Clinical Pharmacokinetics

, Volume 42, Issue 12, pp 1023–1042 | Cite as

Clinical Pharmacokinetics of Oxcarbazepine

  • Theodor W. MayEmail author
  • Elisabeth Korn-Merker
  • Bernhard Rambeck
Review Article


Oxcarbazepine is an antiepileptic drug with a chemical structure similar to carbamazepine, but with different metabolism. Oxcarbazepine is rapidly reduced to 10, 11-dihydro-10-hydroxy-carbazepine (monohydroxy derivative, MHD), the clinically relevant metabolite of oxcarbazepine. MHD has (S)-(+)- and the (R)-(−)-enantiomer, but the pharmacokinetics of the racemate are usually reported.

The bioavailability of the oral formulation of oxcarbazepine is high (>95%). It is rapidly absorbed after oral administration, reaching peak concentrations within about 1–3 hours after a single dose, whereas the peak of MHD occurs within 4–12 hours. At steady state, the peak of MHD occurs about 2–4 hours after drug intake.

The plasma protein binding of MHD is about 40%. Cerebrospinal fluid concentrations of MHD are in the same range as unbound plasma concentrations of MHD. Oxcarbazepine can be transferred significantly through the placenta in humans.

Oxcarbazepine and MHD exhibit linear pharmaco-kinetics and no autoinduction occurs. Elimination half-lives in healthy volunteers are 1–5 hours for oxcarbazepine and 7–20 hours for MHD. Longer and shorter elimination half-lives have been reported in elderly volunteers and children, respectively. Mild to moderate hepatic impairment does not appear to affect MHD pharmacokinetics. Renal impairment affects the pharmacokinetics of oxcarbazepine and MHD.

The interaction potential of oxcarbazepine is relatively low. However, enzyme-inducing antiepileptic drugs such as phenytoin, phenobarbital or carbamazepine can reduce slightly the concentrations of MHD. Verapamil may moderately decrease MHD concentrations, but this effect is probably without clinical relevance.

The influence of oxcarbazepine on other antiepileptic drugs is not clinically relevant in most cases. However, oxcarbazepine appears to increase concentrations of phenytoin and to decrease trough concentrations of lamotrigine and topiramate. Oxcarbazepine lowers concentrations of ethinylestra-diol and levonorgestrel, and women treated with oxcarbazepine should consider additional contraceptive measures. Due to the absent or lower enzyme-inducing effect of oxcarbazepine, switching from carbamazepine to oxcarbazepine can result in increased serum concentrations of comedication, sometimes associated with adverse effects.

The effect of oxcarbazepine appears to be related to dose and to serum concentrations of MHD. In general, daily fluctuations of MHD concentration are relatively slight, smaller than would be expected from the elimination half-life of MHD. However, relatively high fluctuations can be observed in individual patients. Therapeutic monitoring may help to decide whether adverse effects are dependent on MHD concentrations. A mean therapeutic range of 15–35 mg/L for MHD seems to be appropriate. However, more systematic studies exploring the concentration-effect relationship are required.


Carbamazepine Valproate Antiepileptic Drug Lamotrigine Felodipine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



No sources of funding were used to assist in the preparation of this manuscript. The authors have no conflicts of interest that are directly relevant to the content of this manuscript.


  1. 1.
    Schmutz M, Brugger F, Gentsch C, et al. Oxcarbazepine: preclinical anticonvulsant profile and putative mechanisms of action. Epilepsia 1994; 35 Suppl. 5: S47–50PubMedCrossRefGoogle Scholar
  2. 2.
    Volosov A, Xiaodong S, Perucca E, et al. Enantioselective pharmacokinetics of 10-hydroxycarbazepine after oral administration of oxcarbazepine to healthy Chinese subjects. Clin Pharmacol Ther 1999; 66(6): 547–53PubMedGoogle Scholar
  3. 3.
    Schmidt D, Arroyo S, Baulac M, et al. Recommendations on the clinical use of oxcarbazepine in the treatment of epilepsy: a consensus view. Acta Neurol Scand 2001; 104(3): 167–70PubMedCrossRefGoogle Scholar
  4. 4.
    Glauser TA. Oxcarbazepine in the treatment of epilepsy. Pharmacotherapy 2001; 21(8): 904–19PubMedCrossRefGoogle Scholar
  5. 5.
    Castillo S, Schmidt DB, White S. Oxcarbazepine add-on for drug-resistant partial epilepsy (Cochrane Review). Available in The Cochrane Library [database on disk and CD ROM]. Updated quarterly. The Cochrane Collaboration; issue 4. Oxford: Update Software, 2001Google Scholar
  6. 6.
    Shorvon S. Oxcarbazepine: a review. Seizure 2000; 9: 75–9PubMedCrossRefGoogle Scholar
  7. 7.
    Smith PE. Clinical recommendations for oxcarbazepine (for the UK Oxcarbazepine Advisory Board). Seizure 2001; 10(2): 87–91PubMedCrossRefGoogle Scholar
  8. 8.
    Faigle JW, Menge GP. Pharmacokinetic and metabolic features of oxcarbazepine and their clinical significance: comparison with carbamazepine. Int Clin Psychopharmacol 1990; 5: 73–82CrossRefGoogle Scholar
  9. 9.
    Bialer M. Oscarbazepine — chemistry, biotransformation and pharmacokinetics. Chapter 45. In: Levy EH, Mattson R, Meldrum BS, et al., editors. Antiepileptic Drugs. Philadelphia: Lippincott-Williams adn Wilkins, 2002: 459–65Google Scholar
  10. 10.
    von Unruh GE, Paar WD. Gas chromatographic assay for oxcarbazepine and its main metabolites in plasma. J Chromatogr 1985; 345(1): 67–76Google Scholar
  11. 11.
    Menge G, Dubois JP. Determination of oxcarbazepine in human plasma by high-performance liquid chromatography. J Chromatogr 1983; 275(1): 189–94PubMedGoogle Scholar
  12. 12.
    Juergens U. HPLC analysis of antiepileptic drugs in blood samples: microbore separation of fourteen compounds. J Liquid Chromatogr 1987; 10(2 & 3): 507–32Google Scholar
  13. 13.
    Elyas AA, Goldberg VD, Patsalos PN. Simple and rapid micro-analytical high-performance liquid chromatographic technique for the assay of oxcarbazepine and its primary active metabolite 10-hydroxycarbazepine. J Chromatogr 1990; 528(2): 473–9PubMedGoogle Scholar
  14. 14.
    Rouan MC, Decherf M, Le Clanche V, et al. Automated microanalysis of oxcarbazepine and its monohydroxy and transdiol metabolites in plasma by liquid chromatography. J Chromatogr B Biomed Appl 1994; 658(1): 167–72PubMedCrossRefGoogle Scholar
  15. 15.
    Matar KM, Nicholls PJ, al-Hassan MI, et al. A rapid micromethod for simultaneous measurement of oxcarbazepine and its active metabolite in plasma by high-performance liquid chromatography. J Clin Pharm Ther 1995; 20(4): 229–34PubMedCrossRefGoogle Scholar
  16. 16.
    Levert H, Odou P, Robert H. LC determination of excarbazepine and its active metabolite in human serum. J Pharm Biomed Anal 2002; 28: 517–25PubMedCrossRefGoogle Scholar
  17. 17.
    von Unruh GE, Paar WD. Gas chromatographic/mass spectrometric assays for oxcarbazepine and its main metabolites, 10-hydroxy-carbazepine and carbaze-pine-10,11-trans-diol. Biomed Environ Mass Spectrom 1986; 13(12): 651–6CrossRefGoogle Scholar
  18. 18.
    Flesch G, Francotte E, Hell F, et al. Determination of the R-(−) and S-(+) enantiomers of the monohydroxylated metabolite of oxcarbazepine in human plasma by enantioselective highperformance liquid chromatography. J Chromatogr 1992; 581(1): 147–51PubMedCrossRefGoogle Scholar
  19. 19.
    Feldmann KF, Dörhöfer G, Faigle JW, et al. Pharmacokinetics and metabolism of GP 47 779, the main human metabolite of oxcarbazepine (GP 47 680) in animals and healthy volunteers. In: Dam M, Gram L, Penry JK, editors. Advances in epileptology: XIIth Epilepsy International Symposium. New York: Raven Press, 1981: 89–96Google Scholar
  20. 20.
    Schütz H, Feldmann KF, Faigle JW, et al. The metabolism of 14C-oxcarbazepine in man. Xenobiotica 1986; 16(8): 769–78PubMedCrossRefGoogle Scholar
  21. 21.
    Baruzzi A, Albani F, Riva R. Oxcarbazepine: pharmacokinetic interactions and their clinical relevance. Epilepsia 1994; 35 Suppl. 3: S14–9PubMedCrossRefGoogle Scholar
  22. 22.
    Rouan MC, Lecaillon JB, Godbillon J, et al. The effect of renal impairment on the pharmacokinetics of oxcarbazepine and its metabolites. Eur J Clin Pharmacol 1994; 47(2): 161–7PubMedCrossRefGoogle Scholar
  23. 23.
    Tartara A, Galimberti CA, Manni R, et al. The pharmacokinetics of oxcarbazepine and its active metabolite 10-hydroxy-carbazepine in healthy subjects and in epileptic patients treated with phenobarbitone or valproic acid. Br J Clin Pharmacol 1993; 36(4): 366–8PubMedCrossRefGoogle Scholar
  24. 24.
    Jung H, Noguez A, Mayet L, et al. The distribution of 10-hydroxy carbazepine in blood compartments. Biopharm Drug Dispos 1997; 18(1): 17–23PubMedCrossRefGoogle Scholar
  25. 25.
    Kristensen O, Klitgaard NA, Jonsson B, et al. Pharmacokinetics of 10-OH-carbazepine, the main metabolite of the antiepileptic oxcarbazepine, from serum and saliva concentrations. Acta Neurol Scand 1983; 68(3): 145–50PubMedCrossRefGoogle Scholar
  26. 26.
    van Heiningen PN, Eve MD, Oosterhuis B, et al. The influence of age on the pharmacokinetics of the antiepileptic agent oxcarbazepine. Clin Pharmacol Ther 1991; 50(4): 410–9PubMedCrossRefGoogle Scholar
  27. 27.
    Degen PH, Flesch G, Cardot JM, et al. The influence of food on the disposition of the antiepileptic oxcarbazepine and its major metabolites in healthy volunteers. Biopharm Drug Dispos 1994; 15(6): 519–26PubMedCrossRefGoogle Scholar
  28. 28.
    Flesch G, Tudor D, Souppart C, et al. Oxcarbazepine final market image tablet formulation bioequivalence study after single administration and at steady state in healthy subjects. Int J Clin Pharmacol Ther 2002; 40: 524–32PubMedGoogle Scholar
  29. 29.
    Hooper WD, Dickinson RG, Dunstan PR, et al. Oxcarbazepine: preliminary clinical and pharmacokinetic studies on a new anticonvulsant. Clin Exp Neurol 1987; 24: 105–12PubMedGoogle Scholar
  30. 30.
    Dickinson RG, Hooper WD, Dunstan PR, et al. First dose and steady-state pharmacokinetics of oxcarbazepine and its 10-hydroxy metabolite. Eur J Clin Pharmacol 1989; 37(1): 69–74PubMedGoogle Scholar
  31. 31.
    Theisohn M, Heimann G. Disposition of the antiepileptic oxcarbazepine and its metabolites in healthy volunteers. Eur J Clin Pharmacol 1982; 22(6): 545–51PubMedCrossRefGoogle Scholar
  32. 32.
    Grant SM, Faulds D. Oxcarbazepine: a review of its pharmacology and therapeutic potential in epilepsy, trigeminal neuralgia and affective disorders. Drugs 1992; 43(6): 873–88PubMedCrossRefGoogle Scholar
  33. 33.
    Krämer G. Oxcarbazepin (Trileptal): ein neues antiepileptikum zur mono- und kombinationstherapie. Akt Neurologie 2000; 27: 59–71CrossRefGoogle Scholar
  34. 34.
    Klitgaard NA, Kristensen O. Use of saliva for monitoring oxcarbazepine therapy in epileptic patients. Eur J Clin Pharmacol 1986; 31(1): 91–4PubMedCrossRefGoogle Scholar
  35. 35.
    Patsalos PN, Elyas AA, Zakrzewska JM. Protein binding of oxcarbazepine and its primary active metabolite, 10-hydroxy-carbazepine, in patients with trigeminal neuralgia. Eur J Clin Pharmacol 1990; 39(4): 413–5PubMedCrossRefGoogle Scholar
  36. 36.
    May TW, Rambeck B, Sälke-Kellermann A. Fluctuations of 10-hydroxy-carbazepine during the day in epileptic patients. Acta Neurol Scand 1996; 93(6): 393–7PubMedCrossRefGoogle Scholar
  37. 37.
    Christensen J, Hojskov CS, Dam M, et al. Plasma concentration of topiramate correlates with cerebrospinal fluid concentration. Ther Drug Monit 2001; 23(5): 529–35PubMedCrossRefGoogle Scholar
  38. 38.
    Kumps A, Wurth C. Oxcarbazepine disposition: preliminary observations in patients. Biopharm Drug Dispos 1990; 11: 365–70PubMedCrossRefGoogle Scholar
  39. 39.
    Gonzalez-Esquivel DF, Ortega-Gavilan M, Alcantara-Lopez G, et al. Plasma level monitoring of oxcarbazepine in epileptic patients. Arch Med Res 2000; 31(2): 202–5PubMedCrossRefGoogle Scholar
  40. 40.
    Viola MS, Bercellini MA, Saidon P, et al. Pharmacokinetic variability of oxcarbazepine in epileptic patients. Medicina (B Aires) 2000; 60(6): 914–8Google Scholar
  41. 41.
    Sachdeo R, Beydoun A, Schachter S, et al. Oxcarbazepine (Trileptal) as monotherapy in patients with partial seizures. Neurology 2001; 57(5): 864–71PubMedCrossRefGoogle Scholar
  42. 42.
    Larkin JG, McKee PJ, Forrest G, et al. Lack of enzyme induction with oxcarbazepine (600mg daily) in healthy subjects. Br J Clin Pharmacol 1991; 31(1): 65–71PubMedCrossRefGoogle Scholar
  43. 43.
    Krämer G, Theisohn M, Stoll KD, et al. Oxcarbazepin versus Carbamazepin bei gesunden Probanden. Studien zur Kinetik, zu Metabolismus und Verträglichkeit. In: Kruse R, editor. Epilepsie 84. Reinbek: Einhorn, 1985: 379–87Google Scholar
  44. 44.
    Novartis Pharmaceuticals. Trileptal® (oxcarbazepine): prescribing information. East Hanover, NJ: Novartis Pharmaceuticals, Inc., 2001Google Scholar
  45. 45.
    McKee PJ, Blacklaw J, Forrest G, et al. A double-blind, placebo-controlled interaction study between oxcarbazepine and carbamazepine, sodium valproate and phenytoin in epileptic patients. Br J Clin Pharmacol 1994; 37(1): 27–32PubMedCrossRefGoogle Scholar
  46. 46.
    Lloyd P, Flesch G, Dieterle W. Clinical pharmacology and pharmacokinetics of oxcarbazepine. Epilepsia 1994; 35 Suppl. 3: S10–3PubMedCrossRefGoogle Scholar
  47. 47.
    Hulsman JARJ, Rentmeester TW, Banfield CR, et al. Effects of felbamate on the pharmacokinetics of the monohydroxy and dihydroxy metabolites of oxcarbazepine. Clin Pharmacol Ther 1995; 58(4): 383–9PubMedCrossRefGoogle Scholar
  48. 48.
    Arnoldussen W, Hulsman J, Rentmeester T. Interaction between oxcarbazepine and phenytoin [abstract]. Epilepsia 1993; 34 Suppl. 6: 37Google Scholar
  49. 49.
    Arnoldussen W, Hulsman J, Rentmeester T. Oxcarbazepine (OCBZ) twice daily is as effective as OCBZ three times daily: a clinical and pharmacokinetic study of 24 volunteers and 6 patients [abstract]. Epilepsia 1991; 32 Suppl. 1: 69Google Scholar
  50. 50.
    van Parys JA, Hop W, Vulto A, et al. Steady-state pharmacokinetics of oxcarbazepine in adults [abstract]. Epilepsia 1998; 39 Suppl. 6: 47Google Scholar
  51. 51.
    Pariente-Khayat A, Fran A, Vauzelle-Kervroedan F, et al. Pharmacokinetics of oxcarbazepine as add-on therapy in epileptic children [abstract]. Epilepsia 1994; 35 Suppl. 8: 119Google Scholar
  52. 52.
    Dulac O, D’Souza J, Motte J. Multicenter study of oxcarbazepine pharmacokinetics and tolerability in children with refractory epilepsy [abstract]. Ann Neurol 2001; 50: S104CrossRefGoogle Scholar
  53. 53.
    Stroink H, Tang KT, van Parys JAP, et al. Steady-state pharmacokinetics of oxcarbazepine in children [abstract]. Epilepsia 1998; 39 Suppl. 6: 48Google Scholar
  54. 54.
    Bülau P, Paar WD, von Unruh GE. Pharmacokinetics of oxcarbazepine and 10-hydroxy-carbazepine in the newborn child of an oxcarbazepine-treated mother. Eur J Clin Pharmacol 1988; 34(3): 311–3PubMedCrossRefGoogle Scholar
  55. 55.
    Bar-Oz B, Nulman I, Koren G, et al. Anticonvulsants and breast feeding: a critical review. Paediatr Drugs 2000; 2(2): 113–26PubMedGoogle Scholar
  56. 56.
    Myllynen P, Pienimaki P, Jouppila P, et al. Transplacental passage of oxcarbazepine and its metabolites in vivo. Epilepsia 2001; 42(11): 1482–5PubMedCrossRefGoogle Scholar
  57. 57.
    Pienimaki P, Lampela E, Hakkola J, et al. Pharmacokinetics of oxcarbazepine and carbamazepine in human placenta. Epilepsia 1997; 38(3): 309–16PubMedCrossRefGoogle Scholar
  58. 58.
    Saano V, Schurr-Eisinger S, Möbius HJ, et al. Effect of oxcarbazepine on antipyrine metabolism in healthy volunteers [abstract]. Epilepsia 1995; 36 Suppl. 3: 161Google Scholar
  59. 59.
    Brookman LJ, Lloyd P, Lecaillon JB, et al. Single-center, open-label, placebo-controlled trial to determine the effects of 900mg oxcarbazepine twice daily on markers of enzyme induction in healthy male volunteers [abstract]. Epilepsia 1995; 36 Suppl. 3: 161Google Scholar
  60. 60.
    Keränen T, Möbius HJ, Schurr-Eisinger S, et al. Effect of oxcarbazepine on hepatic clearance of antipyrine in patients with previously untreated epilepsy [abstract]. Epilepsia 1995; 36 Suppl. 3: 161Google Scholar
  61. 61.
    Lakehal F, Wurden CJ, Kalhom TF, et al. Carbamazepine and oxcarbazepine decrease phenytoin metabolism through inhibition of CYP2C19. Epilepsy Res 2002; 52: 79–83PubMedCrossRefGoogle Scholar
  62. 62.
    Tripp SL, Hundal J, Kapeghain JC, et al. Evaluation of oxcarbazepine and its mono-hydroxy metabolite (GP 47779), for potential drug interactions in vitro [abstract]. Epilepsia 1996; 37 Suppl. 5: 22Google Scholar
  63. 63.
    May TW, Rambeck B, Jürgens U. Influence of oxcarbazepine and methsuximide on lamotrigine concentrations in epileptic patients with and without valproic acid comedication: results of a retrospective study. Ther Drug Monit 1999; 21(2): 175–81PubMedCrossRefGoogle Scholar
  64. 64.
    Barcs G, Walker EB, Elger CE, et al. Oxcarbazepine placebo-controlled, dose-ranging trial in refractory partial epilepsy. Epilepsia 2000; 41(12): 1597–607PubMedCrossRefGoogle Scholar
  65. 65.
    Sallas W. Population pharmacokinetics analysis of oxcarbazepine (Trileptal) in children with epilepsy [abstract]. Epilepsia 1999; 40 Suppl. 7: 102Google Scholar
  66. 66.
    van Parys JAP, Meijer JWA, Segers JP. Dose-concentration proportionality in epileptic patients stabilized on oxcarbazepine: effects of co-medication [abstract]. Epilepsia 1991; 32 Suppl. 1: 70Google Scholar
  67. 67.
    Arnoldussen W, Hulsman J, Rentmeester T. The interaction of valproate and clobazam on the metabolism of oxcarbazepine [abstract]. Epilepsia 1993; 34 Suppl. 2: 160Google Scholar
  68. 68.
    Hossain M, Sallas W, Gasparini M, et al. Drug-drug interaction profile of oxcarbazepine in children and adults [abstract]. Neurology 1999; 52 Suppl. 2: A525Google Scholar
  69. 69.
    Rambeck B, Salke-Treumann A, May TW, et al. Valproic acid-induced carbamazepine-10,11-epoxide toxicity in children and adolescents. Eur Neurol 1990; 30(2): 79–83PubMedCrossRefGoogle Scholar
  70. 70.
    Battino D, Croci D, Granata T, et al. Changes in unbound and total valproic acid concentrations after replacement of carbamazepine with oxcarbazepine. Ther Drug Monit 1992; 14(5): 376–9PubMedCrossRefGoogle Scholar
  71. 71.
    Fröscher W, Blankenhorn V, May TW, et al. Pharmakotherapie der Epilepsien. 3rd ed. Stuttgart: Schattauer, 2000Google Scholar
  72. 72.
    Krämer G, Tettenborn B, Flesch G. Oxcarbazepine-verapamil drug interaction study in healthy volunteers [abstract]. Epilepsia 1991; 32 Suppl. 1: 70Google Scholar
  73. 73.
    Mogensen PH, Jorgensen L, Boas J, et al. Effects of dextropropoxyphene on the steady-state kinetics of oxcarbazepine and its metabolites. Acta Neurol Scand 1992; 85(1): 14–7PubMedCrossRefGoogle Scholar
  74. 74.
    Pisani F, Fazio A, Oteri G, et al. Effects of the antidepressant drug viloxazine on oxcarbazepine and its hydroxylated metabolites in patients with epilepsy. Acta Neurol Scand 1994; 90(2): 130–3PubMedCrossRefGoogle Scholar
  75. 75.
    Keränen T, Jolkkonen J, Klosterskov-Jensen P, et al. Oxcarbazepine does not interact with cimetidine in healthy volunteers. Acta Neurol Scand 1992; 85(4): 239–42PubMedCrossRefGoogle Scholar
  76. 76.
    Keränen T, Jolkkonen J, Jensen PK, et al. Absence of interaction between oxcarbazepine and erythromycin. Acta Neurol Scand 1992; 86(2): 120–3PubMedCrossRefGoogle Scholar
  77. 77.
    May TW, Rambeck B, Juurgens U. Serum concentrations of levetiracetam in epileptic patients: the influence of dose and comedication. Ther Drug Monit. In Press.Google Scholar
  78. 78.
    May TW, Rambeck B, Jürgens U. Serum concentrations of topiramate in epileptic patients: the influence of dose, age and comedication. Ther Drug Monit 2002; 24(3): 366–74PubMedCrossRefGoogle Scholar
  79. 79.
    Houtkooper MA, Lammertsma A, Meyer JW, et al. Oxcarbazepine (GP 47.680): a possible alternative to carbamazepine? Epilepsia 1987; 28(6): 693–8PubMedCrossRefGoogle Scholar
  80. 80.
    Isojärvi JI, Pakarinen AJ, Rautio A, et al. Liver enzyme induction and serum lipid levels after replacement of carbamazepine with oxcarbazepine. Epilepsia 1994; 35(6): 1217–20PubMedCrossRefGoogle Scholar
  81. 81.
    Krämer G, Tettenborn B, Klosterskov-Jensen P, et al. Oxcarbazepine does not affect the anticoagulant activity of warfarin. Epilepsia 1992; 33(6): 1145–8PubMedCrossRefGoogle Scholar
  82. 82.
    Zaccara G, Gangemi PF, Bendoni L, et al. Influence of single and repeated doses of oxcarbazepine on the pharmacokinetic profile of felodipine. Ther Drug Monit 1993; 15(1): 39–42PubMedCrossRefGoogle Scholar
  83. 83.
    Sonnen AEH. Oxcarbazepine and oral contraceptives [abstract]. Acta Neurol Scand 1990; 82 Suppl. 133: 37Google Scholar
  84. 84.
    Klosterskov JP, Saano V, Haring P, et al. Possible interaction between oxcarbazepine and an oral contraceptive. Epilepsia 1992; 33(6): 1149–52CrossRefGoogle Scholar
  85. 85.
    Fattore C, Cipolla G, Gatti G, et al. Induction of ethinylestradiol and levonorgestrel metabolism by oxcarbazepine in healthy women. Epilepsia 1999; 40(6): 783–7PubMedCrossRefGoogle Scholar
  86. 86.
    Leinonen E, Lepola U, Koponen H. Substituting carbamazepine with oxcarbazepine increases citalopram levels: a report on two cases. Pharmacopsychiatry 1996; 29(4): 156–8PubMedCrossRefGoogle Scholar
  87. 87.
    Raitasuo V, Lehtovaara R, Huttunen MO. Effect of switching carbamazepine to oxcarbazepine on the plasma levels of neuroleptics: a case report. Psychopharmacology 1994; 116(1): 115–6PubMedCrossRefGoogle Scholar
  88. 88.
    Roesche J, Fröscher W, Abendroth D, et al. Possible oxcarbazepine interaction with cyclosporine serum levels: a single case study. Clin Neuropharmacol 2001; 24(2): 113–6CrossRefGoogle Scholar
  89. 89.
    Sabers A, Gram L. Newer anticonvulsants: comparative review of drug interactions and adverse effects. Drugs 2000; 60(1): 23–33PubMedCrossRefGoogle Scholar
  90. 90.
    Korn-Merker E. Indikationen, Wirksamkeit und Verträglichkeit von Oxcarbazepin in der Mono- und Kombinationstherapie bei Kindern mit Epilepsie. In: Aksu F, editor. Aktuelle Neuropädiatrie 2001. Nürnberg: Novartis Pharma Verlag, 2002: 526–36Google Scholar
  91. 91.
    Gates JR, Sachdeo RC, Graham SM, et al. Enzymatic induction and tolerability in transition to oxcarbazepine in the STOPS trials [abstract]. Epilepsia 2001; 42 Suppl. 7: 254Google Scholar
  92. 92.
    Edelbroek PM, Augustijn PB, DeHaan GJ, et al. Change in oxcarbazepine (Trileptal®) formulation is associated with more side effects and higher blood concentrations. J Neurol Neurosurg Psychiatry 2001; 71(5): 708–9PubMedCrossRefGoogle Scholar
  93. 93.
    Flesch G, Tudor D, Denouel J, et al. Assessment of the bioequivalence of two oxcarbazepine oral suspensions versus a film-coated tablet in healthy subjects. Int J Clin Pharmacol Ther 2003; 41: 299–308PubMedGoogle Scholar
  94. 94.
    van der Kuy PH, Koppejan EH, Wirtz JJ. Rectal absorption of oxcarbazepine. Pharm World Sci 2000; 22(4): 165–6PubMedCrossRefGoogle Scholar
  95. 95.
    Augusteijn R, van Parys JAP. Oxcarbazepine (Trileptal, OXC): dose-concentration relationship in patients with epilepsy [abstract]. Acta Neurol Scand 1990; 82 Suppl. 133: 37Google Scholar
  96. 96.
    Dam M, Ekberg R, Loyning Y, et al. A double-blind study comparing oxcarbazepine and carbamazepine in patients with newly diagnosed, previously untreated epilepsy. Epilepsy Res 1989; 3: 70–6PubMedCrossRefGoogle Scholar
  97. 97.
    Nedelman JR, Hossain M, Chang SW, et al. Oxcarbazepine: analysis of concentration-efficacy/safety relationships [abstract]. Neurology 1999; 52 Suppl. 2: A524Google Scholar
  98. 98.
    Fröscher W, Krämer G, Schmidt D, et al. Serumkonzentrationen von Antiepileptika [Serum concentration of anticonvulsants: practical guidelines for measuring and useful interpretation: therapy Committee of the German Section of the International Epilepsy League]. Nervenarzt 1999; 70(2): 172–7PubMedCrossRefGoogle Scholar
  99. 99.
    Bourgeois BFD. Pharmacokinetic properties of current antiepileptic drugs: what improvements are needed? Neurology 2000; 55(11): S11–6PubMedGoogle Scholar
  100. 100.
    Tomson T, Johannessen SI. Therapeutic monitoring of the new antiepileptic drugs. Eur J Clin Pharmacol 2000; 55(10): 697–705PubMedCrossRefGoogle Scholar
  101. 101.
    Borusiak P, Korn-Merker E, Holert N, et al. Oxcarbazepine in treatment of childhood epilepsy: a survey of 46 children and adolescents. J Epilepsy 1998; 11: 355–60CrossRefGoogle Scholar
  102. 102.
    Johannessen SI, Battino D, Berry DJ, et al. Therapeutic drug monitoring of the newer antiepileptic drugs. Ther Drug Monit 2003; 25(3): 347–63PubMedCrossRefGoogle Scholar
  103. 103.
    Tecoma ES. Oxcarbazepine. Epilepsia 1999; 40: S37–46PubMedCrossRefGoogle Scholar
  104. 104.
    Cardot JM, Degen P, Flesch G, et al. Comparison of plasma and saliva concentrations of the active monohydroxy metabolite of oxcarbazepine in patients at steady state. Biopharm Drug Dis 1995; 16(7): 603–14CrossRefGoogle Scholar
  105. 105.
    Palm R, Nilsson HL, Klosterskov-Jensen P, et al. Diurnal plasma concentrations profiles of oxcarbazepine: comparison between administration twice and three times daily [abstract]. Epilepsia 1991; 32 Suppl. 1: 69Google Scholar

Copyright information

© Adis Data Information BV 2003

Authors and Affiliations

  • Theodor W. May
    • 1
    Email author
  • Elisabeth Korn-Merker
    • 2
  • Bernhard Rambeck
    • 1
  1. 1.Department of BiochemistryEpilepsy Research FoundationBielefeldGermany
  2. 2.Epilepsy Centre BethelClinic KidronBielefeldGermany

Personalised recommendations