacokinetics, pharmacodynamics, and computerized databases in controlling bacterial resistance. Infect Control Hosp Epidemiol 2000; 21(1 Suppl.): S18–21PubMedCrossRefGoogle Scholar
  34. 34.
    Schentag JJ. Antimicrobial action and pharmacokinetics/pharmacodynamics: the use of AUIC to improve efficacy and avoid resistance. J Chemother 1999; 11(6): 426–39PubMedGoogle Scholar
  35. 35.
    Thomas JK, Forrest A, Bhavnani SM, et al. Pharmacodynamic evaluation of factors associated with the development of bacterial resistance in acutely ill patients during therapy. Antimicrob Agents Chemother 1998; 42(3): 521–7PubMedGoogle Scholar
  36. 36.
    Schentag JJ. Antimicrobial management strategies for Grampositive bacterial resistance in the intensive care unit. Crit Care Med 2001; 29(4 Suppl.): N100–7PubMedCrossRefGoogle Scholar
  37. 37.
    Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 1998; 26(1): 1–10PubMedCrossRefGoogle Scholar
  38. 38.
    Craig WA. Choosing an antibiotic on the basis of pharmacodynamics. Ear Nose Throat J 1998; 77(6 Suppl.): 7–11PubMedGoogle Scholar
  39. 39.
    Mouton JW, Vinks AA. Is continuous infusion of beta-lactam antibiotics worthwhile? Efficacy and pharmacokinetic considerations. J Antimicrob Chemother 1996; 38(1): 5–15PubMedCrossRefGoogle Scholar
  40. 40.
    MacKenzie FM, Gould IM. The post-antibiotic effect. J Antimicrob Chemother 1993; 32(4): 519–37PubMedCrossRefGoogle Scholar
  41. 41.
    MacGowan AP, Bowker KE. Continuous infusion of betalactam antibiotics. Clin Pharmacokinet 1998; 35(5): 391–402PubMedCrossRefGoogle Scholar
  42. 42.
    Craig WA. Basic pharmacodynamics of antibacterials with clinical applications to the use of beta-lactams, glycopeptides, and linezolid. Infect Dis Clin North Am 2003; 17(3): 479–501PubMedCrossRefGoogle Scholar
  43. 43.
    Forrest A, Nix DE, Ballow CH, et al. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother 1993; 37(5): 1073–81PubMedCrossRefGoogle Scholar
  44. 44.
    Schentag JJ. Clinical pharmacology of the fluoroquinolones: studies in human dynamic/kinetic models. Clin Infect Dis 2000; 31 Suppl. 2: S40–4PubMedCrossRefGoogle Scholar
  45. 45.
    Ambrose PG, Grasela DM, Grasela TH, et al. Pharmacodynamics of fluoroquinolones against Streptococcus pneumoniae in patients with community-acquired respiratory tract infections. Antimicrob Agents Chemother 2001; 45(10): 2793–7PubMedCrossRefGoogle Scholar
  46. 46.
    Nightingale CH, Grant EM, Quintiliani R. Pharmacodynamics and pharmacokinetics of levofloxacin. Chemotherapy 2000; 46 Suppl. 1: 6–14PubMedCrossRefGoogle Scholar
  47. 47.
    Preston SL, Drusano GL, Berman AL, et al. Pharmacodynamics of levofloxacin: a new paradigm for early clinical trials. JAMA 1998; 279(2): 125–9PubMedCrossRefGoogle Scholar
  48. 48.
    Rodvold KA, Neuhauser M. Pharmacokinetics and pharmacodynamics of fluoroquinolones. Pharmacotherapy 2001; 21(10 Pt 2): 233–52SCrossRefGoogle Scholar
  49. 49.
    Aminimanizani A, Beringer P, Jelliffe R. Comparative pharmacokinetics and pharmacodynamics of the newer fluoroquinolone antibacterials. Clin Pharmacokinet 2001; 40(3): 169–87PubMedCrossRefGoogle Scholar
  50. 50.
    Turnidge J. Pharmacokinetics and pharmacodynamics of fluoroquinolones. Drugs 1999; 58 Suppl. 2: 29–36PubMedCrossRefGoogle Scholar
  51. 51.
    Burgess DS. Pharmacodynamic principles of antimicrobial therapy in the prevention of resistance. Chest 1999; 115(3 Suppl.): 19–23SCrossRefGoogle Scholar
  52. 52.
    Odenholt I. Pharmacodynamic effects of subinhibitory antibiotic concentrations. Int J Antimicrob Agents 2001; 17(1): 1–8PubMedCrossRefGoogle Scholar
  53. 53.
    Olsen KM, Rudis MI, Rebuck JA, et al. Effect of once-daily dosing vs multiple daily dosing of tobramycin on enzyme markers of nephrotoxicity. Crit Care Med 2004; 32(8): 1678–82PubMedCrossRefGoogle Scholar
  54. 54.
    Muller M, dela Pena A, Derendorf H. Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: distribution in tissue. Antimicrob Agents Chemother 2004; 48(5): 1441–53PubMedCrossRefGoogle Scholar
  55. 55.
    Pea F, Pavan F, Nascimben E, et al. Levofloxacin disposition in cerebrospinal fluid in patients with external ventriculostomy. Antimicrob Agents Chemother 2003; 47(10): 3104–8PubMedCrossRefGoogle Scholar
  56. 56.
    Pea F, Pavan F, Di Qual E, et al. Urinary pharmacokinetics and theoretical pharmacodynamics of intravenous levofloxacin in intensive care unit patients treated with 500mg bid for ventilator-associated pneumonia. J Chemother 2003; 15(6): 563–7PubMedGoogle Scholar
  57. 57.
    Boy D, Well M, Kinzig-Schippers M, et al. Urinary bactericidal activity, urinary excretion and plasma concentrations of gatifloxacin (400mg) versus ciprofloxacin (500mg) in healthy volunteers after a single oral dose. Int J Antimicrob Agents 2004; 23 Suppl. 1: S6–16PubMedCrossRefGoogle Scholar
  58. 58.
    Garey KW, Amsden GW. Intravenous azithromycin. Ann Pharmacother 1999; 33(2): 218–28PubMedCrossRefGoogle Scholar
  59. 59.
    Vrhovac B, Sarapa N, Bakran I, et al. Pharmacokinetic changes in patients with oedema. Clin Pharmacokinet 1995; 28(5): 405–18PubMedCrossRefGoogle Scholar
  60. 60.
    Pinder M, Bellomo R, Lipman J. Pharmacological principles of antibiotic prescription in the critically ill. Anaesth Intensive Care 2002; 30(2): 134–44PubMedGoogle Scholar
  61. 61.
    Westphal JF, Brogard JM. Clinical pharmacokinetics of newer antibacterial agents in liver disease. Clin Pharmacokinet 1993; 24(1): 46–58PubMedCrossRefGoogle Scholar
  62. 62.
    Park JM, Lin YS, Calamia JC, et al. Transiently altered acetaminophen metabolism after liver transplantation. Clin Pharmacol Ther 2003; 73(6): 545–53PubMedCrossRefGoogle Scholar
  63. 63.
    Dorman T, Swoboda S, Zarfeshenfard F, et al. Impact of altered aminoglycoside volume of distribution on the adequacy of a three milligram per kilogram loading dose. Critical Care Research Group. Surgery 1998; 124(1): 73–8PubMedCrossRefGoogle Scholar
  64. 64.
    Zaske DE, Cipolle RJ, Strate RJ. Gentamicin dosage requirements: wide interpatient variations in 242 surgery patients with normal renal function. Surgery 1980; 87(2): 164–9PubMedGoogle Scholar
  65. 65.
    Tang GJ, Tang JJ, Lin BS, et al. Factors affecting gentamicin pharmacokinetics in septic patients. Acta Anaesthesiol Scand 1999; 43(7): 726–30PubMedCrossRefGoogle Scholar
  66. 66.
    Brunner M, Pernerstorfer T, Mayer BX, et al. Surgery and intensive care procedures affect the target site distribution of piperacillin. Crit Care Med 2000; 28(6): 1754–9PubMedCrossRefGoogle Scholar
  67. 67.
    Joukhadar C, Frossard M, Mayer BX, et al. Impaired target site penetration of beta-lactams may account for therapeutic failure in patients with septic shock. Crit Care Med 2001; 29(2): 385–91PubMedCrossRefGoogle Scholar
  68. 68.
    Joukhadar C, Klein N, Mayer BX, et al. Plasma and tissue pharmacokinetics of cefpirome in patients with sepsis. Crit Care Med 2002; 30(7): 1478–82PubMedCrossRefGoogle Scholar
  69. 69.
    Gomez CM, Cordingly JJ, Palazzo MG. Altered pharmacokinetics of ceftazidime in critically ill patients. Antimicrob Agents Chemother 1999; 43(7): 1798–802PubMedGoogle Scholar
  70. 70.
    Hanes SD, Wood GC, Herring V, et al. Intermittent and continuous ceftazidime infusion for critically ill trauma patients. Am J Surg 2000; 179(6): 436–40PubMedCrossRefGoogle Scholar
  71. 71.
    McKindley DS, Boucher BA, Hess MM, et al. Pharmacokinetics of aztreonam and imipenem in critically ill patients with pneumonia. Pharmacotherapy 1996; 16(5): 924–31PubMedGoogle Scholar
  72. 72.
    Botha FJ, van der Bijl P, Seifart HI, et al. Fluctuation of the volume of distribution of amikacin and its effect on once-daily dosage and clearance in a seriously ill patient. Intensive Care Med 1996; 22(5): 443–6PubMedCrossRefGoogle Scholar
  73. 73.
    Gous AG, Dance MD, Lipman J, et al. Changes in vancomycin pharmacokinetics in critically ill infants. Anaesth Intensive Care 1995; 23(6): 678–82PubMedGoogle Scholar
  74. 74.
    Ronchera-Oms CL, Tormo C, Ordovas JP, et al. Expanded gentamicin volume of distribution in critically ill adult patients receiving total parenteral nutrition. J Clin Pharm Ther 1995; 20(5): 253–8PubMedCrossRefGoogle Scholar
  75. 75.
    Etzel JV, Nafziger AN, Bertino Jr JS. Variation in the pharmacokinetics of gentamicin and tobramycin in patients with pleural effusions and hypoalbuminemia. Antimicrob Agents Chemother 1992; 36(3): 679–81PubMedCrossRefGoogle Scholar
  76. 76.
    Aldaz A, Ortega A, Idoate A, et al. Effects of hepatic function on vancomycin pharmacokinetics in patients with cancer. Ther Drug Monit 2000; 22(3): 250–7PubMedCrossRefGoogle Scholar
  77. 77.
    Buijk SL, Gyssens IC, Mouton JW, et al. Pharmacokinetics of ceftazidime in serum and peritoneal exudate during continuous versus intermittent administration to patients with severe intraabdominal infections. J Antimicrob Chemother 2002; 49(1): 121–8PubMedCrossRefGoogle Scholar
  78. 78.
    Romano S, Fernandez de Gatta MM, Calvo MV, et al. Population pharmacokinetics of amikacin in patients with haematological malignancies. J Antimicrob Chemother 1999; 44(2): 235–42PubMedCrossRefGoogle Scholar
  79. 79.
    Pea F, Brollo L, Lugano M, et al. Therapeutic drug monitoring-guided high teicoplanin dosage regimen required to treat a hypoalbuminemic renal transplant patient undergoing continuous venovenous hemofiltration. Ther Drug Monit 2001; 23(5): 587–8PubMedCrossRefGoogle Scholar
  80. 80.
    Sanchez A, Lopez-Herce J, Cueto E, et al. Teicoplanin pharmacokinetics in critically ill paediatric patients. J Antimicrob Chemother 1999; 44(3): 407–9PubMedCrossRefGoogle Scholar
  81. 81.
    Joynt GM, Lipman J, Gomersall CD, et al. The pharmacokinetics of once-daily dosing of ceftriaxone in critically ill patients. J Antimicrob Chemother 2001; 47(4): 421–9PubMedCrossRefGoogle Scholar
  82. 82.
    Mimoz O, Soreda S, Padoin C, et al. Ceftriaxone pharmacokinetics during iatrogenic hydroxyethyl starch-induced hypoalbuminemia: a model to explore the effects of decreased protein binding capacity on highly bound drugs. Anesthesiology 2000; 93(3): 735–43PubMedCrossRefGoogle Scholar
  83. 83.
    Bonapace CR, White RL, Friedrich LV, et al. Pharmacokinetics of cefepime in patients with thermal burn injury. Antimicrob Agents Chemother 1999; 43(12): 2848–54PubMedGoogle Scholar
  84. 84.
    Sampol E, Jacquet A, Viggiano M, et al. Plasma, urine and skin pharmacokinetics of cefepime in burns patients. J Antimicrob Chemother 2000; 46(2): 315–7PubMedCrossRefGoogle Scholar
  85. 85.
    Pea F, Di Qual E, Cusenza A, et al. Pharmacokinetics and pharmacodynamics of intravenous levofloxacin in patients with early-onset ventilator-associated pneumonia. Clin Pharmacokinet 2003; 42(6): 589–98PubMedCrossRefGoogle Scholar
  86. 86.
    Lipman J, Wallis SC, Rickard C. Low plasma cefepime levels in critically ill septic patients: pharmacokinetic modeling indicates improved troughs with revised dosing. Antimicrob Agents Chemother 1999; 43(10): 2559–61PubMedGoogle Scholar
  87. 87.
    Lipman J, Wallis SC, Boots RJ. Cefepime versus cefpirome: the importance of creatinine clearance. Anesth Analg 2003; 97(4): 1149–54PubMedCrossRefGoogle Scholar
  88. 88.
    Pea F, Porreca L, Baraldo M, et al. High vancomycin dosage regimens required by intensive care unit patients cotreated with drugs to improve haemodynamics following cardiac surgical procedures. J Antimicrob Chemother 2000; 45(3): 329–35PubMedCrossRefGoogle Scholar
  89. 89.
    Fernandez de Gatta MM, Fruns I, Hernandez JM, et al. Vancomycin pharmacokinetics and dosage requirements in hematologic malignancies. Clin Pharm 1993; 12(7): 515–20PubMedGoogle Scholar
  90. 90.
    Le Normand Y, Milpied N, Kergueris MF, et al. Pharmacokinetic parameters of vancomycin for therapeutic regimens in neutropenic adult patients. Int J Biomed Comput 1994; 36(1–2): 121–5PubMedCrossRefGoogle Scholar
  91. 91.
    Chang D. Influence of malignancy on the pharmacokinetics of vancomycin in infants and children. Pediatr Infect Dis J 1995; 14(8): 667–73PubMedCrossRefGoogle Scholar
  92. 92.
    Pea F, Viale P, Candoni A, et al. Acute leukemic patients with febrile neutropenia: a special population benefiting from higher dosing regimen of teicoplanin. Clin Pharmacokinet 2004; 43(6): 405–15PubMedCrossRefGoogle Scholar
  93. 93.
    King CH, Creger RJ, Ellner JJ. Pharmacokinetics of tobramycin and gentamicin in abusers of intravenous drugs. Antimicrob Agents Chemother 1985; 27(3): 285–90PubMedCrossRefGoogle Scholar
  94. 94.
    Rybak MJ, Lerner SA, Levine DP, et al. Teicoplanin pharmacokinetics in intravenous drug abusers being treated for bacterial endocarditis. Antimicrob Agents Chemother 1991; 35(4): 696–700PubMedCrossRefGoogle Scholar
  95. 95.
    Rybak MJ, Bailey EM, Lamp KC, et al. Pharmacokinetics and bactericidal rates of daptomycin and vancomycin in intravenous drug abusers being treated for gram-positive endocarditis and bacteremia. Antimicrob Agents Chemother 1992; 36(5): 1109–14PubMedCrossRefGoogle Scholar
  96. 96.
    Lugo G, Castaneda-Hernandez G. Relationship between hemodynamic and vital support measures and pharmacokinetic variability of amikacin in critically ill patients with sepsis. Crit Care Med 1997; 25(5): 806–11PubMedCrossRefGoogle Scholar
  97. 97.
    Pea F, Furlanut M, Bianchi L. Systemic vancomycin overexposure in a patient with spinal cord injury who had Staphylococcal sepsis and Clostridium difficile colitis. Ther Drug Monit 2000; 22(2): 233–4PubMedCrossRefGoogle Scholar
  98. 98.
    Pea F, Furlanut M. Pharmacokinetic aspects of treating infections in the intensive care unit: focus on drug interactions. Clin Pharmacokinet 2001; 40(11): 833–68PubMedCrossRefGoogle Scholar
  99. 99.
    Wada DR, Drover DR, Lemmens HJ. Determination of the distribution volume that can be used to calculate the intravenous loading dose. Clin Pharmacokinet 1998; 35(1): 1–7PubMedCrossRefGoogle Scholar
  100. 100.
    Bone RC. The pathogenesis of sepsis. Ann Intern Med 1991; 115(6): 457–69PubMedGoogle Scholar
  101. 101.
    Glauser MP, Zanetti G, Baumgartner JD, et al. Septic shock: pathogenesis. Lancet 1991; 338(8769): 732–6PubMedCrossRefGoogle Scholar
  102. 102.
    Denaro CP, Ravenscroft PJ. Usefulness of estimating individual pharmacokinetic data for aminoglycoside therapy in seriously ill patients. Aust N Z J Med 1987; 17(5): 526–32PubMedCrossRefGoogle Scholar
  103. 103.
    Summer WR, Michael JR, Lipsky JJ. Initial aminoglycoside levels in the critically ill. Crit Care Med 1983; 11(12): 948–50PubMedCrossRefGoogle Scholar
  104. 104.
    Kloth DD, Tegtmeier BR, Kong C, et al. Altered gentamicin pharmacokinetics during the perioperative period. Clin Pharm 1985; 4(2): 182–5PubMedGoogle Scholar
  105. 105.
    Chelluri L, Jastremski MS. Inadequacy of standard aminoglycoside loading doses in acutely ill patients. Crit Care Med 1987; 15(12): 1143–5PubMedCrossRefGoogle Scholar
  106. 106.
    Fuhs DW, Mann HJ, Kubajak CA, et al. Intrapatient variation of aminoglycoside pharmacokinetics in critically ill surgery patients. Clin Pharm 1988; 7(3): 207–13PubMedGoogle Scholar
  107. 107.
    Chelluri L, Warren J, Jastremski MS. Pharmacokinetics of a 3 mg/kg body weight loading dose of gentamicin or tobramycin in critically ill patients. Chest 1989; 95(6): 1295–7PubMedCrossRefGoogle Scholar
  108. 108.
    Mann HJ, Fuhs DW, Awang R, et al. Altered aminoglycoside pharmacokinetics in critically ill patients with sepsis. Clin Pharm 1987; 6(2): 148–53PubMedGoogle Scholar
  109. 109.
    Niemiec PW, Allo MD, Miller CF. Effect of altered volume of distribution on aminoglycoside levels in patients in surgical intensive care. Arch Surg 1987; 122(2): 207–12PubMedCrossRefGoogle Scholar
  110. 110.
    Dasta JF, Armstrong DK. Variability in aminoglycoside pharmacokinetics in critically ill surgical patients. Crit Care Med 1988; 16(4): 327–30PubMedCrossRefGoogle Scholar
  111. 111.
    Beckhouse MJ, Whyte IM, Byth PL, et al. Altered aminoglycoside pharmacokinetics in the critically ill. Anaesth Intensive Care 1988; 16(4): 418–22PubMedGoogle Scholar
  112. 112.
    Townsend PL, Fink MP, Stein KL, et al. Aminoglycoside pharmacokinetics: dosage requirements and nephrotoxicity in trauma patients. Crit Care Med 1989; 17(2): 154–7PubMedCrossRefGoogle Scholar
  113. 113.
    Triginer C, Izquierdo I, Fernandez R, et al. Gentamicin volume of distribution in critically ill septic patients. Intensive Care Med 1990; 16(5): 303–6PubMedCrossRefGoogle Scholar
  114. 114.
    Hansen M, Christrup LL, Jarlov JO, et al. Gentamicin dosing in critically ill patients. Acta Anaesthesiol Scand 2001; 45(6): 734–40PubMedCrossRefGoogle Scholar
  115. 115.
    De Paepe P, Belpaire FM, Buylaert WA. Pharmacokinetic and pharmacodynamic considerations when treating patients with sepsis and septic shock. Clin Pharmacokinet 2002; 41(14): 1135–51PubMedCrossRefGoogle Scholar
  116. 116.
    Lipman J, Wallis SC, Rickard CM, et al. Low cefpirome levels during twice daily dosing in critically ill septic patients: pharmacokinetic modelling calls for more frequent dosing. Intensive Care Med 2001; 27(2): 363–70PubMedCrossRefGoogle Scholar
  117. 117.
    Eid AA, Keddissi JI, Kinasewitz GT. Hypoalbuminemia as a cause of pleural effusions. Chest 1999; 115(4): 1066–9PubMedCrossRefGoogle Scholar
  118. 118.
    Makino J, Yoshiyama Y, Kanke M, et al. Pharmacokinetic study of penetration of meropenem into pleural effusion in patients with pleurisy. Jpn J Antibiot 2002; 55(1): 77–88PubMedGoogle Scholar
  119. 119.
    Goonetilleke AK, Dev D, Aziz I, et al. A comparative analysis of pharmacokinetics of ceftriaxone in serum and pleural fluid in humans: a study of once daily administration by intramuscular and intravenous routes. J Antimicrob Chemother 1996; 38(6): 969–76PubMedCrossRefGoogle Scholar
  120. 120.
    Kimura M, Matsushima T, Nakamura J, et al. Comparative study of penetration of lomefloxacin and ceftriaxone into transudative and exudative pleural effusion. Antimicrob Agents Chemother 1992; 36(12): 2774–7PubMedCrossRefGoogle Scholar
  121. 121.
    Scaglione F, Raichi M, Fraschini F. Serum protein binding and extravascular diffusion of methoxyimino cephalosporins: time courses of free and total concentrations of cefotaxime and ceftriaxone in serum and pleural exudate. J Antimicrob Chemother 1990; 26 Suppl. A: 1–10PubMedCrossRefGoogle Scholar
  122. 122.
    Miglioli PA, Pivetta P, Fantoni U, et al. Penetration of aztreonam into pleural exudate following rapid intravenous bolus or constant infusion. Chemotherapy 1990; 36(5): 321–4PubMedCrossRefGoogle Scholar
  123. 123.
    Limthongkul S, Charoenlap P, Nuchprayoon CJ, et al. Amikacin pharmacokinetics in plasma and pleural fluid. J Med Assoc Thai 1989; 72(2): 90–6PubMedGoogle Scholar
  124. 124.
    Limthongkul S, Poshyachinda M, Charoenlap P, et al. Gentamicin, tobramycin and netilmicin pharmacokinetics in plasma and pleural fluid. J Med Assoc Thai 1988; 71(10): 541–7PubMedGoogle Scholar
  125. 125.
    Barrueco M, Otero MJ, Garcia MJ, et al. Pleural fluid levels of cefoxitin in patients with renal impairment. Int J Clin Pharmacol Ther Toxicol 1986; 24(9): 485–9PubMedGoogle Scholar
  126. 126.
    Benoni G, Arosio E, Cuzzolin L, et al. Penetration of ceftriaxone into human pleural fluid. Antimicrob Agents Chemother 1986; 29(5): 906–8PubMedCrossRefGoogle Scholar
  127. 127.
    Garcia MJ, Otero MJ, Barrueco M, et al. Pharmacokinetics of cefoxitin in patients with pleural effusion on a multiple dosage regimen. Int J Clin Pharmacol Ther Toxicol 1984; 22(6): 300–3PubMedGoogle Scholar
  128. 128.
    Lechi A, Arosio E, Xerri L, et al. The kinetics of cefuroxime in ascitic and pleural fluid. Int J Clin Pharmacol Ther Toxicol 1982; 20(10): 493–6PubMedGoogle Scholar
  129. 129.
    Barrueco M, Garcia MJ, Otero MJ, et al. Disposition of cefoxitin in patients with pleural effusion. Clin Ther 1981; 3(6): 425–35PubMedGoogle Scholar
  130. 130.
    Joseph J, Vaughan LM, Basran GS. Penetration of intravenous and oral ciprofloxacin into sterile and empyemic human pleural fluid. Ann Pharmacother 1994; 28(3): 313–5PubMedGoogle Scholar
  131. 131.
    Walstad RA, Hellum KB, Blika S, et al. Pharmacokinetics and tissue penetration of ceftazidime: studies on lymph, aqueous humour, skin blister, cerebrospinal and pleural fluid. J Antimicrob Chemother 1983; 12 Suppl. A: 275–82PubMedCrossRefGoogle Scholar
  132. 132.
    Teixeira LR, Sasse SA, Villarino MA, et al. Antibiotic levels in empyemic pleural fluid. Chest 2000; 117(6): 1734–9PubMedCrossRefGoogle Scholar
  133. 133.
    Henriksen JH, Kiszka-Kanowitz M, Bendtsen F. Review article: volume expansion in patients with cirrhosis. Aliment Pharmacol Ther 2002; 16 Suppl. 5: 12–23PubMedCrossRefGoogle Scholar
  134. 134.
    Gill MA, Kern JW. Altered gentamicin distribution in ascitic patients. Am J Hosp Pharm 1979; 36(12): 1704–6PubMedGoogle Scholar
  135. 135.
    Lanao JM, Dominguez-Gil A, Macias JG, et al. The influence of ascites on the pharmacokinetics of amikacin. Int J Clin Pharmacol Ther Toxicol 1980; 18(2): 57–61PubMedGoogle Scholar
  136. 136.
    Sampliner R, Perrier D, Powell R, et al. Influence of ascites on tobramycin pharmacokinetics. J Clin Pharmacol 1984; 24(1): 43–6PubMedGoogle Scholar
  137. 137.
    Lewis GP, Jusko WJ. Pharmacokinetics of ampicillin in cirrhosis. Clin Pharmacol Ther 1975; 18(4): 475–84PubMedGoogle Scholar
  138. 138.
    Benoni G, Arosio E, Raimondi MG, et al. Distribution of ceftazidime in ascitic fluid. Antimicrob Agents Chemother 1984; 25(6): 760–3PubMedCrossRefGoogle Scholar
  139. 139.
    el Touny M, el Guinaidy MA, Abdel Barry M, et al. Pharmacokinetics of ceftazidime in patients with liver cirrhosis and ascites. J Antimicrob Chemother 1991; 28(1): 95–100PubMedCrossRefGoogle Scholar
  140. 140.
    Stoeckel K, Koup JR. Pharmacokinetics of ceftriaxone in patients with renal and liver insufficiency and correlations with a physiologic nonlinear protein binding model. Am J Med 1984; 77(4C): 26–32PubMedGoogle Scholar
  141. 141.
    Hary L, Andrejak M, Leleu S, et al. The pharmacokinetics of ceftriaxone and cefotaxime in cirrhotic patients with ascites. Eur J Clin Pharmacol 1989; 36(6): 613–6PubMedCrossRefGoogle Scholar
  142. 142.
    Hary L, Smail A, Ducroix JP, et al. Pharmacokinetics and ascitic fluid penetration of piperacillin in cirrhosis. Fundam Clin Pharmacol 1991; 5(9): 789–95PubMedCrossRefGoogle Scholar
  143. 143.
    el Touny M, el Guinaidy M, Abdel Barry M, et al. Pharmacokinetics of aztreonam in patients with liver cirrhosis and ascites. J Antimicrob Chemother 1992; 30(3): 387–95PubMedCrossRefGoogle Scholar
  144. 144.
    Montay G, Gaillot J. Pharmacokinetics of fluoroquinolones in hepatic failure. J Antimicrob Chemother 1990; 26 Suppl. B: 61–7PubMedCrossRefGoogle Scholar
  145. 145.
    Lugo G, Castaneda-Hernandez G. Amikacin Bayesian forecasting in critically ill patients with sepsis and cirrhosis. Ther Drug Monit 1997; 19(3): 271–6PubMedCrossRefGoogle Scholar
  146. 146.
    Rosenbaum GS, Klein NC, Cunha BA. Poststernotomy mediastinitis. Heart Lung 1990; 19(4): 371–2PubMedGoogle Scholar
  147. 147.
    Wilkes MM, Navickis RJ. Patient survival after human albumin administration: a meta-analysis of randomized, controlled trials. Ann Intern Med 2001; 135(3): 149–64PubMedGoogle Scholar
  148. 148.
    Worman LW. The role of fluid sequestration in the pathogenesis of mediastinitis. Am J Surg 1966; 111(6): 813–8PubMedCrossRefGoogle Scholar
  149. 149.
    Lovering AM, Zhang J, Bannister GC, et al. Penetration of linezolid into bone, fat, muscle and haematoma of patients undergoing routine hip replacement. J Antimicrob Chemother 2002; 50(1): 73–7PubMedCrossRefGoogle Scholar
  150. 150.
    Rowland M. Clinical pharmacokinetics of teicoplanin. Clin Pharmacokinet 1990; 18(3): 184–209PubMedCrossRefGoogle Scholar
  151. 151.
    Jaehde U, Sorgel F. Clinical pharmacokinetics in patients with burns. Clin Pharmacokinet 1995; 29(1): 15–28PubMedCrossRefGoogle Scholar
  152. 152.
    Weinbren MJ. Pharmacokinetics of antibiotics in burn patients. J Antimicrob Chemother 1999; 44(3): 319–27PubMedCrossRefGoogle Scholar
  153. 153.
    Lesne-Hulin A, Bourget P, Le Bever H, et al. Therapeutic monitoring of teicoplanin in a severely burned patient. Ann Fr Anesth Reanim 1997; 16(4): 374–7PubMedCrossRefGoogle Scholar
  154. 154.
    Zaske DE, Sawchuk RJ, Gerding DN, et al. Increased dosage requirements of gentamicin in burn patients. J Trauma 1976; 16(10): 824–8PubMedCrossRefGoogle Scholar
  155. 155.
    Zaske DE, Chin T, Kohls PR, et al. Initial dosage regimens of gentamicin in patients with burns. J Burn Care Rehabil 1991; 12(1): 46–50PubMedCrossRefGoogle Scholar
  156. 156.
    Zaske DE, Sawchuk RJ, Strate RG. The necessity of increased doses of amikacin in burn patients. Surgery 1978; 84(5): 603–8PubMedGoogle Scholar
  157. 157.
    Loirat P, Rohan J, Baillet A, et al. Increased glomerular filtration rate in patients with major burns and its effect on the pharmacokinetics of tobramycin. N Engl J Med 1978; 299(17): 915–9PubMedCrossRefGoogle Scholar
  158. 158.
    Adam D, Zellner PR, Koeppe P, et al. Pharmacokinetics of ticarcillin/clavulanate in severely burned patients. J Antimicrob Chemother 1989; 24 Suppl. B: 121–9PubMedCrossRefGoogle Scholar
  159. 159.
    Walstad RA, Aanderud L, Thurmann-Nielsen E. Pharmacokinetics and tissue concentrations of ceftazidime in burn patients. Eur J Clin Pharmacol 1988; 35(5): 543–9PubMedCrossRefGoogle Scholar
  160. 160.
    Yoshida T, Homma K, Fujioka H, et al. Fundamental and clinical studies on meropenem in burn infections. J Chemother 1993; 5 Suppl. 1: 142–3Google Scholar
  161. 161.
    Friedrich LV, White RL, Kays MB, et al. Aztreonam pharmacokinetics in burn patients. Antimicrob Agents Chemother 1991; 35(1): 57–61PubMedCrossRefGoogle Scholar
  162. 162.
    Brater DC, Bawdon RE, Anderson SA, et al. Vancomycin elimination in patients with burn injury. Clin Pharmacol Ther 1986; 39(6): 631–4PubMedCrossRefGoogle Scholar
  163. 163.
    Garrelts JC, Peterie JD. Altered vancomycin dose vs serum concentration relationship in burn patients. Clin Pharmacol Ther 1988; 44(1): 9–13PubMedCrossRefGoogle Scholar
  164. 164.
    Rybak MJ, Albrecht LM, Berman JR, et al. Vancomycin pharmacokinetics in burn patients and intravenous drug abusers. Antimicrob Agents Chemother 1990; 34(5): 792–5PubMedCrossRefGoogle Scholar
  165. 165.
    Potel G, Moutet J, Bernareggi A, et al. Pharmacokinetics of teicoplanin in burn patients. Scand J Infect Dis Suppl 1990; 72: 29–34PubMedGoogle Scholar
  166. 166.
    Steer JA, Papini RP, Wilson AP, et al. Pharmacokinetics of a single dose of teicoplanin in burn patients. J Antimicrob Chemother 1996; 37(3): 545–53PubMedCrossRefGoogle Scholar
  167. 167.
    Garrelts JC, Jost G, Kowalsky SF, et al. Ciprofloxacin pharmacokinetics in burn patients. Antimicrob Agents Chemother 1996; 40(5): 1153–6PubMedGoogle Scholar
  168. 168.
    Boucher BA, Hickerson WL, Kuhl DA, et al. Imipenem pharmacokinetics in patients with burns. Clin Pharmacol Ther 1990; 48(2): 130–7PubMedCrossRefGoogle Scholar
  169. 169.
    Bourget P, Lesne-Hulin A, Le Reveille R, et al. Clinical pharmacokinetics of piperacillin-tazobactam combination in patients with major burns and signs of infection. Antimicrob Agents Chemother 1996; 40(1): 139–45PubMedGoogle Scholar
  170. 170.
    Lesne-Hulin A, Bourget P, Ravat F, et al. Clinical pharmacokinetics of ciprofloxacin in patients with major burns. Eur J Clin Pharmacol 1999; 55(7): 515–9PubMedCrossRefGoogle Scholar
  171. 171.
    Weinbren MJ. Pharmacokinetics of antibiotics in burns patients. J Antimicrob Chemother 2001; 47(5): 720PubMedCrossRefGoogle Scholar
  172. 172.
    Hoey LL, Tschida SJ, Rotschafer JC, et al. Wide variation in single, daily-dose aminoglycoside pharmacokinetics in patients with burn injuries. J Burn Care Rehabil 1997; 18(2): 116–24PubMedCrossRefGoogle Scholar
  173. 173.
    Rice TL. Simplified dosing and monitoring of vancomycin for the burn care clinician. Burns 1992; 18(5): 355–61PubMedCrossRefGoogle Scholar
  174. 174.
    Boucher BA, Kuhl DA, Hickerson WL. Pharmacokinetics of systemically administered antibiotics in patients with thermal injury. Clin Infect Dis 1992; 14(2): 458–63PubMedCrossRefGoogle Scholar
  175. 175.
    Fry DE. The importance of antibiotic pharmacokinetics in critical illness. Am J Surg 1996; 172(6A): 20–5SCrossRefGoogle Scholar
  176. 176.
    Lipman J, Scribante J, Gous AG, et al. Pharmacokinetic profiles of high-dose intravenous ciprofloxacin in severe sepsis. The Baragwanath Ciprofloxacin Study Group. Antimicrob Agents Chemother 1998; 42(9): 2235–9PubMedGoogle Scholar
  177. 177.
    Olsen NV. Effects of dopamine on renal haemodynamics tubular function and sodium excretion in normal humans. Dan Med Bull 1998; 45(3): 282–97PubMedGoogle Scholar
  178. 178.
    Lass NA, Glock D, Goldberg LI. Cardiovascular and renal hemodynamic effects of intravenous infusions of the selective DA1 agonist, fenoldopam, used alone or in combination with dopamine and dobutamine. Circulation 1988; 78(5 Pt 1): 1310–5PubMedCrossRefGoogle Scholar
  179. 179.
    Ludens JH, Hook JB, Brody MJ, et al. Enhancement of renal blood flow by furosemide. J Pharmacol Exp Ther 1968; 163(2): 456–60PubMedGoogle Scholar
  180. 180.
    Ichai C, Passeron C, Carles M, et al. Prolonged low-dose dopamine infusion induces a transient improvement in renal function in hemodynamically stable, critically ill patients: a single-blind, prospective, controlled study. Crit Care Med 2000; 28(5): 1329–35PubMedCrossRefGoogle Scholar
  181. 181.
    Ichai C, Soubielle J, Carles M, et al. Comparison of the renal effects of low to high doses of dopamine and dobutamine in critically ill patients: a single-blind randomized study. Crit Care Med 2000; 28(4): 921–8PubMedCrossRefGoogle Scholar
  182. 182.
    Moellering Jr RC, Krogstad DJ, Greenblatt DJ. Vancomycin therapy in patients with impaired renal function: a nomogram for dosage. Annals of Internal Medicine 1981; 94: 343–6PubMedGoogle Scholar
  183. 183.
    Lang F. Osmotic diuresis. Ren Physiol 1987; 10(3-4): 160–73PubMedGoogle Scholar
  184. 184.
    Kaojarern S, Maoleekoonpairoj S, Atichartakarn V. Pharmacokinetics of amikacin in hematologic malignancies. Antimicrob Agents Chemother 1989; 33(8): 1406–8PubMedCrossRefGoogle Scholar
  185. 185.
    Tod M, Lortholary O, Seytre D, et al. Population pharmacokinetic study of amikacin administered once or twice daily to febrile, severely neutropenic adults. Antimicrob Agents Chemother 1998; 42(4): 849–56PubMedGoogle Scholar
  186. 186.
    Zeitany RG, el Saghir NS, Santhosh-Kumar CR, et al. Increased aminoglycoside dosage requirements in hematologic malignancy. Antimicrob Agents Chemother 1990; 34(5): 702–8PubMedCrossRefGoogle Scholar
  187. 187.
    Lortholary O, Tod M, Rizzo N, et al. Population pharmacokinetic study of teicoplanin in severely neutropenic patients. Antimicrob Agents Chemother 1996; 40(5): 1242–7PubMedGoogle Scholar
  188. 188.
    Nyhlen A, Ljungberg B, Nilsson-Ehle I. Pharmacokinetics of ceftazidime in febrile neutropenic patients. Scand J Infect Dis 2001; 33(3): 222–6PubMedCrossRefGoogle Scholar
  189. 189.
    Nyhlen A, Ljungberg B, Nilsson-Ehle I. Pharmacokinetics of meropenem in febrile neutropenic patients. Swedish Study Group. Eur J Clin Microbiol Infect Dis 1997; 16(11): 797–802PubMedCrossRefGoogle Scholar
  190. 190.
    Cirillo M, Anastasio P, Spitali L, et al. Effects of a meat meal on renal sodium handling and sodium balance. Miner Electrolyte Metab 1998; 24(4): 279–84PubMedCrossRefGoogle Scholar
  191. 191.
    Pea F, Viale P, Damiani D, et al. Ceftazidime in acute myeloid leukemia patients with febrile neutropenia: helpfulness of continuous intravenous infusion in maximizing pharmacodynamic exposure. Antimicrob Agents Chemother 2005; 49(8): 3550–3PubMedCrossRefGoogle Scholar
  192. 192.
    Bohler J, Donauer J, Keller F. Pharmacokinetic principles during continuous renal replacement therapy: drugs and dosage. Kidney Int Suppl 1999; 72: S24–8PubMedGoogle Scholar
  193. 193.
    Bugge JF. Pharmacokinetics and drug dosing adjustments during continuous venovenous hemofiltration or hemodiafiltration in critically ill patients. Acta Anaesthesiol Scand 2001; 45(8): 929–34PubMedCrossRefGoogle Scholar
  194. 194.
    Mueller BA, Pasko DA, Sowinski KM. Higher renal replacement therapy dose delivery influences on drug therapy. Artif Organs 2003; 27(9): 808–14PubMedCrossRefGoogle Scholar
  195. 195.
    Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976; 16(1): 31–41PubMedCrossRefGoogle Scholar
  196. 196.
    Mohler JL, Barton SD, Blouin RA, et al. The evaluation of creatinine clearance in spinal cord injury patients. J Urol 1986; 136(2): 366–9PubMedGoogle Scholar
  197. 197.
    Pea F, Bertolissi M, Di Silvestre A, et al. TDM coupled with Bayesian forecasting should be considered an invaluable tool for optimizing vancomycin daily exposure in unstable critically ill patients. Int J Antimicrob Agents 2002; 20(5): 326–32PubMedCrossRefGoogle Scholar
  198. 198.
    Petrak RM, Sexton DJ, Butera ML, et al. The value of an infectious diseases specialist. Clin Infect Dis 2003; 36(8): 1013–7PubMedCrossRefGoogle Scholar
  199. 199.
    Buijk SE, Mouton JW, Gyssens IC, et al. Experience with a once-daily dosing program of aminoglycosides in critically ill patients. Intensive Care Med 2002; 28(7): 936–42PubMedCrossRefGoogle Scholar
  200. 200.
    Bartal C, Danon A, Schlaeffer F, et al. Pharmacokinetic dosing of aminoglycosides: a controlled trial. Am J Med 2003; 114(3): 194–8PubMedCrossRefGoogle Scholar
  201. 201.
    Welty TE, Copa AK. Impact of vancomycin therapeutic drug monitoring on patient care. Ann Pharmacother 1994; 28(12): 1335–9PubMedGoogle Scholar
  202. 202.
    van Lent-Evers NA, Mathot RA, Geus WP, et al. Impact of goal-oriented and model-based clinical pharmacokinetic dosing of aminoglycosides on clinical outcome: a cost-effectiveness analysis. Ther Drug Monit 1999; 21(1): 63–73PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2005

Authors and Affiliations

  1. 1.Department of Experimental and Clinical Pathology and Medicine, Medical School, Institute of Clinical Pharmacology and ToxicologyUniversity of UdineUdineItaly
  2. 2.Department of Medical and Morphological Research, Medical School, Clinic of Infectious DiseasesUniversity of UdineUdineItaly
  3. 3.Institute of Clinical Pharmacology and ToxicologyUniversity of UdineUdineItaly

Personalised recommendations