Clinical Pharmacokinetics

, Volume 43, Issue 6, pp 349–360 | Cite as

Spacer Devices for Metered Dose Inhalers

Current Opinion

Abstract

Spacer devices are attachments to the mouthpieces of pressurised metered dose inhalers (pMDIs), and range from tube spacers with a volume of <50mL to holding chambers with a volume of 750mL. Compared with a pMDI alone, spacers minimise coordination difficulties, reduce oropharyngeal deposition and often increase lung deposition. Spacers may not improve the clinical effect in patients able to use a pMDI properly, but may allow maintenance dosages of bronchodilators and corticosteroids to be reduced. Correct use of spacer devices is important, especially achieving control over electrostatic charge accumulation on the walls of plastic devices. In patients with severe acute asthma or severe chronic obstructive pulmonary disease, a pMDI plus large volume spacer may be a viable alternative to a nebuliser for delivering large bronchodilator doses. Although the addition of a spacer to every pMDI would not be justified, the use of large volume spacers has been recommended for any inhaled asthma drug in young children, and as a means of reducing systemic bioavailability of inhaled corticosteroids in adults and children alike.

References

  1. 1.
    Woodcock A, Acerbi D, Poli G. Modulite technology: pharmacodynamic and pharmacokinetic implications. Respir Med 2002; 96 (D Suppl.): S9–S15PubMedCrossRefGoogle Scholar
  2. 2.
    Newman SP. Devices for inhaling medications. In: Clark TJH, Lee T, Godfrey S, et al., editors. Asthma. 4th ed. London: Edward Arnold Limited, 2000: 329–54Google Scholar
  3. 3.
    Partridge MR, Woodcock AA, Sheffer AL, et al. Chlorofluorocarbon-free inhalers: are we ready for the change?. Eur Respir J 1998; 11: 1006–8PubMedCrossRefGoogle Scholar
  4. 4.
    Pedersen S, Frost L, Arnfred T. Errors in inhalation technique and efficiency in inhaler use in asthmatic children. Allergy 1986; 41: 118–24PubMedCrossRefGoogle Scholar
  5. 5.
    Thiel CG. From Susie’s question to CFC free: an inventor’s perspective on forty years of MDI development and regulation. In: Dalby RN, Byron PR, Farr SJ, editors. Respiratory drug delivery V. Buffalo Grove (IL): Interpharm Press, 1996: 115–23Google Scholar
  6. 6.
    Freigang B. New method of beclomethasone aerosol administration to children under 4 years of age. CMAJ 1977; 117: 1308–9Google Scholar
  7. 7.
    König P. Spacer devices used with metered dose inhalers: breakthrough or gimmick?. Chest 1985; 88: 276–84PubMedCrossRefGoogle Scholar
  8. 8.
    Newman SP, Newhouse MT. Effect of add-on devices for aerosol drug delivery: deposition studies and clinical aspects. J Aerosol Med 1996; 9: 55–70PubMedCrossRefGoogle Scholar
  9. 9.
    Woodcock A, Kendall J, Humberstone A, et al. The blo-bag, a disposable spacer. Postgrad Med J 1984; 60 (1 Suppl.): 37–9PubMedGoogle Scholar
  10. 10.
    El-Kassimi FA. ’Aerosol-in-bag’ administration of inhaled bronchodilators. Eur J Respir Dis 1987; 70: 234–8PubMedGoogle Scholar
  11. 11.
    Dolovich MB. Proceedings of Drug Information Association Spacer Device Symposium; 1995 Mar 27–28; Boston. Horsham (PA): Drug Information Association, 1995Google Scholar
  12. 12.
    Kraemer R, Frey U, Sommer CW, et al. Short-term effect of albuterol, delivered via a new auxiliary device, in wheezy infants. Am Rev Respir Dis 1991; 144: 347–51PubMedCrossRefGoogle Scholar
  13. 13.
    Bisgaard H. Automatic actuation of a dry powder inhaler into a non-electrostatic spacer. Am J Respir Crit Care Med 1998; 157: 518–21PubMedGoogle Scholar
  14. 14.
    O’Callaghan C, Lynch J, Cant M, et al. Improvement in sodium cromoglycate delivery from a spacer device by use of an antistatic lining, immediate inhalation and avoiding multiple actuations of drug. Thorax 1993; 48: 603–6PubMedCrossRefGoogle Scholar
  15. 15.
    Chrystyn H. Methods to identify drug deposition in the lungs following inhalation. Br J Clin Pharmacol 2001; 51: 289–99PubMedCrossRefGoogle Scholar
  16. 16.
    Agertoft L, Pedersen S. Influence of spacer device on drug delivery to young children with asthma. Arch Dis Child 1994; 71: 217–20PubMedCrossRefGoogle Scholar
  17. 17.
    Snell NJC, Ganderton D. Assessing lung deposition of inhaled medications. Respir Med 1999; 93: 123–33PubMedCrossRefGoogle Scholar
  18. 18.
    Richards JC, Hirst PH, Pitcairn GR, et al. Deposition and pharmacokinetics of flunisolide delivered from pressurized inhalers containing non-CFC and CFC propellants. J Aerosol Med 2001; 14: 197–208PubMedCrossRefGoogle Scholar
  19. 19.
    Hirst PH, Pitcairn GR, Richards JC, et al. Deposition and pharmacokinetics of an HFA formulation of triamcinolone acetonide delivered by pressurized metered dose inhaler. J Aerosol Med 2001; 14: 155–65PubMedCrossRefGoogle Scholar
  20. 20.
    Dolovich MB, Ruffin R, Corr D, et al. Clinical evaluation of a new demand-inhalation MDI aerosol delivery device. Chest 1983; 84: 36–41PubMedCrossRefGoogle Scholar
  21. 21.
    Hardy JG, Jasuja AK, Frier M, et al. A small volume spacer for use with a breath-operated pressurised metered dose inhaler. Int J Pharm 1996; 142: 129–33CrossRefGoogle Scholar
  22. 22.
    Vidgren MT, Paronen P, Karkkainen A, et al. Effect of extension devices on drug deposition from inhalation aerosols. Int J Pharm 1987; 39: 107–12CrossRefGoogle Scholar
  23. 23.
    Barry PW, O’Callaghan C. Inhalational drug delivery from seven different spacer devices. Thorax 1996; 51: 835–40PubMedCrossRefGoogle Scholar
  24. 24.
    Barry PW, O’Callaghan C. The optimum size and shape of spacer devices for inhalational therapy. J Aerosol Med 1995; 8: 303–5CrossRefGoogle Scholar
  25. 25.
    Matthys H. Inhalation delivery of asthma drugs. Lung 1990; 168 Suppl.: 645–52PubMedCrossRefGoogle Scholar
  26. 26.
    Toogood JH, Baskerville J, Jennings B, et al. Use of spacers to facilitate inhaled corticosteroid treatment in asthma. Am Rev Respir Dis 1984; 129: 723–9PubMedGoogle Scholar
  27. 27.
    Newman SP, Talaee N, Clarke SW. Salbutamol aerosol delivery with the Rondo spacer. Acta Ther 1991; 17: 49–58Google Scholar
  28. 28.
    O’Callaghan C, Barry PW. Spacer devices in the treatment of asthma. BMJ 1997; 314: 1061–2PubMedCrossRefGoogle Scholar
  29. 29.
    Bloomfield P, Crompton GK, Winsey NJP. A tube spacer to improve inhalation of drugs from pressurised aerosols. BMJ 1979; 2: 1479PubMedCrossRefGoogle Scholar
  30. 30.
    Lee H, Evans HE. Evaluation of inhalation aids of metered dose inhalers in asthmatic children. Chest 1987; 91: 366–9PubMedCrossRefGoogle Scholar
  31. 31.
    Crimi N, Palermo F, Cacopardo B, et al. Bronchodilator effect of Aerochamber and InspirEase in comparison with metered dose inhaler. Eur J Respir Dis 1987; 71: 153–7PubMedGoogle Scholar
  32. 32.
    Godden DJ, Crompton GK. An objective assessment of the tube spacer in patients unable to use a conventional pressurised aerosol efficiently. Br J Dis Chest 1981; 75: 165–8PubMedCrossRefGoogle Scholar
  33. 33.
    Pedersen S. Aerosol treatment of bronchoconstriction in children, with or without a tube spacer. N Engl J Med 1983; 308: 1328–30PubMedCrossRefGoogle Scholar
  34. 34.
    British Thoracic Society. British guideline on the management of asthma. Thorax 2003; 58 Suppl. I: 1–97Google Scholar
  35. 35.
    McCarthy TP. Nebulised budesonide in severe childhood asthma. Lancet 1989; I: 379–80CrossRefGoogle Scholar
  36. 36.
    Bisgaard H, Munck SL, Nielsen JP, et al. Inhaled budesonide for treatment of recurrent wheezing in early childhood. Lancet 1990; 336: 649–51PubMedCrossRefGoogle Scholar
  37. 37.
    Keeley D. Large volume plastic spacers in asthma. BMJ 1992; 305: 598–9PubMedCrossRefGoogle Scholar
  38. 38.
    Barnes PJ, Pedersen S, Busse WW. Efficacy and safety of inhaled corticosteroids: new developments. Am J Respir Crit Care Med 1998; 157: S1–S53PubMedGoogle Scholar
  39. 39.
    Derendorf H. Pharmacokinetic and pharmacodynamic properties of inhaled corticosteroids in relation to efficacy and safety. Respir Med 1997; 91 (A Suppl.): 22–8PubMedCrossRefGoogle Scholar
  40. 40.
    Brown PH, Blundell G, Greening AP, et al. Do large volume spacers reduce the systemic effects of high dose inhaled corticosteroids?. Thorax 1990; 45: 736–9PubMedCrossRefGoogle Scholar
  41. 41.
    British Asthma Guidelines Coordinating Committee. British Guidelines on asthma management: 1995 review and position statement. Thorax 1997; 52: S1–S24CrossRefGoogle Scholar
  42. 42.
    Noseda A, Yernault JC. Sympathomimetics in acute severe asthma: inhaled or parenteral, nebuliser or spacer. Eur Respir J 1989; 2: 377–82PubMedGoogle Scholar
  43. 43.
    Laursen LC, Munch EP, Weeke E, et al. Comparison of a 750ml spacer and a nebulizer in domiciliary treatment of severe chronic asthma with terbutaline. Eur J Respir Dis 1983; 64: 498–503PubMedGoogle Scholar
  44. 44.
    Colacone A, Marc A, Wolkove N, et al. A comparison of albuterol administered by metered dose inhaler (and holding chamber) or wet nebuliser in acute asthma. Chest 1993; 104: 835–41PubMedCrossRefGoogle Scholar
  45. 45.
    Chrystyn H. Pharmacokinetic methods to determine the lung deposition of nebulized drugs. Eur Respir Rev 2000; 10: 228–31Google Scholar
  46. 46.
    O’Callaghan C, Barry PW. The science of nebulised drug delivery. Thorax 1997; 52 Suppl. 2: S31–44PubMedCrossRefGoogle Scholar
  47. 47.
    Fok TF, Lam K, Ng PC, et al. Delivery of salbutamol to nonventilated preterm infants by metered dose inhaler, jet nebuliser and ultrasonic nebuliser. Eur Respir J 1998; 12: 159–64PubMedCrossRefGoogle Scholar
  48. 48.
    Chou KJ, Cunningham SJ, Crain EF. Metered dose inhalers with spacers vs nebulisers for paediatric asthma. Arch Pediatr Adolesc Med 1995; 149: 201–5PubMedCrossRefGoogle Scholar
  49. 49.
    Teirlinck TJPM. Nebulizers in home health care: additional requirements with regard to product standardization. Eur Respir Rev 2000; 10(72): 220–3Google Scholar
  50. 50.
    Cates CCJ, Bara A, Crilly JA, et al. Holding chambers versus nebulisers for beta-agonist treatment of acute asthma. In: The Cochrane Library, issue 1. Chichester: John Wiley & Sons Ltd, 2004.Google Scholar
  51. 51.
    Dewar AL, Stewart A, Cogswell JJ, et al. A randomised controlled trial to assess the relative benefits of large volume spacers and nebulisers to treat acute asthma in hospital. Arch Dis Child 1999; 80: 421–3PubMedCrossRefGoogle Scholar
  52. 52.
    Gleeson JGA, Price JF. Nebuhaler technique. Br J Dis Chest 1988; 82: 172–4PubMedCrossRefGoogle Scholar
  53. 53.
    Green CP, Price JF. Bronchodilator effect of salbutamol via the volumatic in children. Respir Med 1991; 85: 325–6PubMedCrossRefGoogle Scholar
  54. 54.
    Newman SP, Woodman G, Morén F, et al. Bronchodilator therapy with nebuhaler: how important is the delay between firing the dose and inhaling?. Br J Dis Chest 1987; 82: 262–7CrossRefGoogle Scholar
  55. 55.
    Dewsbury NJ, Kenyon CJ, Newman SP. The effect of handling techniques on electrostatic charge on spacer devices: a correlation with in vitro particle size analysis. Int J Pharm 1996; 137: 261–4CrossRefGoogle Scholar
  56. 56.
    Pierart F, Wildhaber JH, Vrancken I, et al. Washing plastic spacers in household detergent reduces electrostatic charge and greatly improves delivery. Eur Respir J 1999; 13: 673–8PubMedCrossRefGoogle Scholar
  57. 57.
    Kenyon CJ, Thorsson L, Borgström L, et al. The effects of static charge in spacer devices on glucocorticosteroid aerosol deposition in asthmatic patients. Eur Respir J 1998; 11: 606–10PubMedGoogle Scholar
  58. 58.
    Wildhaber JH, Waterer GW, Hall GL, et al. Reducing electrostatic charge on spacer devices and bronchodilator response. Br J Clin Pharmacol 2000; 50: 277–80PubMedCrossRefGoogle Scholar
  59. 59.
    Barry PW, O’Callaghan C. The output of budesonide from spacer devices assessed under simulated breathing conditions. J Allergy Clin Immunol 1999; 104: 1205–10PubMedCrossRefGoogle Scholar
  60. 60.
    Thorsson L, Kenyon CJ, Newman SP, et al. Lung deposition of budesonide in asthmatics: a comparison of different formulations. Int J Pharm 1998; 168: 119–27CrossRefGoogle Scholar
  61. 61.
    Baum EA. Design, development and testing of a new breath actuated inhaler. In: Inspiration: developments in inhalation therapy. Oxford: The Medicine Publishing Foundation, 1989: 21–30Google Scholar
  62. 62.
    Lenney J, Innes JA, Crompton GK. Inappropriate inhaler use: assessment of use and patient preference of seven inhalation devices. Respir Med 2000; 94: 496–500PubMedCrossRefGoogle Scholar
  63. 63.
    Newman SP, Weisz AWB, Talaee N, et al. Improvement of drug delivery with a breath actuated pressurised aerosol for patients with poor inhaler technique. Thorax 1991; 46: 712–6PubMedCrossRefGoogle Scholar
  64. 64.
    Pedersen S, Mortensen S. Use of different inhalation devices in children. Lung 1990; 168 Suppl.: 653–7PubMedCrossRefGoogle Scholar
  65. 65.
    Newman SP, Clarke SW. Bronchodilator delivery from Gentlehaler, a new low-velocity pressurized aerosol inhaler. Chest 1993; 103: 1442–6PubMedCrossRefGoogle Scholar
  66. 66.
    Mohsen N. pMDI aerosol momentum manipulation and biotargeted delivery. In: Dalby RN, Byron PR, Peart J, et al., editors. Respiratory drug delivery VIII. Raleigh (NC): Davis Horwood, 2002: 593–97Google Scholar
  67. 67.
    Newnham DM, McDevitt DG, Lipworth BJ. Comparison of the extrapulmonary beta-2 adrenoceptor responses and pharmacokinetics of salbutamol metered dose-inhaler and modified actuator device. Br J Clin Pharmacol 1993; 36: 445–50PubMedCrossRefGoogle Scholar
  68. 68.
    Newman SP, Steed KP, Hooper G, et al. Improved targeting of beclomethasone dipropionate (250mg metered dose inhaler) to the lungs of asthmatics with the Spacehaler. Respir Med 1999; 93: 424–31PubMedCrossRefGoogle Scholar
  69. 69.
    Newman SP, Steed KP, Reader SJ, et al. Efficient delivery to the lungs of flunisolide from a new portable hand-held multidose nebuliser. J Pharm Sci 1996; 85: 960–4PubMedCrossRefGoogle Scholar
  70. 70.
    Leach CL, Davidson PJ, Boudreau RJ. Improved airway targeting with the CFC-free HFA-beclomethasone metered-dos inhaler compared with CFC-beclomethasone. Eur Respir J 1998; 12: 1346–53PubMedCrossRefGoogle Scholar
  71. 71.
    Busse WW, Brazinsky S, Jacobson K, et al. Efficacy response of inhaled beclomethasone dipropionate in asthma is proportional to dose and is improved by formulation with a new propellant. J Allergy Clin Immunol 1999; 104: 1215–22PubMedCrossRefGoogle Scholar
  72. 72.
    Pritchard JN. The influence of lung deposition on clinical response. J Aerosol Med 2001; 14 (Suppl. 1): S19–26PubMedCrossRefGoogle Scholar
  73. 73.
    Newman SP, Busse WW. Evolution of dry powder inhaler design, formulation and performance. Respir Med 2002; 96: 293–304PubMedCrossRefGoogle Scholar
  74. 74.
    Zierenberg B, Eicher J, Dunne S, et al. Boehringer Ingelheim nebulizer BINEB: a new approach to inhalation therapy. In: Dalby RN, Byron PR, Farr SJ, editors, Respiratory drug delivery V. Buffalo Grove (IL): Interpharm Press, 1996: 187–93Google Scholar
  75. 75.
    Hochrainer D, Hölz H. Comparison of cloud velocities delivered from Respimat soft mist inhaler or MDIs [abstract]. J Aerosol Med 2001; 14: 386Google Scholar
  76. 76.
    Progress. National Asthma Campaign Newsletter, August 200Google Scholar
  77. 77.
    Pedersen S. Delivery systems in children. In: Barnes PJ, Grunstein MM, Leff AR, et al., editors. Asthma. Philadelphia (PA; Lippincott-Raven, 1997: 1915–29Google Scholar

Copyright information

© Adis Data Information BV 2004

Authors and Affiliations

  1. 1.Pharmaceutical Profiles LtdMere WayRuddingtonUK

Personalised recommendations