Skip to main content
Log in

Clinical Pharmacokinetics and Pharmacodynamics of Glyceryl Trinitrate and its Metabolites

  • Review Article
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

This review discusses the pharmacokinetics and pharmacodynamics of glyceryl trinitrate (nitroglycerin; GTN) pertinent to clinical medicine. The pharmacokinetics of GTN associated with various dose regimens are characterised by prominent intra- and inter-individual variability. It is, nevertheless, important to clearly understand the pharmacokinetics and characteristics of GTN to optimise its use in clinical practice and, in particular, to obviate the development of tolerance.

Measurements of plasma concentrations of GTN and of 1,2-glyceryl dinitrate (1,2-GDN), 1,3-glyceryl dinitrate (1,3-GDN), 1-glyceryl mononitrate (1-GMN), and 2-glyceryl mononitrate (2-GMN), its four main metabolites, remain difficult and require meticulous techniques to obtain reliable results. Since GDNs have an effect on haemodynamic function, pharmacokinetic analyses that include the parent drug as well as the metabolites are important.

Although the precise mechanisms of GTN metabolism have not been elucidated, two main pathways have been proposed for its biotransformation. The first is a mechanism-based biotransformation pathway that produces nitric oxide (NO) and contributes directly to vasodilation. The second is a clearance-based biotransformation or detoxification pathway that produces inorganic nitrite anions (NO2-). NO2- has no apparent cardiovascular effect and is not converted to NO in pharmacologically relevant concentrations in vivo.In addition, several non-enzymatic and enzymatic systems are capable of metabolising GTN.

This complex metabolism complicates considerably the evaluation of the pharmacokinetics and pharmacodynamics of GTN. Regardless of the route of administration, concentrations of the metabolites exceed those of the parent compound by several orders of magnitude. During continuous steady-state delivery of GTN, for instance by a patch, concentrations of 1,2-GDN are consistently 2–7 times higher than those of 1,3-GDN, and concentrations of 2-GMN are 4–8 times higher than those of 1-GMN. Concentrations of GDNs are approximately 10 times higher, and of GMNs approximately 100 times higher, than those of GTN during sustained administration.

The development of tolerance is closely related to the metabolism of GTN, and can be broadly categorised as haemodynamic tolerance versus vascular tolerance. Efforts are warranted to circumvent the development of tolerance and facilitate the use of GTN in clinical practice. Although this remains to be accomplished, it is likely that, in the near future, regimens will be developed based on a full understanding of the pharmacokinetics and pharmacodynamics of GTN and its metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I
Table II
Table III

Similar content being viewed by others

References

  1. Curry SH, Aburawi SM. Analysis, disposition and pharmacokinetics of nitroglycerin. Biopharm Drug Dispos 1985; 6(3): 235–80

    PubMed  CAS  Google Scholar 

  2. Bogaert MG. Clinical pharmacokinetics of glyceryl trinitrate following the use of systemic and topical preparations. Clin Pharmacokinet 1987; 12(1): 1–11

    PubMed  CAS  Google Scholar 

  3. Taylor T, Taylor IW, Chasseaud LF, et al. Pharmacokinetics and metabolism of organic nitrate vasodilators. In: Bridges JW, Chasseaud LF, Gibson GG, et al., editors. Progress in drug metabolism. London: Taylor & Francis Ltd, 1987: 207–336

    Google Scholar 

  4. Bogaert MG. Clinical pharmacokinetics of nitrates. Cardiovasc Drugs Ther 1994; 8(5): 693–9

    PubMed  CAS  Google Scholar 

  5. Rosseel MT, Bogaert MG. GLC determination of nitroglycerin and isosorbide dinitrate in human plasma. J Pharm Sci 1973; 62(5): 754–8

    PubMed  CAS  Google Scholar 

  6. Bogaert MG, Rosseel MT. Plasma levels in man of nitroglycerin after buccal administration. J Pharm Pharmacol 1972; 24(9): 737–8

    PubMed  CAS  Google Scholar 

  7. Yap PS, Fung HL. Pharmacokinetics of nitroglycerin in rats. J Pharm Sci 1978; 67(4): 584–6

    PubMed  CAS  Google Scholar 

  8. Armstrong PW, Armstrong JA, Marks GS. Blood levels after sublingual nitroglycerin. Circulation 1979; 59(3): 585–8

    PubMed  CAS  Google Scholar 

  9. Wei JY, Reid PR. Quantitative determination of trinitroglycerin in human plasma. Circulation 1979; 59(3): 588–92

    PubMed  CAS  Google Scholar 

  10. Noonan PK, Williams RL, Benet LZ. Dose dependent pharmacokinetics of nitroglycerin after multiple intravenous infusions in healthy volunteers. J Pharmacokinet Biopharm 1985; 13(2): 143–57

    PubMed  CAS  Google Scholar 

  11. Han C, Gumbleton M, Lau DT, et al. Improved gas chromatographic assay for the simultaneous determination of nitroglycerin and its mono- and dinitrate metabolites. J Chromatogr 1992; 579(2): 237–45

    PubMed  CAS  Google Scholar 

  12. Booth BP, Bennett BM, Brien JF, et al. Assay of glyceryl trinitrate, isosorbide dinitrate, and their metabolites in plasma by large-bore capillary column gas-liquid chromatography. Biopharm Drug Dispos 1990; 11(8): 663–77

    PubMed  CAS  Google Scholar 

  13. Santoro A, Rovati LC, Setnikar I, et al. Bioavailability and pharmacokinetic profile of glyceryl trinitrate and of glyceryl dinitrates during application of a new glyceryl trinitrate transdermal patch. Arzneimittel Forschung 2000; 50(9): 779–85

    PubMed  CAS  Google Scholar 

  14. Vaksmann G, Pariente-Khayat A, Godart F, et al. Effects of transdermal nitroglycerin in children with congestive heart failure: a doppler echocardiographic study. Pediatr Cardiol 2001; 22(1): 11–3

    PubMed  CAS  Google Scholar 

  15. Baba S, Shinohara Y, Sano H, et al. Application of high-performance liquid chromatography with synchronized accumulating radioisotope detector to analysis of glyceryl trinitrate and its metabolites in rat plasma. J Chromatogr 1984; 305(1): 119–26

    PubMed  CAS  Google Scholar 

  16. Armstrong JA, Slaughter SE, Marks GS, et al. Rapid disappearance of nitroglycerin following incubation with human blood. Can J Physiol Pharmacol 1980; 58(5): 459–62

    PubMed  CAS  Google Scholar 

  17. Akiyama K, Hirota J, Takiguchi M, et al. The release of nitroglycerin absorbed into the central venous catheter. Surg Today 1997; 27(10): 936–40

    PubMed  CAS  Google Scholar 

  18. Altavela JL, Haas CE, Nowak DR, et al. Clinical response to intravenous nitroglycerin infused through polyethylene or polyvinyl chloride tubing. Am J Hosp Pharm 1994; 51(4): 490–4

    PubMed  CAS  Google Scholar 

  19. Klemsdal TO, Mundal HH, Bredesen JE, et al. Transdermal nitroglycerin: clinical and pharmacokinetic consequences of renewing the patch and the application site. Eur J Clin Pharmacol 1997; 52(5): 379–81

    PubMed  CAS  Google Scholar 

  20. Han C, Jung P, Sanders SW, et al. Pharmacokinetics of nitroglycerin and its four metabolites during nitroglycerin transdermal administration. Biopharm Drug Dispos 1994; 15(2): 179–83

    PubMed  CAS  Google Scholar 

  21. Hashimoto S, Yamauchi E, Kobayashi A, et al. The pharmacokinetics of trinitroglycerin and its metabolites in patients with chronic stable angina. Br J Clin Pharmacol 2000; 50(4): 373–6

    PubMed  CAS  Google Scholar 

  22. Bauer JA, Fung HL. Arterial versus venous metabolism of nitroglycerin to nitric oxide: a possible explanation of organic nitrate venoselectivity. J Cardiovasc Pharmacol 1996; 28(3): 371–4

    PubMed  CAS  Google Scholar 

  23. Hodgson JR, Lee CC. Trinitroglycerol metabolism: denitration and glucuronide formation in the rat. Toxicol Appl Pharmacol 1975; 34(3): 449–55

    PubMed  CAS  Google Scholar 

  24. Bauer JA, Fung HL. Specific binding of nitroglycerin to coronary artery microsomes: evidence of a vascular nitrate binding site. Biochem Pharmacol 1996; 52(4): 619–25

    PubMed  CAS  Google Scholar 

  25. Ignarro LJ, Lippton H, Edwards JC, et al. Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates. J Pharmacol Exp Ther 1981; 218(3): 739–49

    PubMed  CAS  Google Scholar 

  26. Chung SJ, Fung HL. Relationship between nitroglycerin-in-duced vascular relaxation and nitric oxide production: probes with inhibitors and tolerance development. Biochem Pharmacol 1993; 45(1): 157–63

    PubMed  CAS  Google Scholar 

  27. Feelisch M, Kelm M. Biotransformation of organic nitrates to nitric oxide by vascular smooth muscle and endothelial cells. Biochem Biophys Res Commun 1991; 180(1): 286–93

    PubMed  CAS  Google Scholar 

  28. Feelisch M, Brands F, Kelm M. Human endothelial cells bioactivate organic nitrates to nitric oxide: implications for the reinforcement of endothelial defence mechanisms. Eur J Clin Invest 1995; 25(10): 737–45

    PubMed  CAS  Google Scholar 

  29. Bennett BM, McDonald BJ, Nigam R, et al. Biotransformation of organic nitrates and vascular smooth muscle cell function. Trends Pharmacol Sci 1994; 15(7): 245–9

    PubMed  CAS  Google Scholar 

  30. Kurz MA, Boyer TD, Whalen R, et al. Nitroglycerin metabolism in vascular tissue: role of glutathione S-transferases and relationship between NO· and N02-formation. Biochem J 1993; 292(2): 545–50

    PubMed  CAS  Google Scholar 

  31. Haefeli WE, Gumbleton M, Benet LZ, et al. Comparison of vasodilatory responses to nitroglycerin and its dinitrate metabolites in human veins. Clin Pharmacol Ther 1992; 52(6): 590–6

    PubMed  CAS  Google Scholar 

  32. Kwon HR, Green P, Curry SH. Pharmacokinetics of nitroglycerin and its metabolites after administration of sustained-release tablets. Biopharm Drug Dispos 1992; 13(2): 141–52

    PubMed  CAS  Google Scholar 

  33. Jensen KM, Dahl JB. Plasma concentrations of glyceryl trinitrate and its dinitrate metabolites after sublingual administration to volunteers: simultaneous determination of glyceryl trinitrate and its dinitrate metabolites. Arzneimittel Forschung 1994; 44(8): 951–3

    PubMed  CAS  Google Scholar 

  34. Auclair B, Sirois G, Ngoc AH, et al. Population pharmacokinetics of nitroglycerin and of its two metabolites after a single 24-hour application of a nitroglycerin transdermal matrix delivery system. Ther Drug Monit 1998; 20(6): 607–11

    PubMed  CAS  Google Scholar 

  35. Auclair B, Sirois G, Ngoc AH, et al. Novel pharmacokinetic modelling of transdermal nitroglycerin. Pharm Res 1998; 15(4): 614–9

    PubMed  CAS  Google Scholar 

  36. Marks GS, McLaughlin BE, MacMillan HF, et al. Differential biotransformation of glyceryl trinitrate by red blood cell-supernatant fraction and pulmonary vein homogenate. Can J Physiol Pharmacol 1989; 67(5): 417–22

    PubMed  CAS  Google Scholar 

  37. Short RD, Dacre JC, Lee CC. A species and developmental comparison of trinitroglycerin metabolism in vitro. Biochem Pharmacol 1977; 26(2): 162–3

    PubMed  CAS  Google Scholar 

  38. Cossum PA, Roberts MS. Nitroglycerin disposition in human blood. Eur J Clin Pharmacol 1985; 29(2): 169–75

    PubMed  CAS  Google Scholar 

  39. Blei AT, Gottstein J, Fung HL. Role of the liver in the disposition of intravenous nitroglycerin in the rat. Biochem Pharmacol 1984; 33(16): 2681–6

    PubMed  CAS  Google Scholar 

  40. Bauer JA, Booth BP, Fung HL. Nitric oxide donors: biochemical pharmacology and therapeutics. Adv Pharmacol 1995; 34: 361–81

    PubMed  CAS  Google Scholar 

  41. Needleman P, Jakschik B, Johnson EM Jr. Sulfhydryl requirement for relaxation of vascular smooth muscle. J Pharmacol Exp Ther 1973; 187(2): 324–31

    PubMed  CAS  Google Scholar 

  42. Ignarro LJ, Gruetter CA. Requirement of thiols for activation of coronary arterial guanylate cyclase by glyceryl trinitrate and sodium nitrite: possible involvement of S-nitrosothiols. Biochim Biophys Acta 1980; 631(2): 221–31

    PubMed  CAS  Google Scholar 

  43. Feelisch M, Noack EA. Correlation between nitric oxide formation during degradation of organic nitrates and activation of guanylate cyclase. Eur J Pharmacol 1987; 139(1): 19–30

    PubMed  CAS  Google Scholar 

  44. Bennett BM, Kobus SM, Brien JF, et al. Requirement for reduced, unliganded hemoprotein for the hemoglobin- and myoglobin-mediated biotransformation of glyceryl trinitrate. J Pharmacol Exp Ther 1986; 237(2): 629–35

    PubMed  CAS  Google Scholar 

  45. Kohno M, Masumizu T, Mori A. ESR demonstration of nitric oxide production from nitroglycerin and sodium nitrite in the blood of rats. Free Radic Biol Med 1995; 18(3): 451–7

    PubMed  CAS  Google Scholar 

  46. Needleman P, Hunter FE. The transformation of glyceryl trinitrate and other nitrates by glutathione-organic nitrate reductase. Mol Pharmacol 1965; 1(1): 77–86

    PubMed  CAS  Google Scholar 

  47. Tsuchida S, Maki T, Sato K. Purification and characterization of glutathione transferases with an activity toward nitroglycerin from human aorta and heart: multiplicity of the human class Mu forms. J Biol Chem 1990; 265(13): 7150–7

    PubMed  CAS  Google Scholar 

  48. Servent D, Delaforge M, Ducrocq C, et al. Nitric oxide formation during microsomal hepatic denitration of glyceryl trinitrate: involvement of cytochrome P-450. Biochem Biophys Res Commun 1989; 163(3): 1210–6

    PubMed  CAS  Google Scholar 

  49. McDonald BJ, Bennett BM. Cytochrome P-450-mediated biotransformation of organic nitrates. Can J Physiol Pharmacol 1990; 68(12): 1552–7

    PubMed  CAS  Google Scholar 

  50. McDonald BJ, Bennett BM. Biotransformation of glyceryl trinitrate by rat aortic cytochrome P450. Biochem Pharmacol 1993; 45(1): 268–70

    PubMed  CAS  Google Scholar 

  51. Chung SJ, Fung HL. Identification of the subcellular site for nitroglycerin metabolism to nitric oxide in bovine coronary smooth muscle cells. J Pharmacol Exp Ther 1990; 253(2): 614–9

    PubMed  CAS  Google Scholar 

  52. Chung SJ, Fung HL. A common enzyme may be responsible for the conversion of organic nitrates to nitric oxide in vascular microsomes. Biochem Biophys Res Commun 1992; 185(3): 932–7

    PubMed  CAS  Google Scholar 

  53. Seth P, Fung HL. Biochemical characterization of a membranebound enzyme responsible for generating nitric oxide from nitroglycerin in vascular smooth muscle cells. Biochem Pharmacol 1993; 46(8): 1481–6

    PubMed  CAS  Google Scholar 

  54. Fung HL, Chong S, Kowaluk E, et al. Mechanisms for the pharmacologic interaction of organic nitrates with thiols: existence of an extracellular pathway for the reversal of nitrate vascular tolerance by N-acetylcysteine. J Pharmacol Exp Ther 1988; 245(2): 524–30

    PubMed  CAS  Google Scholar 

  55. Boesgaard S, Aldershvile J, Poulsen HE, et al. Nitrate tolerance in vivo is not associated with depletion of arterial or venous thiol levels. Circ Res 1994; 74(1): 115–20

    PubMed  CAS  Google Scholar 

  56. Sakanashi M, Matsuzaki T, Aniya Y. Nitroglycerin relaxes coronary artery of the pig with no change in glutathione content or glutathione S-transferase activity. Br J Pharmacol 1991; 103(4): 1905–8

    PubMed  CAS  Google Scholar 

  57. Aniya Y, Uehara N, Ishii C, et al. Evaluation of nitric oxide formation from nitrates in pig coronary arteries. Jpn J Pharmacol 1996; 71(2): 101–7

    PubMed  CAS  Google Scholar 

  58. Simon WC, Anderson DJ, Bennett BM. Inhibition of the pharmacological actions of glyceryl trinitrate after the electroporetic delivery of a glutathione S-transferase inhibitor. J Pharmacol Exp Ther 1996; 279(3): 1535–40

    PubMed  CAS  Google Scholar 

  59. Watkins PB. Role of cytochromes P450 in drug metabolism and hepatotoxicity. Semin Liver Dis 1990; 10(4): 235–50

    PubMed  CAS  Google Scholar 

  60. McGuire JJ, Anderson DJ, McDonald BJ, et al. Inhibition of NADPH-cytochrome P450 reductase and glyceryl trinitrate biotransformation by diphenyleneiodonium sulfate. Biochem Pharmacol 1998; 56(7): 881–93

    PubMed  CAS  Google Scholar 

  61. Bennett BM, McDonald BJ, Nigam R, et al. Inhibition of nitrovasodilator- and acetylcholine-induced relaxation and cyclic GMP accumulation by the cytochrome P-450 substrate, 7-ethoxyresorufin. Can J Physiol Pharmacol 1992; 70(9): 1297–303

    PubMed  CAS  Google Scholar 

  62. Bornfeldt KE, Axelsson KL. Studies on the effect of different inhibitors of arachidonic acid metabolism on glyceryltrinitrate-induced relaxation and cGMP elevation in bovine vascular tissue. Pharmacol Toxicol 1987; 60(2): 110–6

    PubMed  CAS  Google Scholar 

  63. Liu Z, Brien JF, Marks GS, et al. Lack of evidence for the involvement of cytochrome P-450 or other hemoproteins in metabolic activation of glyceryl trinitrate in rabbit aorta. J Pharmacol Exp Ther 1993; 264(3): 1432–9

    PubMed  CAS  Google Scholar 

  64. Yuan R, Sumi M, Benet LZ. Investigation of aortic CYP3A bioactivation of nitroglycerin in vivo. J Pharmacol Exp Ther 1997; 281(3): 1499–505

    PubMed  CAS  Google Scholar 

  65. Mayer B, Heinzel B, Klatt P, et al. Nitric oxide synthase-cat-alyzed activation of oxygen and reduction of cytochromes: reaction mechanisms and possible physiological implications. J Cardiovasc Pharmacol 1992; 20 Suppl. 12: S54–6

    PubMed  CAS  Google Scholar 

  66. Bredt DS, Hwang PM, Glatt CE, et al. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 1991; 351(6329): 714–8

    PubMed  CAS  Google Scholar 

  67. Torfgård KE, Ahlner J. Mechanisms of action of nitrates. Cardiovasc Drugs Ther 1994; 8(5): 701–17

    PubMed  Google Scholar 

  68. Chen Z, Zhang J, Stamler JS. Identification of the enzymatic mechanism of nitroglycerin bioactivation. Proc Natl Acad Sci US A 1992; 99(12): 8306–11

    Google Scholar 

  69. Curry SH, Lopez LM, Lambert CR, et al. Plasma concentrations and hemodynamic effects of intravenous, sublingual, and aerosolized nitroglycerin in patients undergoing cardiac catheterization. Biopharm Drug Dispos 1993; 14(2): 107–18

    PubMed  CAS  Google Scholar 

  70. Jensen KM, Mikkelsen S. Studies on the bioavailability of glyceryl trinitrate after sublingual administration of spray and tablet. Arzneimittel Forschung 1997; 47(6): 716–8

    PubMed  CAS  Google Scholar 

  71. Huber T, Merz PG, Harder S, et al. Bioequivalence of sublingual glycerol trinitrate: bioavailability and haemodynamic effects after application of a fluorochlorohydrocarbonsdependent spray and a new pumping system. Arzneimittel Forschung 1990; 40(12): 1319–22

    PubMed  CAS  Google Scholar 

  72. de Mey C, Erb K, Zimmermann T, et al. Clinical pharmacological equivalence of a novel FCH-free GTN spray with low ethanol content vs a FCH-containing GTN spray. Eur J Clin Pharmacol 1995; 47(5): 437–43

    PubMed  Google Scholar 

  73. Landau AJ, Eberhardt RT, Frishman WH. Intranasal delivery of cardiovascular agents: an innovative approach to cardiovascular pharmacotherapy. Am Heart J 1994; 127(6): 1594–9

    PubMed  CAS  Google Scholar 

  74. Marchionni N, Ferrucci L, Fumagalli S, et al. Age-related changes in the pharmacodynamics of intravenous glyceryl trinitrate. Aging (Milano) 1990; 2(1): 59–64

    CAS  Google Scholar 

  75. Booth BP, Brien JF, Marks GS, et al. The effects of hypothermic and normothermic cardiopulmonary bypass on glyceryl trinitrate activity. Anesth Analg 1994; 78(5): 848–56

    PubMed  CAS  Google Scholar 

  76. Sun JX, Piraino AJ, Morgan JM, et al. Comparative pharmacokinetics and bioavailability of nitroglycerin and its metabolites from Transderm-Nitro, Nitrodisc, and Nitro-Dur II systems using a stable-isotope technique. J Clin Pharmacol 1995; 35(4): 390–7

    PubMed  CAS  Google Scholar 

  77. Torfgård K, Svedjeholm R, Hakansson E, et al. Tolerance development and arterial and venous tissue-/plasma levels of glyceryl trinitrate and glyceryl dinitrate in patients treated with nitroglycerin infusion. Arzneimittel Forschung 1995; 45(9): 963–6

    PubMed  Google Scholar 

  78. Harrison LI, Riedel DJ. Transdermal nitroglycerin systems: methods for comparison. Clin Ther 1991; 13(3): 361–7

    PubMed  CAS  Google Scholar 

  79. Williams RL, Thakker KM, John V, et al. Nitroglycerin absorption from transdermal systems: formulation effects and metabolite concentrations. Pharm Res 1991; 8(6): 744–9

    PubMed  CAS  Google Scholar 

  80. Wiegand A, Bauer KH, Bonn R, et al. Pharmacodynamic and pharmacokinetic evaluation of a new transdermal delivery system with a time-dependent release of glyceryl trinitrate. J Clin Pharmacol 1992; 32(1): 77–84

    PubMed  CAS  Google Scholar 

  81. Jewell RC, Banfield CR, Ruggirello DA, et al. Dose proportionality of transdermal nitroglycerin. Pharm Res 1992; 9(10): 1284–9

    PubMed  CAS  Google Scholar 

  82. Hutt V, Sauter K, Pabst G, et al. Bioequivalence evaluation of the metabolites 1, 2- and 1,3-glyceryl dinitrate of two different glyceryl trinitrate patches after 12-h usage in healthy volunteers. Arzneimittel Forschung 1994; 44(12): 1317–21

    PubMed  CAS  Google Scholar 

  83. Santoro A, Rovati LC, Follet M, et al. Plasma levels of glyceryl trinitrate and dinitrates during application of three strengths of a new glyceryl trinitrate transdermal patch. Arzneimittel Forschung 2000; 50(9): 786–94

    PubMed  CAS  Google Scholar 

  84. Yu DK, Williams RL, Benet LZ, et al. Pharmacokinetics of nitroglycerin and metabolites in humans following oral dosing. Biopharm Drug Dispos 1988; 9(6): 557–65

    PubMed  CAS  Google Scholar 

  85. Laufen H, Leitold M. The pattern of glyceryl nitrates after oral administration of glyceryl trinitrate. Arzneimittel Forschung 1988; 38(1): 103–5

    PubMed  CAS  Google Scholar 

  86. Nakashima E, Rigod JF, Lin ET, et al. Pharmacokinetics of nitroglycerin and its dinitrate metabolites over a thirtyfold range of oral doses. Clin Pharmacol Ther 1990; 47(5): 592–8

    PubMed  Google Scholar 

  87. Armstrong PW, Moffat JA, Marks GS. Arterial-venous nitroglycerin gradient during intravenous infusion in man. Circulation 1982; 66(6): 1273–6

    PubMed  CAS  Google Scholar 

  88. Gumbleton M, Benet LZ. Pharmacological activity of the dinitrate metabolites of nitroglycerin following their oral administration to healthy volunteers. Br J Clin Pharmacol 1991; 31(2): 211–3

    PubMed  CAS  Google Scholar 

  89. Ogiso T, Iwaki M, Kanokogi A, et al. Percutaneous absorption of 1,3-dinitroglycerin and a trial of pharmacokinetic analysis. Chem Pharm Bull (Tokyo) 1990; 38(10): 2829–33

    CAS  Google Scholar 

  90. Gumbleton M, Benet LZ. Simultaneous pharmacodynamic modeling of the non-steady-state effects of three oral doses of 1,3-glyceryl dinitrate upon blood pressure in healthy volunteers. J Pharmacokinet Biopharm 1993; 21(5): 515–32

    PubMed  CAS  Google Scholar 

  91. Salvemini D, Pistelli A, Anggard E. Vascular and anti-platelet actions of 1,2- and 1,3-glyceryl dinitrate. Br J Pharmacol 1993; 110(3): 937–42

    PubMed  CAS  Google Scholar 

  92. Müller P, Imhof PR, Burkart F, et al. Human pharmacological studies of a new transdermal system containing nitroglycerin. Eur J Clin Pharmacol 1982; 22(6): 473–80

    PubMed  Google Scholar 

  93. Riedel DJ, Wick KA, Hawkinson RW, et al. Drug release rates from four sizes of a new transdermal nitroglycerin adhesive patch. Clin Ther 1989; 11(3): 409–16

    PubMed  CAS  Google Scholar 

  94. Chong S, Fung HL. Kinetic mechanisms for the concentration dependency of in vitro degradation of nitroglycerin and glyceryl dinitrates in human blood: metabolite inhibition or cosubstrate depletion? J Pharm Sci 1989; 78(4): 295–302

    PubMed  CAS  Google Scholar 

  95. Gjesdal K, Klemsdal TO, Rykke EO, et al. Transdermal nitrate therapy: bioavailability during exercise increases transiently after the daily change of patch. Br J Clin Pharmacol 1991; 31(5): 560–2

    PubMed  CAS  Google Scholar 

  96. Weber S, de Lauture D, Rey E, et al. The effects of moderate sustained exercise on the pharmacokinetics of nitroglycerine. Br J Clin Pharmacol 1987; 23(1): 103–5

    PubMed  CAS  Google Scholar 

  97. Barkve TF, Langseth-Manrique K, Bredesen JE, et al. Increased uptake of transdermal glyceryl trinitrate during physical exercise and during high ambient temperature. Am Heart J 1986; 112(3): 537–41

    PubMed  CAS  Google Scholar 

  98. Lefebvre RA, Bogaert MG, Teirlynck O, et al. Influence of exercise on nitroglycerin plasma concentrations after transdermal application. Br J Clin Pharmacol 1990; 30(2): 292–6

    PubMed  CAS  Google Scholar 

  99. Klemsdal TO, Gjesdal K, Zahlsen K. Physical exercise increases plasma concentrations of nicotine during treatment with a nicotine patch. Br J Clin Pharmacol 1995; 39(6): 677–9

    PubMed  CAS  Google Scholar 

  100. Fung HL, Blei A, Chong S. Interpretation of nitrate plasma concentrations: effect of cardiac output on nitroglycerin pharmacokinetics in experimental animals. Eur Heart J 1988; 9Suppl A: 39–43

    PubMed  CAS  Google Scholar 

  101. Blei AT, Friedman S, Gottstein J, et al. Pharmacokinetichemodynamic interactions between vasopressin and nitroglycerin: comparison between intravenous and cutaneous routes of nitrate delivery. Hepatology 1985; 5(2): 264–70

    PubMed  CAS  Google Scholar 

  102. Vanakoski J, Seppala T. Heat exposure and drugs: a review of the effects of hyperthermia on pharmacokinetics. Clin Pharmacokinet 1998; 34(4): 311–22

    PubMed  CAS  Google Scholar 

  103. Roth JV. Warm air convection heating blankets may increase the absorption of transdermal nitroglycerin. Anesthesiology 1997; 86(5): 1208–9

    PubMed  CAS  Google Scholar 

  104. Haebisch EM. Transdermal glyceryl trinitrate (nitroglycerin) in healthy persons: acute effects on skin temperature and hemodynamic orthostatic response. Rev Paul Med 1995; 113(5): 973–82

    CAS  Google Scholar 

  105. Curry SH, Kwon HR. Influence of posture on plasma nitroglycerin. Br J Clin Pharmacol 1985; 19(3): 403–4

    PubMed  CAS  Google Scholar 

  106. Heidemann R, Beckenbauer C, Woodcock BG. Effect of posture on glyceryl trinitrate plasma concentrations following transdermal application. Br J Clin Pharmacol 1987; 23(2): 246–7

    PubMed  CAS  Google Scholar 

  107. Cahalan MK, Hashimoto Y, Aizawa K, et al. Elderly, conscious patients have an accentuated hypotensive response to nitroglycerin. Anesthesiology 1992; 77(4): 646–55

    PubMed  CAS  Google Scholar 

  108. Alpert JS. Nitrate therapy in the elderly. Am J Cardiol 1990; 65(21): 23J–7J

    PubMed  CAS  Google Scholar 

  109. Münzel T, Sayegh H, Freeman BA, et al. Evidence for enhanced vascular superoxide anion production in nitrate tolerance: a novel mechanism underlying tolerance and cross-tolerance. J Clin Invest 1995; 95(1): 187–94

    PubMed  Google Scholar 

  110. Münzel T, Li H, Mollnau H, et al. Effects of long-term nitroglycerin treatment on endothelial nitric oxide synthase (NOS III) gene expression, NOS III-mediated superoxide production, and vascular NO bioavailability. Circ Res 2000; 86(1): E7–E12

    PubMed  Google Scholar 

  111. Fink B, Dikalov S, Bassenge E. A new approach for extracellular spin trapping of nitroglycerin-induced superoxide radicals both in vitro and in vivo. Free Radic Biol Med 2000; 28(1): 121–8

    PubMed  CAS  Google Scholar 

  112. Packer M, Lee WH, Kessler PD, et al. Prevention and reversal of nitrate tolerance in patients with congestive heart failure. N Engl J Med 1987; 317(13): 799–804

    PubMed  CAS  Google Scholar 

  113. Dupuis J, Lalonde G, Lemieux R, et al. Tolerance to intravenous nitroglycerin in patients with congestive heart failure: role of increased intravascular volume, neurohumoral activation and lack of prevention with N-acetylcysteine. J Am Coll Cardiol 1990; 16(4): 923–31

    PubMed  CAS  Google Scholar 

  114. Parker JD, Parker JO. Effect of therapy with an angiotensinconverting enzyme inhibitor on hemodynamic and counterregulatory responses during continuous therapy with nitroglycerin. J Am Coll Cardiol 1993; 21(6): 1445–53

    PubMed  CAS  Google Scholar 

  115. Sage PR, de la Lande IS, Stafford I, et al. Nitroglycerin tolerance in human vessels: evidence for impaired nitroglycerin bioconversion. Circulation 2000; 102(23): 2810–5

    PubMed  CAS  Google Scholar 

  116. Bauer JA, Fung HL. Pharmacodynamic models of nitroglycerin-induced hemodynamic tolerance in experimental heart failure. Pharm Res 1994; 11(6): 816–23

    PubMed  CAS  Google Scholar 

  117. Bauer JA, Balthasar JP, Fung HL. Application of pharmacodynamic modeling for designing time-variant dosing regimens to overcome nitroglycerin tolerance in experimental heart failure. Pharm Res 1997; 14(9): 1140–5

    PubMed  CAS  Google Scholar 

  118. Reiniger G, Lehmann G. Increasing nitroglycerin release from patches enables circumvention of early nitrate tolerance. Cardiovasc Drugs Ther 1998; 12(2): 217–24

    PubMed  CAS  Google Scholar 

  119. Pepine CJ, Lopez LM, Bell DM, et al. Effects of intermittent transdermal nitroglycerin on occurrence of ischemia after patch removal: results of the second transdermal intermittent dosing evaluation study (TIDES-II). J Am Coll Cardiol 1997; 30: 955–61

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Jeanine Wiener-Kronish MD, Department of Anesthesiology and Medicine, University of California at San Francisco, and Rodolphe Ruffy, MD, Cardiologist at Salt Lake City, both in the USA, and Hiroko Kitagawa in Japan, for their helpful review of this manuscript. The authors have provided no information on sources of funding or on conflicts of interest directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Hashimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashimoto, S., Kobayashi, A. Clinical Pharmacokinetics and Pharmacodynamics of Glyceryl Trinitrate and its Metabolites. Clin Pharmacokinet 42, 205–221 (2003). https://doi.org/10.2165/00003088-200342030-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200342030-00001

Keywords

Navigation