Advertisement

Clinical Pharmacokinetics

, Volume 42, Issue 3, pp 223–282 | Cite as

Drug Interactions Between Antiretroviral Drugs and Comedicated Agents

  • Monique M. R. de MaatEmail author
  • G. Corine Ekhart
  • Alwin D. R. Huitema
  • Cornelis H. W. Koks
  • Jan W. Mulder
  • Jos H. Beijnen
Review Article Drug Interactions

Abstract

HIV-infected individuals usually receive a wide variety of drugs in addition to their antiretroviral drug regimen. Since both non-nucleoside reverse transcriptase inhibitors and protease inhibitors are extensively metabolised by the cytochrome P450 system, there is a considerable potential for pharmacokinetic drug interactions when they are administered concomitantly with other drugs metabolised via the same pathway. In addition, protease inhibitors are substrates as well as inhibitors of the drug transporter P-glycoprotein, which also can result in pharmacokinetic drug interactions. The nucleoside reverse transcriptase inhibitors are predominantly excreted by the renal system and may also give rise to interactions.

This review will discuss the pharmacokinetics of the different classes of antiretroviral drugs and the mechanisms by which drug interactions can occur. Furthermore, a literature overview of drug interactions is given, including the following items when available: coadministered agent and dosage, type of study that is performed to study the drug interaction, the subjects involved and, if specified, the type of subjects (healthy volunteers, HIV-infected individuals, sex), anti-retroviral drug(s) and dosage, interaction mechanism, the effect and if possible the magnitude of interaction, comments, advice on what to do when the interaction occurs or how to avoid it, and references.

This discussion of the different mechanisms of drug interactions, and the accompanying overview of data, will assist in providing optimal care to HIV-infected patients.

Keywords

Drug Interaction Grapefruit Juice Hydroxycarbamide Comedicated Agent Free Plasma Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

No sources of funding were used to assist in the preparation of this manuscript. There are no conflicts of interest directly relevant to the content of this review.

References

  1. 1.
    Ledergerber B, Egger M, Opravil M, et al. Clinical progression and virological failure on highly active antiretroviral therapy in HIV-1 patients: a prospective cohort study. Lancet 1999; 353: 863–8PubMedCrossRefGoogle Scholar
  2. 2.
    Berrey MM, Schacker T, Collier AC, et al. Treatment of primary human immunodeficiency virus type 1 infection with potent antiretroviral therapy reduces frequency of rapid progression to AIDS. J Infect Dis 2001; 183: 1466–75PubMedCrossRefGoogle Scholar
  3. 3.
    Vittinghoff E, Scheer S, O’Malley P, et al. Combination antiretroviral therapy and recent declines in AIDS incidence and mortality. J Infect Dis 1999; 179: 717–20PubMedCrossRefGoogle Scholar
  4. 4.
    Yeni PG, Hammer SM, Carpenter CCJ, et al. Antiretroviral treatment for adult HIV infection in 2002. Updated recommendations of the International AIDS Society-USA Panel. JAMA 2002; 288: 222–35PubMedCrossRefGoogle Scholar
  5. 5.
    Moyle G. The role of combinations of HIV protease inhibitors in the management of persons with HIV infection. Exp Opin Invest Drugs 1998; 7: 413–26CrossRefGoogle Scholar
  6. 6.
    Smith PF, Dicenzo R, Morse GD. Clinical pharmacokinetics of non-nucleoside reverse transcriptase inhibitors. Clin Pharmacokinet 2001; 40: 893–905PubMedCrossRefGoogle Scholar
  7. 7.
    Sommadossi J-P. HIV protease inhibitors: pharmacologic and metabolic distinctions. AIDS 1999; 13 Suppl. 1: S29–40PubMedGoogle Scholar
  8. 8.
    Veldkamp AI, Weverling GJ, Lange JM, et al. High exposure to nevirapine in plasma is associated with an improved virological response in HIV-1-infected individuals. AIDS 2001; 15: 1089–95PubMedCrossRefGoogle Scholar
  9. 9.
    Murphy RL, Sommadossi J-P, Lamson M, et al. Antiviral effect and pharmacokinetic interaction between nevirapine and indinavir in persons infected with human immunodeficiency virus type 1. J Infect Dis 1999; 179: 1116–23PubMedCrossRefGoogle Scholar
  10. 10.
    Marzolini C, Telenti A, Decosterd LA, et al. Efavirenz plasma levels can predict treatment failure and central nervous system side effects in HIV-1- infected patients. AIDS 2001; 15: 71–5PubMedCrossRefGoogle Scholar
  11. 11.
    Dieleman JP, Gijssens IS, van der Ende ME, et al. Urological complaints in relation to indinavir plasma concentration in HIV-infected patients. AIDS 1999; 13: 473–8PubMedCrossRefGoogle Scholar
  12. 12.
    Tseng AL, Foisy MM. Significant interactions with new antiretrovirals and psychotropic drugs. Ann Pharmacother 1999; 33: 461–73PubMedCrossRefGoogle Scholar
  13. 13.
    Barry M, Mulcahy F, Merry C, et al. Pharmacokinetics and potential interactions amongst antiretroviral agents used to treat patients with HIV infection. Clin Pharmacokinet 1999; 36: 289–304PubMedCrossRefGoogle Scholar
  14. 14.
    Malaty LI, Kuper JJ. Drug interactions of HIV protease inhibitors. Drug Saf 1999; 20: 147–69PubMedCrossRefGoogle Scholar
  15. 15.
    Piscitelli SC, Gallicano KD. Interactions among drugs for HIV and opportunistic infections. N Engl J Med 2001; 344: 984–96PubMedCrossRefGoogle Scholar
  16. 16.
    Lipsky JJ. Antiretroviral drugs for AIDS. Lancet 1996; 348: 800–4PubMedCrossRefGoogle Scholar
  17. 17.
    Hoetelmans RMW. Clinical pharmacokinetics of antiretroviral drugs. AIDS Rev 1999; 1: 167–78Google Scholar
  18. 18.
    Ziagen TM (abacavir sulfate) tablets, oral solution [product information]. Research Triangle Park (NC): GlaxoWellcome, 1998 DecGoogle Scholar
  19. 19.
    Hervey PS, Perry CM. Abacavir: a review of its clinical potential in patients with HIV infection. Drugs 2000; 60: 447–79PubMedCrossRefGoogle Scholar
  20. 20.
    Videx® (didanosine) chewable/dispersible buffered tablets, buffered powder for oral solution, pediatric powder for oral solution [product information]. Princeton (NJ): Bristol-Myers Squibb, 2000 DecGoogle Scholar
  21. 21.
    Videx® EC (didanosine) delayed-release capsules entericcoated beadlets [product information]. Princeton (NJ): Bristol-Myers Squibb, 2000 DecGoogle Scholar
  22. 22.
    Epivir® Tablets (lamivudine tablets), Epivir® Oral solution (lamivudine oral solution) [product information]. Research Triangle Park (NC): GlaxoWellcome, 2001Google Scholar
  23. 23.
    Zerit® (stavudine) capsules and for oral solution [product information]. Princeton (NJ): Bristol-Myers Squibb, 2000 DecGoogle Scholar
  24. 24.
    Hivid® (zalcitabine) tablets [product information]. New Jersey: F. Hoffman-La Roche, 2000Google Scholar
  25. 25.
    Retrovir® (zidovudine) tablets, capsules, syrup [product information]. Research Triangle Park (NC): GlaxoWellcome, 1998 MayGoogle Scholar
  26. 26.
    Hoetelmans RMW, Burger DM, Meenhorst PL, et al. Pharmacokinetic individualisation of zidovudine therapy: current state of pharmacokinetic-pharmacodynamic relationships. Clin Pharmacokinet 1996; 30: 314–27PubMedCrossRefGoogle Scholar
  27. 27.
    Sperling R. Zidovudine. Infect Dis Obstet Gynecol 1998; 6: 197–203PubMedGoogle Scholar
  28. 28.
    Rescriptor (brand of delavirdine mesylate tablets) [product information]. Detroit (MI): Pharmacia & Upjohn, 1999 JulGoogle Scholar
  29. 29.
    Tran JQ, Gerber JG, Kerrs BM. Delavirdine: clinical pharmacokinetics and drug interactions. Clin Pharmacokinet 2001; 40: 207–26PubMedCrossRefGoogle Scholar
  30. 30.
    SustivaTM (efavirenz) capsules [product information]. Wilmington (DE): DuPont Pharma, 2000 FebGoogle Scholar
  31. 31.
    Veldkamp AI, Harris M, Montaner JSG, et al. The steady-state pharmacokinetics of efavirenz and nevirapine when used in combination in human immunodeficiency virus type 1-infected persons. J Infect Dis 2001; 184: 37–42PubMedCrossRefGoogle Scholar
  32. 32.
    Adkins JC, Noble S. Efavirenz. Drugs 1998; 56: 1055–64PubMedCrossRefGoogle Scholar
  33. 33.
    Viramune® (nevirapine) tablets and oral suspension [product information]. Columbus (OH): Roxane Laboratories Inc, 2000 NovGoogle Scholar
  34. 34.
    Van Heeswijk RPG, Veldkamp AI, Mulder JW, et al. The steady-state pharmacokinetics of nevirapine during once daily and twice daily dosing in HIV-1-infected individuals. AIDS 2000; 14: F77–82PubMedCrossRefGoogle Scholar
  35. 35.
    Riska P, Lamson M, MacGregor T, et al. Disposition and biotransformation of the antiretroviral drug nevirapine in humans. Drug Metab Dispos 1999; 27: 895–901PubMedGoogle Scholar
  36. 36.
    Agenerase® (amprenavir) [product information]. Research Triangle Park (NC): GlaxoWellcome, 2000Google Scholar
  37. 37.
    Crixivan® (indinavir sulfate) capsules [product information]. Westpoint (PA): Merck & Co, 2000Google Scholar
  38. 38.
    Plosker GL, Noble S. Indinavir: a review of its use in the management of HIV infection. Drugs 1999; 58: 1165–203PubMedCrossRefGoogle Scholar
  39. 39.
    Kaletra/TM(lopinavir/ritonavir) capsules, (lopinavir/ritonavir) oral solution [product information]. North Chicago (IL): Abbott Laboratories, 2000Google Scholar
  40. 40.
    Hurst M, Faulds D. Lopinavir. Drugs 2000; 60: 1371–9PubMedCrossRefGoogle Scholar
  41. 41.
    Viracept® (nelfinavir mesylate) tablets and oral powder [product information]. La Jolla (CA): Agouron Pharmaceuticals Inc, 2000 MayGoogle Scholar
  42. 42.
    Bardsley-Elliot A, Plosker GL. Nelfinavir: an update on its use in HIV infection. Drugs 2000; 59: 581–620PubMedCrossRefGoogle Scholar
  43. 43.
    Norvir® (ritonavir capsules) soft gelatin, ritonavir oral solution [product information]. North Chicago (IL): Abbott Laboratories, 2000Google Scholar
  44. 44.
    Lea AP, Faulds D. Ritonavir. Drugs 1996; 52: 541–6PubMedCrossRefGoogle Scholar
  45. 45.
    Invirase® (saquinavir mesylate) capsules [product information]. Nutley (NJ): F. Hoffman-La Roche, 2000Google Scholar
  46. 46.
    Hoetelmans RMW, Meenhorst PL, Mulder JW, et al. Clinical pharmacology of HIV protease inhibitors: focus on saquinavir, indinavir, and ritonavir. Pharm World Sci 1997; 19: 159–75PubMedCrossRefGoogle Scholar
  47. 47.
    Regazzi MB, Villani P, Maserati R, et al. Pharmacokinetic variability and strategy for therapeutic drug monitoring of saquinavir (SQV) in HIV-1 infected individuals. Br J Clin Pharmacol 1999; 47: 379–82PubMedCrossRefGoogle Scholar
  48. 48.
    Fortovase® (saquinavir) soft gelatine capsules [product information]. Nutley (NJ): F. Hoffman-La Roche, 2001Google Scholar
  49. 49.
    Hugen PWH, Burger DM, Koopmans PP, et al. Differences in pharmacokinetics (PK) of saquinavir soft-gel capsules (SQV-sgc, Fortovase) after a normal and high fat breakfast [abstract 7.3]. First International Workshop on Clinical Pharmacology; 2000 Mar 30–31; Noordwijk, The NetherlandsGoogle Scholar
  50. 50.
    Joly V, Yeni P. Non nucleoside reverse transcriptase inhibitors. AIDS Rev 1999; 1: 37–44Google Scholar
  51. 51.
    Kohl NE, Emini EA, Schleif WA, et al. Active human immunodeficiency virus protease is required for viral infectivity. Proc Natl Acad Sci U S A 1988; 85: 4686–90PubMedCrossRefGoogle Scholar
  52. 52.
    McDonald CK, Kuritzkes DR. Human immunodeficiency virus type 1 protease inhibitors. Arch Intern Med 1997; 157: 951–9PubMedCrossRefGoogle Scholar
  53. 53.
    Srinivas RV, Middlemas D, Flynn P, et al. Human immunodeficiency virus protease inhibitors serve as substrates for multidrug transporter proteins MDR1 and MRP1 but retain antiviral efficacy in cell lines expressing these transporters. Antimicrob Agents Chemother 1998; 42: 3157–62PubMedGoogle Scholar
  54. 54.
    Huisman MT, Smit JW, Schinkel AH. Significance of P-glycoprotein for the pharmacology and clinical use of HIV protease inhibitors. AIDS 2000; 14: 237–42PubMedCrossRefGoogle Scholar
  55. 55.
    Profit L, Eagling VA, Back DJ. Modulation of P-glycoprotein function in human lymphocytes and Caco-2 cell monolayers by HIV-1 protease inhibitors. AIDS 1999; 13: 1623–7PubMedCrossRefGoogle Scholar
  56. 56.
    Bouscarat F, Certain A, Picard C, et al. Pharmacological interaction between acenocoumarol and ritonavir [abstract 459]. 6th European Conference on Clinical Aspects and Treatment of HIV-Infection; 1997 Oct 11–15; HamburgGoogle Scholar
  57. 57.
    Sim SM, Back DJ, Breckenridge AM. The effect of various drugs on the glucuronidation of zidovudine (azidothymidine; AZT) by human liver microsomes. Br J Clin Pharmacol 1991; 32: 17–21PubMedCrossRefGoogle Scholar
  58. 58.
    Bertz RJ, Granneman GR. Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin Pharmacokinet 1997; 32: 210–58PubMedCrossRefGoogle Scholar
  59. 59.
    Greenblatt DJ, von Moltke LL, Daily JP, et al. Extensive impairment of triazolam and alprazolam clearance by short-term low-dose ritonavir: the clinical dilemma of concurrent inhibition and induction. J Clin Psychopharmacol 1999; 19: 293–6PubMedCrossRefGoogle Scholar
  60. 60.
    Greenblatt DJ, von Moltke LL, Harmatz JS, et al. Alprazolamritonavir interaction: implications for product labeling. Clin Pharmacol Ther 2000; 67: 335–41PubMedCrossRefGoogle Scholar
  61. 61.
    Frye R, Bertz R, Granneman GR, et al. Effect of ritonavir on the pharmacokinetics and pharmacodynamics of alprazolam [abstract A-59]. 37th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1997; Toronto (ON)Google Scholar
  62. 62.
    Lohman JJHM, Reichert LJM, Degen LPM. Antiretroviral therapy increases serum concentrations of amiodarone. Ann Pharmacother 1999; 33: 645–6PubMedCrossRefGoogle Scholar
  63. 63.
    Decker DJ, Latinen LM, Bridson GW, et al. Metabolism of amprenavir in liver microsomes: role of CYP3A4 inhibition for drug interactions. J Pharm Sci 1998; 87: 803–7PubMedCrossRefGoogle Scholar
  64. 64.
    Castro JG, Gutierrez L. Rhabdomyolysis with acute renal failure probably related to the interaction of atorvastatin and delavirdine [letter]. Am J Med 2002; 112: 505PubMedCrossRefGoogle Scholar
  65. 65.
    Carr RA, Andre AK, Bertz RJ, et al. Concomitant administration of ABT-378/ritonavir (ABT-378/r) results in a clinically important pharmacokinetic (PK) interaction with atorvastatin (ATO) but not pravastatin (PRA) [abstract 1644]. 40th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2000 Sep 17–20; Toronto (ON)Google Scholar
  66. 66.
    Hsyu PH, Schultz-Smith MD, Lillibridge JH, et al. Pharmacokinetic interactions between nelfinavir and 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors atorvastatin and simvastatin. Antimicrob Agents Chemother 2001; 45: 3445–50PubMedCrossRefGoogle Scholar
  67. 67.
    Barry M, Belz G, Roll S, et al. Interaction of nelfinavir with atorvastatin and pravastatin in normal healthy volunteers [abstract P260]. 5th International Congress on Drug Therapy in HIV Infection; 2000 Oct 22–26; GlasgowGoogle Scholar
  68. 68.
    Fichtenbaum C, Gerber J, Rosenkranz S, et al. Pharmacokinetic interactions between protease inhibitors and statins in HIV seronegative volunteers: ACTG Study A5047. AIDS 2002; 16: 569–77PubMedCrossRefGoogle Scholar
  69. 69.
    Lee BL, Täuber MG, Sadler B, et al. Atovaquone inhibits the glucuronidation and increases the plasma concentrations of zidovudine. Clin Pharmacol Ther 1996; 59: 14–21PubMedCrossRefGoogle Scholar
  70. 70.
    Amsden GW, Nafziger AN, Foulds G, et al. A study of the pharmacokinetics of azithromycin and nelfinavir when coadministered in healthy volunteers. J Clin Pharmacol 2000; 40: 1522–7PubMedGoogle Scholar
  71. 71.
    Hesse LM, von Moltke LL, Shader RI, et al. Ritonavir, efavirenz, and nelfinavir inhibit CYP2B6 activity in vitro: potential drug interactions with bupropion. Drug Metab Dispos 2001; 29: 100–2PubMedGoogle Scholar
  72. 72.
    Greenwood I, Heylen R, Zakrzewska JM. Anti-retroviral drugs: implications for dental prescribing. Br Dent J 1998; 184: 478–82PubMedCrossRefGoogle Scholar
  73. 73.
    Hugen PWH, Burger DM, Brinkman K, et al. Carbamazepineindinavir interaction causes antiretroviral failure. Ann Pharmacother 2000; 34: 465–70PubMedCrossRefGoogle Scholar
  74. 74.
    Berbel Garcia A, Latorre Ibarra A, Porta Etessam J, et al. Protease inhibitor-induced carbamazepine toxicity. Clin Pharmacol 2000; 23: 216–8Google Scholar
  75. 75.
    Burman W, Orr L. Carbamazepine toxicity after starting combination antiretroviral therapy including ritonavir and efavirenz. AIDS 2000; 14: 2793–4PubMedCrossRefGoogle Scholar
  76. 76.
    Sahai J, Gallicano K, Oliveras L, et al. Cations in the didanosine tablet reduce ciprofloxacin bioavailability. Clin Pharmacol Ther 1993; 53: 292–7PubMedCrossRefGoogle Scholar
  77. 77.
    Knupp CA, Barbhaiya RH. A multiple-dose pharmacokinetic interaction study between didanosine (Videx®) and ciprofloxacin (Cipro®) in male subjects seropositive for HIV but asymptomatic. Biopharm Drug Dispos 1997; 18: 65–77PubMedCrossRefGoogle Scholar
  78. 78.
    Mummaneni V, Damle B, Kaul S, et al. Lack of effect of didanosine encapsulated enteric coated beadlet formulation on the pharmacokinetics of indinavir, ketoconazole, and ciprofloxacin in healthy subjects [abstract 1629]. 40th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2000 Sep 17–20; Toronto (ON)Google Scholar
  79. 79.
    Brophy DF, Israel DS, Pastor A, et al. Pharmacokinetic interaction between amprenavir and clarithromycin in healthy male volunteers. Antimicrob Agents Chemother 2000; 44: 978–84PubMedCrossRefGoogle Scholar
  80. 80.
    Polis MA, Piscitelli SC, Vogel S, et al. Clarithromycin lowers plasma zidovudine levels in persons with human immunodeficiency virus infection. Antimicrob Agents Chemother 1997; 41: 1709–14PubMedGoogle Scholar
  81. 81.
    Piscitelli SC, Kelly G, Walker RE, et al. A multiple drug interaction study of stavudine with agents for opportunistic infections in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 1999; 43: 647–50PubMedGoogle Scholar
  82. 82.
    Benedek IH, Joshi A, Fiske WD, et al. Pharmacokinetic (PK) interaction studies in healthy volunteers with efavirenz (EFV) and the macrolide antibiotics, azithromycin (AZM) and clarithromycin (CLR) [abstract 347]. 5th Conference on Retroviruses and Opportunistic Infections; 1998 Feb 1–5; Chicago (IL)Google Scholar
  83. 83.
    Boruchoff SE, Sturgill MG, Grasing KW, et al. The steady-state disposition of indinavir is not altered by the concomitant administration of clarithromycin. Clin Pharmacol Ther 2000; 67: 351–9PubMedCrossRefGoogle Scholar
  84. 84.
    Mirochnick M, Clarke DF, Dorenbaum A. Nevirapine. Pharmacokinetic considerations in children and pregnant women. Clin Pharmacokinet 2000; 39: 281–93PubMedCrossRefGoogle Scholar
  85. 85.
    Robinson P, Gigliotti M, Lamson M, et al. Effect of the reverse transcriptase inhibitor, nevirapine, on the steady-state pharmacokinetics of clarithromycin in HIV-positive patients [abstract 374]. 6th Conference on Retroviruses and Opportunistic Infections; 1999 Jan 31–Feb 4; Chicago (IL)Google Scholar
  86. 86.
    Prime K, French P. Neuropsychiatric reaction induced by clarithromycin in a patient on highly active antiretroviral therapy (HAART). Sex Transm Infect 2001; 77: 297–8PubMedCrossRefGoogle Scholar
  87. 87.
    Ouellet D, Hsu A, Granneman GR, et al. Pharmacokinetic interaction between ritonavir and clarithromycin. Clin Pharmacol Ther 1998; 64: 355–62PubMedCrossRefGoogle Scholar
  88. 88.
    Jorga K, Buss NE, F. Hoffman-La Roche Ltd., Basel, Switzerland. Pharmacokinetic (PK) drug interaction with saquinavir soft gelatin capsule [abstract 339]. 39th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1999, San Francisco (CA)Google Scholar
  89. 89.
    Buss N, Fortovase® Study Group. Saquinavir Soft Gel Capsule (Fortovase®): pharmacokinetics and drug interactions [abstract 354]. 5th Conference on Retroviruses and Opportunistic Infections; 1998 Feb 1–5; ChicagoGoogle Scholar
  90. 90.
    Tseng A, Nguyen ME, Cardella C, et al. Probable interaction between efavirenz and cyclosporine. AIDS 2002; 16: 505–6PubMedCrossRefGoogle Scholar
  91. 91.
    Brinkman K, Huysmans F, Burger DM. Pharmacokinetic interaction between saquinavir and cyclosporine. Ann Intern Med 1998; 129: 914–5PubMedGoogle Scholar
  92. 92.
    Perry CM, Balfour JA. Didanosine: an update on its antiviral, pharmacokinetic properties and therapeutic efficacy in the management of HIV disease. Drugs 1996; 52: 928–62PubMedCrossRefGoogle Scholar
  93. 93.
    Huengsberg M, Castelino S, Sherrard J, et al. Does drug interaction cause failure of PCP prophylaxis with dapsone? [letter]. Lancet 1993; 341: 48PubMedCrossRefGoogle Scholar
  94. 94.
    Von Moltke LL, Greenblatt DJ, Duan SX, et al. Inhibition of desipramine hydroxylation (cytochrome P450–2D6) in vitro by quinidine and by viral protease inhibitors: relation to drug interactions in vivo. J Pharm Sci 1998; 87: 1184–9CrossRefGoogle Scholar
  95. 95.
    Bertz RJ, Cao G, Cavanaugh JH, et al. Effect of ritonavir on the pharmacokinetics of desipramine [abstract Mo.B.1201]. 11th International Conference on AIDS; 1996 Jul 7–12; Vancouver (BC)Google Scholar
  96. 96.
    Phillips EJ, Rachlis AR. Digoxin toxicity and ritonavir: a drug interaction mediated through P-glycoprotein? [abstract 1.9]. Second International Workshop on Clinical Pharmacology; 2001 Apr 2–4; Noordwijk, The NetherlandsGoogle Scholar
  97. 97.
    Rosenthal E, Sala F, Chichmanian R-M, et al. Ergotism related to concurrent administration of ergotamine tartrate and indinavir [letter]. JAMA 1999; 281: 987PubMedCrossRefGoogle Scholar
  98. 98.
    Mortier E, Pouchot J, Vinceneux P, et al. Ergotism related to interaction between nelfinavir and ergotamine [letter]. Am J Med 2001; 110: 594PubMedCrossRefGoogle Scholar
  99. 99.
    Montero A, Giovannoni AG, Tvrde PL. Leg ischemia in a patient receiving ritonavir and ergotamine. Ann Intern Med 1999; 130: 329–30PubMedGoogle Scholar
  100. 100.
    Liaudet L. Severe ergotism associated with interaction between ritonavir and ergotamine [letter]. BMJ 1999; 318: 771PubMedCrossRefGoogle Scholar
  101. 101.
    Grub S, Bryson H, Goggin T, et al. The interaction of saquinavir (soft gelatin capsule) with ketoconazole, erythromycin and rifampicin: comparison of the effect in healthy volunteers and in HIV-infected patients. Eur J Clin Pharmacol 2001; 57: 115–21PubMedCrossRefGoogle Scholar
  102. 102.
    McDowell JA, Chittick GE, Stevens CP, et al. Pharmacodynamic interaction of abacavir (1592U89) and ethanol in human immunodeficiency virus-infected adults. Antimicrob Agents Chemother 2000; 44: 1686–90PubMedCrossRefGoogle Scholar
  103. 103.
    Ravitch JR, Bryant BJ, Reese MJ, et al. In vivo and in vitro studies of the potential for drug interactions involving the anti-retroviral 1592 in humans [abstract 634]. 5th Conference on Retroviruses and Opportunistic Infections; 1998 Feb 1–5; Chicago (IL)Google Scholar
  104. 104.
    Olkkola KT, Palkama VJ, Neuvonen PJ. Ritonavir s role in reducing fentanyl clearance and prolonging its half-life. Anesthesiology 1999; 91: 681–5PubMedCrossRefGoogle Scholar
  105. 105.
    Sahai J, Gallicano K, Pakuts A, et al. Effect of fluconazole on zidovudine pharmacokinetics in patients infected with human immunodeficiency virus. J Infect Dis 1994; 169: 1103–7PubMedCrossRefGoogle Scholar
  106. 106.
    Wit S de, Smet M de, McCrea J, et al. Effect of fluconazole on indinavir pharmacokinetics in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 1998; 42: 223–7PubMedGoogle Scholar
  107. 107.
    Jackson KA, Rosenbaum SE, Kerr BM, et al. A population pharmacokinetic analysis of nelfinavir mesylate in human immunodeficiency virus-infected patients enrolled in a phase III clinical trial. Antimicrob Agents Chemother 2000; 44: 1832–7PubMedCrossRefGoogle Scholar
  108. 108.
    Cato III A, Cao G, Hsu A, et al. Evaluation of the effect of fluconazole on the pharmacokinetics of ritonavir. Drug Metab Dispos 1997; 25: 1104–6PubMedGoogle Scholar
  109. 109.
    Koks CHW, Crommentuyn KML, Hoetelmans RMW, et al. The effect of fluconazole on ritonavir and saquinavir pharmacokinetics in HIV-1-infected individuals. Br J Clin Pharmacol 2001; 51: 631–5PubMedCrossRefGoogle Scholar
  110. 110.
    DeSilva KE, Le Flore DB, Marston BJ, et al. Serotonin syndrome in HIV-infected individuals receiving antiretroviral therapy and fluoxetine. AIDS 2001; 15: 1281–5PubMedCrossRefGoogle Scholar
  111. 111.
    Ouellet D, Hsu A, Qian J, et al. Effect of fluoxetine on pharmacokinetics of ritonavir. Antimicrob Agents Chemother 1998; 42: 3107–12PubMedGoogle Scholar
  112. 112.
    Clevenbergh P, Corcostegui M, Gérard D, et al. Iatrogenic Cushing’s syndrome in a HIV-infected patient treated with inhaled corticosteroids and low dose ritonavir enhanced PI containing regimen [abstract 1.8]. Second International Workshop on Clinical Pharmacology; 2001 Apr 2–4; Noordwijk, The NetherlandsGoogle Scholar
  113. 113.
    Khaliq Y, Gallicano K, Leger R, et al. A drug interaction between fusidic acid and a combination of ritonavir and saquinavir. Br J Clin Pharmacol 2000; 50: 81–3CrossRefGoogle Scholar
  114. 114.
    Harrington RD, Woodward JA, Hooton TM, et al. Life-threatening interactions between HIV-1 protease inhibitors and the illicit drugs MDMA and γ-hydroxybutyrate. Arch Intern Med 1999; 159: 2221–4PubMedCrossRefGoogle Scholar
  115. 115.
    Burger DM, Meenhorst PL, ten Napel CHH, et al. Pharmacokinetic variability of zidovudine in HIV-infected individuals: subgroup analysis and drug interactions. AIDS 1994; 8: 1683–9PubMedCrossRefGoogle Scholar
  116. 116.
    Cimoch PJ, Lavelle J, Pollard R, et al. Pharmacokinetics of oral ganciclovir alone and in combination with zidovudine, didanosine, and probenecid in HIV-infected subjects. J Acquir Immune Defic Syndr Hum Retrovirol 1998; 17: 227–34PubMedCrossRefGoogle Scholar
  117. 117.
    Jung D, AbdelHameed MH, Teitelbaum P, et al. The pharmacokinetics and safety profile of oral ganciclovir combined with zalcitabine or stavudine in asymptomatic HIV- and CMV-seropositive patients. J Clin Pharmacol 1999; 39: 505–12PubMedGoogle Scholar
  118. 118.
    Jung D, Griffy K, Dorr A, et al. Effect of high-dose oral ganciclovir on didanosine disposition in human immunodeficiency virus (HIV)-positive patients. J Clin Pharmacol 1998; 38: 1057–62PubMedCrossRefGoogle Scholar
  119. 119.
    Piscitelli SC, Burstein AH, Welden N, et al. The effect of garlic supplements on the pharmacokinetics of saquinavir. Clin Infect Dis 2002; 34: 234–8PubMedCrossRefGoogle Scholar
  120. 120.
    Miller J, Carey D, Ray J, et al. Potential interaction with protease inhibitors and gemfibrozil [abstract 2.11]. First International Workshop on Clinical Pharmacology; 2000 Mar 30–31; Noordwijk, The NetherlandsGoogle Scholar
  121. 121.
    Shelton MJ, Wynn HE, Hewitt RG, et al. Effects of grapefruit juice on pharmacokinetic exposure to indinavir in HIV-positive subjects. J Clin Pharmacol 2001; 41: 435–42PubMedCrossRefGoogle Scholar
  122. 122.
    Fuhr U. Drug interactions with grapefruit juice. Extent, probable mechanism and clinical relevance. Drug Saf 1998; 18: 251–72PubMedCrossRefGoogle Scholar
  123. 123.
    Kupferschmidt HHT, Fattinger KE, Ha HR, et al. Grapefruit juice enhances the bioavailability of the HIV protease inhibitor saquinavir in man. Br J Clin Pharmacol 1998; 45: 355–9PubMedCrossRefGoogle Scholar
  124. 124.
    Piscitelli SC, Vogel S, Figg WD, et al. Alteration in indinavir clearance during interleukin-2 infusions in patients infected with the human immunodeficiency virus. Pharmacotherapy 1998; 18: 1212–6PubMedGoogle Scholar
  125. 125.
    Padberg J, Schürmann D, Grobusch M, et al. Drug interaction of isotretinoin and protease inhibitors: support for the cellular retinoic acid-binding protein-1 theory of lipodystrophy? AIDS 1999; 13: 284–5PubMedCrossRefGoogle Scholar
  126. 126.
    Damle BD, Mummaneni V, Kaul S, et al. Lack of effect of simultaneously administered didanosine encapsulated enteric bead formulation (Videc EC) on oral absorption of indinavir, ketoconazole, or ciprofloxacin. Antimicrob Agents Chemother 2002; 46: 385–91PubMedCrossRefGoogle Scholar
  127. 127.
    Polk RE, Crouch MA, Israel DS, et al. Pharmacokinetic interaction between ketoconazole and amprenavir after single doses in healthy men. Pharmacotherapy 1999; 19: 1378–84PubMedCrossRefGoogle Scholar
  128. 128.
    Sadler B, Gillotin C, Chittick GE, et al. Pharmacokinetic drug interactions with amprenavir [abstract 12389]. 12th World AIDS Conference; 1998 Jun 2–Jul 3; GenevaGoogle Scholar
  129. 129.
    Knupp CA, Brater DC, Relue J, et al. Pharmacokinetics of didanosine and ketoconazole after coadministration to patients seropositive for the human immunodeficiency virus. J Clin Pharmacol 1993; 33: 912–7PubMedGoogle Scholar
  130. 130.
    Kerr B, Yuen G, Daniels R, et al. Strategic approach to nelfinavir mesylate (NFV) drug interactions involving CYP3A metabolism [abstract 429]. 4th Conference on Retroviruses and Opportunistic Infections; 1997 Jan 22–26; Washington, DCGoogle Scholar
  131. 131.
    Lee CA, Liang B-H, Wu EY, et al. Prediction of nelfinavir mesylate (VIRACEPT) clinical drug interactions based on in vitro human P450 metabolism studies [abstract 523]. 4th Conference on Retroviruses and Opportunistic Infections; 1997 Jan 22–26; Washington, DCGoogle Scholar
  132. 132.
    Lamson M, Robinson P, Gigliotti M, et al. The pharmacokinetic (PK) interactions of nevirapine (NVP) and ketoconazole (Keto) [abstract 12218]. 12th World AIDS Conference; 1998 Jun 29–Jul 3; GenevaGoogle Scholar
  133. 133.
    Khaliq Y, Gallicano K, Venance S, et al. Effect of ketoconazole on ritonavir and saquinavir concentrations in plasma and cerebrospinal fluid from patients infected with human immunodeficiency virus. Clin Pharmacol Ther 2000; 68: 637–46PubMedCrossRefGoogle Scholar
  134. 134.
    Schutz M, Nangah S, Merry C. The effect of gastric proton pump inhibitors on delavirdine absorption: four case reports [abstract 1.15]. Second International Workshop on Clinical Pharmacology; 2001 Apr 2–4; Noordwijk, The NetherlandsGoogle Scholar
  135. 135.
    Caparros-Lefebvre D, Lannuzel A, Tiberghien F, et al. Protease inhibitors enhance levodopa effects in Parkinson’s disease [letter]. Mov Disord 1999; 14: 535PubMedCrossRefGoogle Scholar
  136. 136.
    Nerad JL, Kessler HA. Hypercholesterolemia in a health care worker receiving thyroxine after postexposure prophylaxis for human immunodeficiency virus infection. Clin Infect Dis 2001; 32: 1635–6PubMedCrossRefGoogle Scholar
  137. 137.
    Tseng A, Fletcher D. Interaction between ritonavir and levothyroxine. AIDS 1998; 12: 2235–6PubMedGoogle Scholar
  138. 138.
    Tayrouz Y, Ganssmann B, Ding R, et al. Ritonavir increases loperamide plasma concentrations without evidence for Pglycoprotein involvement. Clin Pharmacol Ther 2001; 70: 405–14PubMedCrossRefGoogle Scholar
  139. 139.
    Khaliq Y, Gallicano K, Tisdale C, et al. Pharmacokinetic interaction between mefloquine and ritonavir in healthy volunteers. Br J Clin Pharmacol 2001; 51: 591–600PubMedCrossRefGoogle Scholar
  140. 140.
    Piscitelli SC, Rock Kress D, Bertz RJ, et al. The effect of ritonavir on the pharmacokinetics of meperidine and normeperidine. Pharmacotherapy 2000; 20: 549–53PubMedCrossRefGoogle Scholar
  141. 141.
    Hendrix C, Wakeford J, Wire MB, et al. Pharmacokinetic (PK) and pharmacodynamic (PD) evaluation of methadone (MD) enantiomers following co-administration with amprenavir (APV) in opioid-dependent subjects [abstract]. 40th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2000 Sep 17–20; Toronto (ON)Google Scholar
  142. 142.
    Bart P-A, Rizzardi PG, Gallant S, et al. Methadone concentrations are decreased by the administration of abacavir plus amprenavir. Ther Drug Monit 2001; 23: 553–5PubMedCrossRefGoogle Scholar
  143. 143.
    McCance-Katz EF, Rainey PM, Jatlow P, et al. Methadone effects on zidovudine disposition (AIDS Clinical Trials Group 262). J Acquir Immune Defic Syndr Hum Retrovirol 1998; 18: 435–43PubMedCrossRefGoogle Scholar
  144. 144.
    Rainey PM, Friedland G, McCance-Katz EF, et al. Interaction of methadone with didanosine and stavudine. J Acquir Immune Defic Syndr 2000; 24: 241–8PubMedGoogle Scholar
  145. 145.
    Marzolini C, Troillet N, Telenti A, et al. Efavirenz decreases methadone blood concentrations. AIDS 2000; 14: 1291–2PubMedCrossRefGoogle Scholar
  146. 146.
    Pinzani V, Faucherre V, Peyriere H, et al. Methadone withdrawal symptoms with nevirapine and efavirenz. Ann Pharmacother 2000; 34: 405–7PubMedCrossRefGoogle Scholar
  147. 147.
    Clarke SM, Mulcahy FM, Tjia J, et al. The pharmacokinetics of methadone in HIV-positive patients receiving the non-nucleoside reverse transcriptase inhibitor efavirenz. Br J Clin Pharmacol 2001; 51: 213–7PubMedCrossRefGoogle Scholar
  148. 148.
    Beauverie P, Taburet A-M, Dessalles M-C, et al. Therapeutic drug monitoring of methadone in HIV-infected patients receiving protease inhibitors. AIDS 1998; 12: 2510–1PubMedGoogle Scholar
  149. 149.
    Hsyu PH, Lillibridge JH, Maroldo L, et al. Pharmacokinetic (PK) and pharmacodynamic (PD) interactions between nelfinavir and methadone [abstract 87]. 7th Conference on Retroviruses and Opportunistic Infections; 2000 Jan 31–Feb 2; San Francisco (CA)Google Scholar
  150. 150.
    Smith PF, Booker BM, Difrancesco R, et al. Effect of methadone or LAAM on the pharmacokinetics of nelfinavir and M8 [abstract A-491]. 41th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2001 Dec 16–19; Toronto (ON)Google Scholar
  151. 151.
    Altice FL, Friedland GH, Cooney EL. Nevirapine induced opiate withdrawal among injection drug users with HIV infection receiving methadone. AIDS 1999; 13: 957–62PubMedCrossRefGoogle Scholar
  152. 152.
    Heelon MW, Meade LB. Methadone withdrawal when starting an antiretroviral regimen including nevirapine. Pharmacotherapy 1999; 19: 471–2PubMedCrossRefGoogle Scholar
  153. 153.
    Otero M-J, Euertes A, Sánchez R, et al. Nevirapine-induced withdrawal symptoms in HIV patients on methadone maintenance programme: an alert. AIDS 1999; 13: 1004–5PubMedCrossRefGoogle Scholar
  154. 154.
    Hsu A, Grannemann GR, Carothers L, et al. Ritonavir does not increase methadone exposure in healthy volunteers [abstract 342]. 5th Conference on Retroviruses and Opportunistic Infections; 1998 Feb 1–5; Chicago (IL)Google Scholar
  155. 155.
    Geletko SM, Erickson AD. Decreased methadone effect after ritonavir initiation. Pharmacotherapy 2000; 20: 93–4PubMedCrossRefGoogle Scholar
  156. 156.
    Gerber JG, Rosenkranz S, Segal Y, et al. Effect of ritonavir/-saquinavir on stereoselective pharmacokinetics of methadone: results of AIDS Clinical Trials Group (ACTG) 401. J Acquir Immune Defic Syndr 2001; 27: 153–60PubMedGoogle Scholar
  157. 157.
    Henry JA, Hill IR. Fatal interaction between ritonavir and MDMA. Lancet 1998; 352: 1751–2PubMedCrossRefGoogle Scholar
  158. 158.
    Hales G, Roth N, Smith D. Possible fatal interaction between protease inhibitors and methamphetamine [letter]. Antivir Ther 2000; 5: 19PubMedGoogle Scholar
  159. 159.
    Gastaldo JM, Neidig JL, Para MF, et al. The clinical significance of the drug interaction between protease inhibitors and midazolam. 40th Interscience Conference on Antimicrobial Agents and Chemotherapy [abstract 422]; 2000 Sep 17–20; Toronto (ON)Google Scholar
  160. 160.
    Merry C, Mulcahy F, Barry M, et al. Saquinavir interaction with midazolam: pharmacokinetic considerations when prescribing protease inhibitors for patients with HIV disease. AIDS 1997; 11: 268–9PubMedGoogle Scholar
  161. 161.
    Palkama VJ, Ahonen J, Neuvonen PJ, et al. Effect of saquinavir on the pharmacokinetics and pharmacodynamics of oral and intravenous midazolam. Clin Pharmacol Ther 1999; 66: 33–9PubMedCrossRefGoogle Scholar
  162. 162.
    Elliott AJ, Russo J, Bergam K, et al. Antidepressant efficacy in HIV-seropositive outpatients with major depressive disorder: an open trial of nefazodone. J Clin Psychiatry 1999; 60: 226–31PubMedCrossRefGoogle Scholar
  163. 163.
    Penzak SR, Lawhorn WD, Hon YY, et al. Influence of ritonavir and CYP1A2 genotype on olanzapine disposition in healthy subjects. 41th Interscience Conference on Antimicrobial Agents and Chemotherapy [abstract A-493]. 2001 Dec 16–19; Toronto (ON)Google Scholar
  164. 164.
    Burger DM, Hugen PWH, Kroon FP, et al. Pharmacokinetic interaction between the proton pump inhibitor omeprazole and the HIV protease inhibitor indinavir. AIDS 1998; 12: 2080–2PubMedCrossRefGoogle Scholar
  165. 165.
    Hugen PWH, Burger DM, ter Hofstede HJM, et al. Concomitant use of indinavir and omeprazole: risk of antiretroviral subtherapy. 4th International Congress on Drug Therapy in HIV Infection [abstract P46]; 1998; GlasgowGoogle Scholar
  166. 166.
    Joshi AS, Fiske WD, Benedek IH, et al. Lack of a pharmacokinetic interaction between efavirenz (DMP 266) and ethinyl estradiol in healthy female volunteers. 5th Conference on Retroviruses and Opportunistic Infections [abstract 348]; 1998 Feb 1–5; Chicago (IL)Google Scholar
  167. 167.
    Bertz R, Hsu A, Lam W, et al. Pharmacokinetic interactions between lopinavir/ritonavir (ABT-378r) and other non-HIV drugs. 5th International Congress on Drug Therapy in HIV Infection; [abstract P291]; 2000 Oct 22–26; GlasgowGoogle Scholar
  168. 168.
    Ouellet D, Hsu A, Qian J, et al. Effect of ritonavir on the pharmacokinetics of ethinyl oestradiol in healthy female volunteers. Br J Clin Pharmacol 1998; 46: 111–6PubMedCrossRefGoogle Scholar
  169. 169.
    Mildvan D, Yarrish R, Marshak A, et al. Pharmacokinetic interaction between nevirapine and ethinyl estradiol/norethindrone when administered concurrently to HIV-infected women. J Acquir Immune Defic Syndr 2002; 29: 471–7PubMedGoogle Scholar
  170. 170.
    Mole L, Israelski D, Bubp J, et al. Pharmacokinetics of zidovudine alone and in combination with oxazepam in the HIV infected patient. J Acquir Immune Defic Syndr Hum Retrovirol 1993; 6: 56–60Google Scholar
  171. 171.
    Nannan Panday VR, Hoetelmans RMW, Heeswijk RPG van, et al. Paclitaxel in the treatment of human immunodeficiency virus 1-associated Kaposi s sarcoma: drug-drug interactions with protease inhibitors and a nonnucleoside reverse transcriptase inhibitor: a case report study. Cancer Chemother Pharmacol 1999; 43: 516–9PubMedCrossRefGoogle Scholar
  172. 172.
    Schwartz JD, Howard W, Scadden DT. Potential interaction of antiretroviral therapy with paclitaxel in patients with AIDS-related Kaposi s sarcoma. AIDS 1999; 13: 283–4PubMedCrossRefGoogle Scholar
  173. 173.
    Shelton MJ, Cloen D, Becker M, et al. Evaluation of the pharmacokinetic (PK) interaction between phenytoin (Phen) and nelfinavir (NFV) in healthy volunteers at steady state. 40th Interscience Conference on Antimicrobial Agents and Chemotherapy [abstract 426]. 2000 Sep 17–20; Toronto (ON)Google Scholar
  174. 174.
    Honda M, Yasuoka A, Aoki M, et al. A generalized seizure following initiation of nelfinavir in a patient with human immunodeficiency virus type 1 infection, suspected due to interaction between nelfinavir and phenytoin. Intern Med 1999; 38: 302–3PubMedCrossRefGoogle Scholar
  175. 175.
    Kornhauser DM, Hendrix CW, Nerhood LJ, et al. Probenecid and zidovudine metabolism. Lancet 1989; II: 473–5CrossRefGoogle Scholar
  176. 176.
    Hedaya MA, Elmquist WF, Sawchuk RJ. Probenecid inhibits the metabolic and renal clearances of zidovudine (AZT) in human volunteers. Pharm Res 1990; 7: 411–7PubMedCrossRefGoogle Scholar
  177. 177.
    Miranda P de, Good SS, Yarchoan R, et al. Alteration of zidovudine pharmacokinetics by probenecid in patients with AIDS or AIDS-related complex. Clin Pharmacol Ther 1989; 46: 494–500PubMedCrossRefGoogle Scholar
  178. 178.
    Petty BG, Kornhauser DM, Lietman PS. Zidovudine with probenecid: a warning. Lancet 1990; 335: 1044–5PubMedCrossRefGoogle Scholar
  179. 179.
    Massarella JW, Nazareno LA, Passe S, et al. The effect of probenecid on the pharmacokinetics of zalcitabine in HIV-positive patients. Pharm Res 1996; 13: 449–52PubMedCrossRefGoogle Scholar
  180. 180.
    Peloquin CA, Nitta AT, Burman WJ, et al. Low antituberculosis drug concentrations in patients with AIDS. Ann Pharmacother 1996; 30: 919–25PubMedGoogle Scholar
  181. 181.
    Knupp CA, Graziano FM, Dixon RM, et al. Pharmacokineticinteraction study of didanosine and ranitidine in patients seropositive for human immunodeficiency virus. Antimicrob Agents Chemother 1992; 36: 2075–9PubMedCrossRefGoogle Scholar
  182. 182.
    Sim SM, Hoggard PG, Sales SD, et al. Effect of ribavirin on zidovudine efficacy and toxicity in vitro: a concentration-dependent interaction. AIDS Res Hum Retroviruses 1998; 14: 1661–7PubMedCrossRefGoogle Scholar
  183. 183.
    Kakuda TN, Brinkman K, Salmon-Céron D, et al. Mitochondrial toxic effects and ribavirin. Lancet 2001; 357: 1802–4PubMedCrossRefGoogle Scholar
  184. 184.
    Polk RE, Brophy DF, Israel DS, et al. Pharmacokinetic interaction between amprenavir and rifabutin or rifampin in healthy males. Antimicrob Agents Chemother 2001; 45: 502–8PubMedCrossRefGoogle Scholar
  185. 185.
    Borin MT, Chambers JH, Carel BJ, et al. Pharmacokinetic study of the interaction between rifabutin and delavirdine mesylate in HIV-1 infected patients. Antiviral Res 1997; 35: 53–63PubMedCrossRefGoogle Scholar
  186. 186.
    Cox SR, Herman BD, Batts DH, et al. Delavirdine (D) and rifabutin (R): pharmacokinetic (PK) evaluation in HIV-1 patients with concentration-targeting of delavirdine. 5th Conference on Retroviruses and Opportunistic Infections [abstract 344]; 1998 Feb 1–5; Chicago (IL)Google Scholar
  187. 187.
    Kuper JJ, D Aprile M. Drug-drug interactions of clinical significance in the treatment of patients with Mycobacterium avium complex disease. Clin Pharmacokinet 2000; 39: 203–14PubMedCrossRefGoogle Scholar
  188. 188.
    Hamzeh F, Benson C, Gerber J, et al. Steady-state pharmacokinetic (PK) interaction of modified-dose indinavir (IDV) and rifabutin (RBT). Second International Workshop on Clinical Pharmacology [abstract 1.4]; 2001 Apr 2–4; Noordwijk, The NetherlandsGoogle Scholar
  189. 189.
    Cato III A, Cavanaugh J, Shi H, et al. The effect of multiple doses of ritonavir on the pharmacokinetics of rifabutin. Clin Pharmacol Ther 1998; 63: 414–21PubMedCrossRefGoogle Scholar
  190. 190.
    Gallicano K, Khaliq Y, Carignan G, et al. A pharmacokinetic study of intermittent rifabutin dosing with a combination of ritonavir and saquinavir in patients infected with human immunodeficiency virus. Clin Pharmacol Ther 2001; 70: 149–58PubMedCrossRefGoogle Scholar
  191. 191.
    Gallicano KD, Sahai J, Shukla VK, et al. Induction of zidovudine glucuronidation and amination pathways by rifampicin in HIV-infected patients. Br J Clin Pharmacol 1999; 48: 168–79PubMedCrossRefGoogle Scholar
  192. 192.
    Burger DM, Meenhorst PL, Koks CHW, et al. Pharmacokinetic interaction between rifampin and zidovudine. Antimicrob Agents Chemother 1993; 37: 1426–31PubMedCrossRefGoogle Scholar
  193. 193.
    Borin MT, Chambers JH, Carel BJ, et al. Pharmacokinetic study of the interaction between rifampin and delavirdine mesylate. Clin Pharmacol Ther 1997; 61: 544–53PubMedCrossRefGoogle Scholar
  194. 194.
    Benedek I, Joshi A, Fiske WD, et al. Pharmacokinetic interaction between efavirenz (EFV) and rifampin (RIF) in healthy volunteers. 12th World AIDS Conference [abstract 42280]; 1998 Jun 29–Jul 3; GenevaGoogle Scholar
  195. 195.
    Lopez-Cortes LF, Ruiz R, Viciana P, et al. Pharmacokinetic interactions between rifampin and efavirenz in patients with tuberculosis and HIV infection. 8th Conference on Retroviruses and Opportunistic Infections [abstract 32]; 2001 Feb 4–8; Chicago (IL)Google Scholar
  196. 196.
    Jaruratanasirikul S, Sriwiriyajan S. Effect of indinavir on the pharmacokinetics of rifampicin in HIV-infected patients. J Pharm Pharmacol 2001; 53: 409–12PubMedCrossRefGoogle Scholar
  197. 197.
    Bergshoeff AS, Wolfs TFW, Geelen SPM, et al. Favourable nelfinavir pharmacokinetics (PK) during rifampin use by coadministration of ritonavir-case report. Second International Workshop on Clinical Pharmacology [abstract 1.13]; 2001 Apr 2–4; Noordwijk, The NetherlandsGoogle Scholar
  198. 198.
    Robinson P, Lamson M, Gigliotti M, et al. Pharmacokinetic (PK) interaction between nevirapine (NVP) and rifampin (RMP). 12th World AIDS Conference [abstract 60623]; 1998 Jun 29–Jul 3; GenevaGoogle Scholar
  199. 199.
    Dean GL, Back DJ, De Ruiter A. Effect of tuberculosis therapy on nevirapine trough plasma concentrations. AIDS 1999; 13: 2489–90PubMedCrossRefGoogle Scholar
  200. 200.
    Moreno S, Podzamcer D, Blázquez R, et al. Treatment of tuberculosis in HIV-infected patients: safety and antiretroviral efficacy of the concomitant use of ritonavir and rifampin. AIDS 2001; 15: 1185–7PubMedCrossRefGoogle Scholar
  201. 201.
    Veldkamp AI, Hoetelmans RMW, Beijnen JH, et al. Ritonavir enables combined therapy with rifampin and saquinavir [letter]. Clin Infect Dis 1999; 29: 1586PubMedCrossRefGoogle Scholar
  202. 202.
    Lee SI, Klesmer J, Hirsch BE. Neuroleptic malignant syndrome associated with use of risperidone, ritonavir, and indinavir: a case report. Psychosomatics 2000; 41: 453–4PubMedCrossRefGoogle Scholar
  203. 203.
    Murphy R, Katlama C, Bonmarchand M, et al. Roxithromycin pharmacodynamic interaction and effect on nelfinavir-based antiretroviral therapy. 8th European Conference on Clinic Aspects and Treatment of HIV-Infection [abstract 251]; 2001 Oct 28–31; AthensGoogle Scholar
  204. 204.
    Merry C, Barry MG, Ryan M, et al. Interaction of sildenafil and indinavir when co-administered to HIV-positive patients. AIDS 1999; 13: S101–7CrossRefGoogle Scholar
  205. 205.
    Hall MCS, Ahmad S. Interaction between sildenafil and HIV-1 combination therapy. Lancet 1999; 353: 2071–2PubMedCrossRefGoogle Scholar
  206. 206.
    Muirhead GJ, Wulff MB, Fielding A, et al. Pharmacokinetic interactions between sildenafil and saquinavir/ritonavir. Br J Clin Pharmacol 2000; 50: 99–107PubMedCrossRefGoogle Scholar
  207. 207.
    Martin CM, Hoffman V, Berggren RE. Rhabdomyolysis in a patient receiving simvastatin concurrently with highly active antiretroviral therapy. 40th Interscience Conference on Antimicrobial Agents and Chemotherapy [abstract 1297]; 2000 Sep 17–20; Toronto (ON)Google Scholar
  208. 208.
    Piscitelli SC, Burstein AH, Chaitt D, et al. Indinavir concentrations and St John’s wort. Lancet 2000; 355: 547–8PubMedCrossRefGoogle Scholar
  209. 209.
    de Maat MMR, Hoetelmans RMW, Mathôt RAA, et al. Drug interaction between St Johns wort and nevirapine. AIDS 2001; 15: 420–1PubMedCrossRefGoogle Scholar
  210. 210.
    Schvarcz R, Rudbeck G, Söderdahl G, et al. Interaction between nelfinavir and tacrolimus after orthoptic liver transplantation in a patient coinfected with HIV and hepatitis C (HCV). Transplantation 1999; 69: 2194–5CrossRefGoogle Scholar
  211. 211.
    Sheikh AM, Wolf DC, Lebovics E, et al. Concomitant human immunodeficiency virus protease inhibitor therapy markedly reduces tacrolimus metabolism and increases blood levels. Transplantation 1999; 68: 307–9PubMedCrossRefGoogle Scholar
  212. 212.
    Hsu A, Granneman GR, Witt G, et al. Assessment of multiple doses of ritonavir on the pharmacokinetics of theophylline. 11th International Conference on AIDS [abstract Mo.B.1200]; 1996 Jul 7–12; Vancouver (BC)Google Scholar
  213. 213.
    Zalma A, Moltke LL von, Granda BW, et al. In vitro metabolism of trazodone by CYP3A: Inhibition by ketoconazole and human immunodeficiency viral protease inhibitors. Biol Psychiatry 2000; 47: 655–61PubMedCrossRefGoogle Scholar
  214. 214.
    Lee BL, Safrin S, Makrides V, et al. Zidovudine, trimethoprim, and dapsone pharmacokinetic interactions in patients with human immunodeficiency virus infection. Antimicrob Agents Chemother 1996; 40: 1231–6PubMedGoogle Scholar
  215. 215.
    Adkins JC, Peters DH, Faulds D. Zalcitabine: an update of its pharmacodynamic and pharmacokinetic properties and clinical efficacy in the management of HIV infection. Drugs 1997; 53: 1054–80PubMedCrossRefGoogle Scholar
  216. 216.
    Moore KHP, Yuen GJ, Raasch RH, et al. Pharmacokinetics of lamivudine administered alone and with trimethoprim-sulfamethoxazole. Clin Pharmacol Ther 1996; 59: 550–8PubMedCrossRefGoogle Scholar
  217. 217.
    Hudson M, Nash C. Effect of trimethoprim on lamivudine bioavailability [letter]. JAMA 1996; 276: 1140PubMedCrossRefGoogle Scholar
  218. 218.
    Katlama C. Effect of trimethoprim on lamivudine bioavailability [letter]. JAMA 1996; 276: 1140CrossRefGoogle Scholar
  219. 219.
    Bertz RJ, Cao G, Cavanaugh JH, et al. Effect of ritonavir on the pharmacokinetics of trimethoprim/sulphamethoxazole. 11th International Conference on AIDS [abstract Mo.B.1197]; 1996 Jul 7–12; Vancouver (BC)Google Scholar
  220. 220.
    Lertora JJL, Rege AB, Greenspan DL, et al. Pharmacokinetic interaction between zidovudine and valproic acid in patients infected with human immunodeficiency virus. Clin Pharmacol Ther 1994; 56: 272–8PubMedCrossRefGoogle Scholar
  221. 221.
    Cozza KL, Swanton EJ, Humphreys CW. Hepatotoxicity with combination of valproic acid, ritonavir, and nevirapine: a case report. Psychosomatics 2000; 41: 452–3PubMedCrossRefGoogle Scholar
  222. 222.
    Gatti G, Alessandrini A, Camera M, et al. Influence of indinavir and ritonavir on warfarin anticoagulant activity. AIDS 1998; 12: 825–6PubMedGoogle Scholar
  223. 223.
    Dionisio D, Mininni S, Bartolozzi D, et al. Need for increased dose of warfarin in HIV patients taking nevirapine. AIDS 2001; 15: 277–8PubMedCrossRefGoogle Scholar
  224. 224.
    Knoell KR, Young TM, Cousins ES. Potential interaction involving warfarin and ritonavir. Ann Pharmacother 1998; 32: 1299–302PubMedCrossRefGoogle Scholar
  225. 225.
    Newshan G, Tsang P. Ritonavir and warfarin interaction. AIDS 1999; 13: 1788–9PubMedCrossRefGoogle Scholar
  226. 226.
    Darlington MR. Hypoprothrombinemia during concomitant therapy with warfarin and saquinavir [letter]. Ann Pharmacother 1997; 31: 647PubMedGoogle Scholar
  227. 227.
    Greenblatt DJ, von Moltke LL, Harmatz JS, et al. Differential impairment of triazolam and zolpidem clearance by ritonavir. J Acquir Immune Defic Syndr 2000; 24: 129–36PubMedGoogle Scholar
  228. 228.
    Rang HP, Dale MM. Absorption, distribution and fate of drugs. In: Rang HP, Dale MM, editors. Pharmacology. 2nd ed. Edinburgh: Churchill Livingstone, 1991: 72–109Google Scholar
  229. 229.
    Dresser GK, Spence JD, Bailey DG. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet 2000; 38: 41–57PubMedCrossRefGoogle Scholar
  230. 230.
    Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994; 270: 414–23PubMedGoogle Scholar
  231. 231.
    Kim RB, Fromm MF, Wandel C, et al. The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest 1998; 101: 289–94PubMedCrossRefGoogle Scholar
  232. 232.
    Malingré MM, Beijnen JH, Schellens JHM. Oral delivery of taxanes. Invest New Drugs 2001; 19: 155–62PubMedCrossRefGoogle Scholar
  233. 233.
    Zhang Y, Benet LZ. The gut as a barrier to drug metabolism: combined role of cytochrome P450 3A and P-glycoprotein. Clin Pharmacokinet 2001; 40: 159–68PubMedCrossRefGoogle Scholar
  234. 234.
    Hennessy M, Kelleher D, Spiers JP, et al. St Johns Wort increases expression of P-glycoprotein: implications for drug interactions. Br J Clin Pharmacol 2002; 53: 75–82PubMedCrossRefGoogle Scholar
  235. 235.
    Fellay J, Marzolini C, Meaden ER, et al. Response to antiretroviral treatment in HIV-1-infected individuals with allelic variants of the multidrug resistance transporter 1: a pharmacogenetics study. Lancet 2002; 359: 30–6PubMedCrossRefGoogle Scholar
  236. 236.
    Sansom LN, Evans AM. What is the true significance of plasma protein binding displacement interactions? Drug Saf 1995; 12: 227–33PubMedCrossRefGoogle Scholar
  237. 237.
    Somogyi A. Renal transport of drugs: specificity and molecular mechanisms. Clin Exp Pharmacol Physiol 1996; 23: 986–9PubMedCrossRefGoogle Scholar
  238. 238.
    Prins JM, Büller HR, Kuijper EJ, et al. Once versus thrice daily gentamicin in patients with serious infections. Lancet 1993; 341: 335–9PubMedCrossRefGoogle Scholar
  239. 239.
    Lori F, Malykh AG, Foli A, et al. Combination of a drug targeting the cell with a drug targeting the virus controls human immunodeficiency virus type 1 resistance. AIDS Res Hum Retroviruses 1997; 13: 1403–9PubMedCrossRefGoogle Scholar
  240. 240.
    Zala C, Salomon H, Ochoa C, et al. Higher rate of toxicity with no increased efficacy when hydroxyurea is added to a regimen of stavudine plus didanosine and nevirapine in primary HIV infection. J Acquir Immune Defic Syndr 2002; 29: 368–73PubMedGoogle Scholar
  241. 241.
    Havlir DV, Gilbert PB, Bennett K, et al. Effects of treatment intensification with hydroxyurea in HIV-infected patients with virologic suppression. AIDS 2001; 15: 1379–88PubMedCrossRefGoogle Scholar
  242. 242.
    Squires KE. Oral ganciclovir for cytomegalovirus retinitis in patients with AIDS: results of two randomized studies. AIDS 1996; 10 Suppl. 4: S13–8PubMedGoogle Scholar
  243. 243.
    Slain D, Pakyz A, Israel DS, et al. Variability in activity of hepatic CYP3A4 in patients infected with HIV. Pharmacotherapy 2000; 20: 898–907PubMedCrossRefGoogle Scholar
  244. 244.
    Lee BL, Wong D, Benowitz NL, et al. Altered patterns of drug metabolism in patients with acquired immunodeficiency syndrome. Clin Pharmacol Ther 1993; 53: 529–35PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 2003

Authors and Affiliations

  • Monique M. R. de Maat
    • 1
    Email author
  • G. Corine Ekhart
    • 1
  • Alwin D. R. Huitema
    • 1
  • Cornelis H. W. Koks
    • 1
  • Jan W. Mulder
    • 2
  • Jos H. Beijnen
    • 1
    • 3
  1. 1.Department of Pharmacy & PharmacologySlotervaart HospitalAmsterdamThe Netherlands
  2. 2.Department of Internal MedicineSlotervaart HospitalAmsterdamThe Netherlands
  3. 3.Faculty of Pharmaceutical SciencesUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations