Clinical Pharmacokinetics

, Volume 38, Issue 5, pp 377–392 | Cite as

Choosing the Right Nonsteroidal Anti-Inflammatory Drug for the Right Patient

A Pharmacokinetic Approach
  • Neal M. DaviesEmail author
  • Neil M. Skjodt
Leading Article


Effective use of the growing number of nonsteroidal anti-inflammatory drugs (NSAIDs), a group that has recently been augmented by the introduction of the selective cyclo-oxygenase-2 inhibitors, requires adequate knowledge of their pharmacokinetics.

After oral administration, the absorption of NSAIDs is generally rapid and complete. NSAIDs are highly bound to plasma proteins, specifically to albumin (>90%). The volume of distribution of NSAIDs is low, ranging from 0.1 to 0.3 L/kg, suggesting minimal tissue binding. NSAID binding in plasma can be saturated when the concentration of the NSAID exceeds that of albumin.

Most NSAIDs are metabolised by the liver, with subsequent excretion into urine or bile. Enterohepatic recirculation occurs when a significant amount of an NSAID or its conjugated metabolites are excreted into the bile and then reabsorbed in the distal intestine. NSAID elimination is not dependent on hepatic blood flow. Hepatic NSAID elimination is dependent on the free fraction of NSAID within the plasma and the intrinsic enzyme activities of the liver. Renal elimination is not an important elimination pathway for NSAIDs, except for azapropazone. The plasma half-life of NSAIDs ranges from 0.25 to >70 hours, indicating wide differences in clearance rates. Hepatic or renal disease can alter NSAID protein binding and metabolism. Some NSAIDs with elimination predominantly via acylglucuronidation can have significantly altered disposition. Pharmacokinetics are also influenced by chronobiology, and many NSAIDs exhibit stereoselectivity.

There appear to be relationships between NSAID concentration and effects. At therapeutically equivalent doses, NSAIDs appear to be equally efficacious. The major differences between NSAIDs are their therapeutic half-lives and safety profiles. NSAIDs undergo drug interactions through protein binding displacement and competition for active renal tubular secretion with other organic acids.

When choosing the right NSAID for the right patient, individual patient-specific and NSAID-specific pharmacokinetic principles should be considered.


Ibuprofen Naproxen Ketoprofen Sulindac Etodolac 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Dr Skjodt is a clinical fellow of the Alberta Heritage Foundation for Medical Research.


  1. 1.
    Meade EA, Smith WL, DeWitt DL. Differential inhibition of Prostaglandin endoperoxide synthase (cyclooxygenase) iso-zymes by aspirin and other non-steroidal anti-inflammatory drugs. J Biol Chem. 1993; 268(9): 6610–4.PubMedGoogle Scholar
  2. 2.
    Vane JR, Mitchell JA, Appleton I, et al. Inducible isoforms of cyclooxygenase and nitric-oxide synthetase in inflammation. Proc Natl Acad Sci U S A. 1994; 91(6): 2046–50.PubMedCrossRefGoogle Scholar
  3. 3.
    Yamagata K, Andreasson KI, Kaufmann WE, et al. Expression of a mitogen-inducible cyclooxygenase in brain neurons: regulation by synaptic activity and glucocorticoids. Neuron. 1993; 11: 371–86.PubMedCrossRefGoogle Scholar
  4. 4.
    Davies NM, Wallace JL. Selective inhibitors of cyclooxygenase 2: potential in elderly patients. Drugs Aging. 1996; 9(6): 406–17.PubMedCrossRefGoogle Scholar
  5. 5.
    Sano HT, Hla JAM, Maier LJ, et al. In vivo cyclooxygenase expression in synovial tissue of patients with rheumatoid arthritis and Osteoarthritis and rats with adjuvant and streptococcal cell wall arthritis. J Clin Invest. 1997; 89: 97–108.CrossRefGoogle Scholar
  6. 6.
    Crofford LJ, Wilder RL, Ristimalki AP, et al. Cyclooxygenase-1 and -2 expression in rheumatoid synovial tissues. J Clin Invest. 1994; 93: 1095–101.PubMedCrossRefGoogle Scholar
  7. 7.
    Boyce S, Chan CC, Gordon R, et al. L-745,337: a selective inhibitor of cyclooxygenase-2 elicits antinociception but not gastric ulceration in rats. Neuropharmacology. 1994; 33(12): 1609–11.PubMedCrossRefGoogle Scholar
  8. 8.
    Heller CA, Ingelfinger JA, Goldman P. Nonsteroidal anti-inflammatory drugs and aspirin: analyzing the scores. Pharma-cotherapy. 1985; 5: 30–8.Google Scholar
  9. 9.
    Baber N, Halliday LDC, van Den Heuvel WJA, et al. Indometh-acin in rheumatoid arthritis: clinical effects, pharmacokinetics and platelet studies in responders and non-responders. Ann Rheum Dis. 1979; 38: 128–37.PubMedCrossRefGoogle Scholar
  10. 10.
    Capell HA, Knotschnik B, Glass RC. Anti-inflammatory analgesic drug responders and non-responders: a clinico-pharma-cologic study of flurbiprofen. Br J Clin Pharmacol. 1977; 4: 623–4.PubMedCrossRefGoogle Scholar
  11. 11.
    Walker JS, Sheather-Reif RB, Carmody JJ, et al. Nonsteroidal antiinflammatory drugs in rheumatoid arthritis and Osteoarthritis: support for the concept of ‘responders’ and ‘non-responders’. Arthritis Rheum. 1997; 40(11): 1944–54.PubMedCrossRefGoogle Scholar
  12. 12.
    Walker JS, Carmody JJ. Experimental pain in healthy human subjects: gender differences in nociception and in response to Ibuprofen. Anesth Analg. 1998; 86(6): 1257–62.PubMedGoogle Scholar
  13. 13.
    Carson JL, Strom BL, Soper KA, et al. The association of nonsteroidal antiinflammatory drugs with upper gastrointestinal tract bleeding. Arch Int Med. 1987; 114: 85–8.CrossRefGoogle Scholar
  14. 14.
    Singh G, Ramey DR, Morfeld D, et al. Comparative toxicity of non-steroidal antiinflammatory agents. Pharmacol Ther. 1994; 62: 175–91.PubMedCrossRefGoogle Scholar
  15. 15.
    Davies NM, Jamali F, Skeith KJ. Non-steroidal anti-inflammatory drug (NSAID)-induced enteropathy and severe chronic anemia in a patient with rheumatoid arthritis. Arthritis Rheum. 1996; 39(2): 321–4.PubMedCrossRefGoogle Scholar
  16. 16.
    Davies NM. Toxicity of NSAIDs in the large intestine. Dis Colon Rectum. 1995; 38(12): 1311–21.PubMedCrossRefGoogle Scholar
  17. 17.
    Lanza FL, Royer GL, Nelson RS. Endoscopic evaluation of the effects of aspirin, buffered aspirin, and enteric-coated aspirin on gastric and duodenal mucosa. N Engl J Med. 1980; 303: 136–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Trondstad RI, Aadland E, Holler T, et al. Gastroscopic findings after treatment with enteric-coated and plain naproxen tablets in healthy subjects. Scand J Gastroenterol. 1985; 20: 239–42.PubMedCrossRefGoogle Scholar
  19. 19.
    Davies NM. Sustained release and enteric coated NSAIDs: are they really GI safe? J Pharm Pharmaceut Sci. 1999; 2: 139–48.Google Scholar
  20. 20.
    Collins AT, Davies J, Dixon A. A prospective endoscopie study of the effect of Orudis and Oruvail on the upper gastrointestinal tract in patients with Osteoarthritis. Br J Rheumatol. 1988; 27: 106–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Whitcomb DC. Pathophysiology of nonsteroidal antiinflammatory drug-induced intestinal strictures [letter]. Gastroenterology. 1993; 105(5): 1590.PubMedCrossRefGoogle Scholar
  22. 22.
    Choi VMI, Coates JE, Chooi J, et al. Small bowel permeability: a variable effect of NSAIDs. Clin Invest Med. 1995; 18: 357–61.PubMedGoogle Scholar
  23. 23.
    Evans AM, Nation RL, Sansom LN, et al. Stereoselective drug disposition: potential for misinterpretation of drug disposition data. Br J Clin Chem. 1988; 26: 771–80.Google Scholar
  24. 24.
    Hutt AJ, Caldwell J. The importance of stereochemistry in the Clinical Pharmacokinetics of the 2-arylpropionic acid non-steroidal anti-inflammatory drugs. Clin Pharmacokinet. 1984; 9(4): 371–3.PubMedCrossRefGoogle Scholar
  25. 25.
    Jamali F. Pharmacokinetics of enantiomers of chiral non-steroidal anti-inflammatory drugs. Eur J Drug Metab Pharmacokinet. 1988; 13: 1–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Evans AM. Enantioselective pharmacodynamics and pharmacokinetics of chiral non-steroidal anti-inflammatory drugs. Clin Pharmacol. 1992; 42: 237–56.Google Scholar
  27. 27.
    Brune K, Geisslinger G, Menzel-Sogolowek S. Pure enantiomers of 2-arylpropionic acids: tools in pain research and improved drugs in rheumatology. J Clin Pharmacol. 1992; 32: 944–52.PubMedGoogle Scholar
  28. 28.
    Jamali F, Mehvar R, Russell AS, et al. Human pharmacokinetics of Ibuprofen enantiomers following different doses and formulations: intestinal chiral inversion. J Pharm Sci. 1991; 81: 221–5.CrossRefGoogle Scholar
  29. 29.
    Dwivedi SK, Sattari S, Jamali F, et al. Ibuprofen racemate and enantiomers: phase diagram, solubility and thermodynamic studies. Int J Pharm. 1992; 87: 95–104.CrossRefGoogle Scholar
  30. 30.
    Labreque G, Bureau J-P, Reinberg AE. Biological rhythms in the inflammatory response and in the effects of non-steroidal anti-inflammatory drugs. Pharmacol Ther. 1995; 66: 285–300.CrossRefGoogle Scholar
  31. 31.
    Ollagnier M, Decousus H, Cherrah Y, et al. Circadian changes in the pharmacokinetics of oral ketoprofen. Clin Pharmacokinet. 1987; 12: 367–78.PubMedCrossRefGoogle Scholar
  32. 32.
    Kowanko IC, Pownall R, Kanpp AJ, et al. Circadian variations in the signs and symptoms of rheumatoid arthritis and in the therapeutic effectiveness of flurbiprofen at different times of day. Br J Clin Pharmacol. 1981; 11: 477–84.PubMedCrossRefGoogle Scholar
  33. 33.
    Clench J, Reinberg A, Dziewanowska Z, et al. Circadian changes in the bioavailability and effects of indomethacin in healthy subjects. Eur J Clin Pharmacol. 1981; 20: 359–64.PubMedCrossRefGoogle Scholar
  34. 34.
    Huskisson EC. Chronopharmacology of anti-rheumatic drugs with special reference to indomethacin. In: Huskisson EC, Velo GP, editors. Inflammatory arthropathies. Amsterdam: Excerpta Medica, 1976: 99–105.Google Scholar
  35. 35.
    Reinberg A, Levi F. Clinical chronopharmacology with special reference to NSAIDs. Scand J Rheumatol 1995; Suppl. 65: 118–22.Google Scholar
  36. 36.
    Jamali F, Kunz-Dober CM. Pain-mediated altered absorption and metabolism of Ibuprofen: an explanation for decreased serum enantiomer concentration after dental surgery. Br J Clin Pharmacol. 1999; 47: 391–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Kean WF, Buchanan WW. Variables affecting the absorption of non-steroidal anti-inflammatory drugs from the gastro-intestinal tract. Jpn J Rheumatol. 1987; 1(3): 159–70.Google Scholar
  38. 38.
    Anne AP, Halpen SM, Streete PJ, et al. Slow release aspirin in the elderly. J R Soc Med. 1994; 87: 183–4.Google Scholar
  39. 39.
    Verbeeck RK. Pathophysiological factors affecting the pharmacokinetics of nonsteroidal antiinflammatory drugs. J Rheumatol 1988; (Suppl. 17) 15: 44–57.Google Scholar
  40. 40.
    Verbeeck RK. Pharmacokinetic drug interactions with nonsteroidal anti-inflammatory drugs. Clin Pharmacokinet. 1990; 19(1): 44–66.PubMedCrossRefGoogle Scholar
  41. 41.
    Brater DG. Clinical pharmacology of NSAIDs. J Clin Pharmacol. 1988; 28: 518–23.PubMedGoogle Scholar
  42. 42.
    Van Den Ouweland FA, Gribnau FWJ, van Ginneken CAM, et al. Naproxen kinetics and disease activity in rheumatoid arthritis: a within-patient study. Clin Pharmacol Ther. 1988; 43: 79–85.PubMedCrossRefGoogle Scholar
  43. 43.
    Van Den Ouweland FA, Gribnau FWJ, Tan Y, et al. Hypoalbumin-aemia and naproxen pharmacokinetics in a patient with rheumatoid arthritis. Clin Pharmacokinet. 1986; 11: 511–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Netter P, Bannwarth B, Royer-Morrot MJ. Recent findings in the pharmacokinetics of non-steroidal anti-inflammatory drugs in synovial fluid. Clin Pharmacokinet. 1989; 17: 145–62.PubMedCrossRefGoogle Scholar
  45. 45.
    Jalali S, Macfarlane JG, Grace EM, et al. Frequency of administration of short half-life nonsteroidal anti-inflammatory analgesics (NSAIDs): studies with Ibuprofen. Clin Exp Rheumatol. 1986; 4: 91–3.PubMedGoogle Scholar
  46. 46.
    Needs CJ, Brooks PM. Clinical Pharmacokinetics of salicylates. Clin Pharmacokinet. 1985; 10: 164–77.PubMedCrossRefGoogle Scholar
  47. 47.
    Bertin P, Lapique F, Payan E, et al. Sodium naproxen: concentration and effect on inflammatory response mediators in human rheumatoid synovial fluid. Eur J Clin Pharmacol. 1994; 46: 3–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Wax J, Clinger A, Varner P, et al. Relationship of the enterohep-atic cycle to ulcerogenesis in the rat small bowel with flufenamic acid. Gastroenterology. 1970; 58(6): 772–9.PubMedGoogle Scholar
  49. 49.
    Wright MR, Davies NM, Jamali F. Toxicokinetics of indomethacin-induced intestinal permeability in the rat. Pharmacol Res. 1997; 35(6): 499–504.PubMedCrossRefGoogle Scholar
  50. 50.
    Davies NM, Wright MR, Russell AS, et al. Effect of the enantiomers of flurbiprofen, Ibuprofen, and ketoprofen on intestinal permeability. J Pharm Sci. 1996; 85(11): 1170–73.PubMedCrossRefGoogle Scholar
  51. 51.
    Wright MR, Davies NM, Jamali F. Rationale for the development of stereochemically pure enantiomers: are the R enantiomers of chiral nonsteroidal anti-inflammatory drugs inactive? J Pharm Sci. 1994; 83: 911–2.PubMedCrossRefGoogle Scholar
  52. 52.
    Paulus HE. Postmarketing surveillance of nonsteroidal anti-inflammatory drugs. Arthritis Rheum. 1986; 28: 1168–9.CrossRefGoogle Scholar
  53. 53.
    Adams SS. Non-steroidal antiinflammatory drugs, plasma half-life and adverse reactions. Lancet 1987; II: 1204–5.CrossRefGoogle Scholar
  54. 54.
    Adams SS. NSAIDs, plasma half-life and adverse reactions. Lancet 1988; I: 653–4.CrossRefGoogle Scholar
  55. 55.
    Adams SS. The propionic acids: a personal perspective. J Clin Pharmacol. 1992; 32: 317–23.PubMedGoogle Scholar
  56. 56.
    Collier DSJ, Pain JA. Nonsteroidal antiinflammatory drugs and hospital admission for perforated peptic ulcer. Lancet 1985; II: 380–2.Google Scholar
  57. 57.
    Furst DE. Clinical significance of long versus short serum half-lives in NSAIDs. In: Famaey JP, Paulus HE, editors. Therapeutic application of NSAIDs: subpopulations and new formulations. Oxford: Oxford University Press, 1998: 359–83.Google Scholar
  58. 58.
    Albengres E, Pinquier JL, Riant P, et al. Pharmacological criteria for risk-benefit evaluation of NSAIDs. Scand J Rheumatol 1988; Suppl. 73: 3–15.CrossRefGoogle Scholar
  59. 59.
    Smith GL, Goulbourn RA, Burt RAP, et al. Preliminary studies of absorption and excretion of benoxaprofen in man. Br J Clin Pharmacol. 1977; 4: 585–90.PubMedCrossRefGoogle Scholar
  60. 60.
    Hamdy RC, Murnane B, Perera N, et al. The pharmacokinetics of benoxaprofen in elderly subjects. Eur J Rheumatol Inflamm. 1982; 5: 69–75.PubMedGoogle Scholar
  61. 61.
    Taggart S, Alderdice JM. Fatal jaundice in elderly patients taking benoxaprofen [letter]. Br Med J. 1982; 284: 1372.CrossRefGoogle Scholar
  62. 62.
    Duthie A, Nicholls A, Freeth M, et al. Fatal cholestatic jaundice in elderly patients taking benoxaprofen [letter]. Br Med J. 1982; 285: 62.CrossRefGoogle Scholar
  63. 63.
    Karim A. Inverse nonlinear pharmacokinetics of total and protein unbound drug (Oxaprozin): clinical and pharmacokinetic implications. J Clin Pharmacol. 1996; 36: 985–97.PubMedCrossRefGoogle Scholar
  64. 64.
    Upton RA, Williams RL, Kelly J, et al. Naproxen pharmacokinetics in the elderly. Br J Clin Pharmacol. 1984; 18: 207–14.PubMedCrossRefGoogle Scholar
  65. 65.
    Day RO, Furst DE, Droomgoole SH, et al. Relationship of serum naproxen concentration to efficacy in rheumatoid arthritis. Clin Pharm Ther. 1982; 31: 733–40.CrossRefGoogle Scholar
  66. 66.
    Dunagan FM, McGill PE, Kelman AW, et al. Naproxen dose and concentration: response relationship in rheumatoid arthritis. Br J Rheumatol. 1988; 27: 48–53.PubMedCrossRefGoogle Scholar
  67. 67.
    Day RO, Graham GG, Williams KM, et al. Variability in response to NSAIDs. Fact or fiction? Drugs. 1988; 36: 643–51.PubMedGoogle Scholar
  68. 68.
    Gérard MJ. Individual variation in the response to nonsteroidal anti-inflammatory drugs. Rev Rhum Mal Osteoartic. 1988; 55(10): 735–9.PubMedGoogle Scholar
  69. 69.
    Day RO, Francis H, Vial J, et al. Naproxen concentrations in plasma and synovial fluid and effects on Prostanoid concentrations. J Rheumatol. 1995; 22: 2295–303.PubMedGoogle Scholar
  70. 70.
    Greenan DW, Aarons L, Siddiqui M, et al. Dose-response study with Ibuprofen in rheumatoid arthritis: clinical and pharmacokinetic findings. Br J Clin Pharmacol. 1983; 15: 311–6.CrossRefGoogle Scholar
  71. 71.
    Greenan DM, Ferry DG, Ashworth ME, et al. The aspirin-ibuprofen interaction in rheumatoid arthritis. Br J Clin Pharmacol. 1979; 8: 497–503.CrossRefGoogle Scholar
  72. 72.
    Bradley JD, Rudy AC, Katz BP, et al. Correlation of serum concentrations of Ibuprofen stereoisomers with clinical response in the treatment of hip and knee Osteoarthritis. J Rheumatol. 1992; 19(1): 130–4.PubMedGoogle Scholar
  73. 73.
    Neupert W, Brugger R, Euchenhofer C, et al. Effects of Ibuprofen enantiomers and its coenzyme A thioester on human Prostaglandin endoperoxide synthases. Br J Pharmacol. 1997; 122: 487–92.PubMedCrossRefGoogle Scholar
  74. 74.
    Laska EM, Sunshine A, Marrero I. The correlation between blood levels of Ibuprofen and analgesic response. Clin Pharmacol Ther. 1986; 40(1): 1–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Ceppi Monti N, Gazzaniga A, Gianesello V, et al. Activity and pharmacokinetics of a new oral dosage form of soluble Ibuprofen. Arzneimittel Forschung. 1992; 42: 556–9.PubMedGoogle Scholar
  76. 76.
    Kauffman RE, Nelson MV. Effect of age on Ibuprofen pharmacokinetics and antipyretic response. J Pediatr. 1992; 121: 969–73.PubMedCrossRefGoogle Scholar
  77. 77.
    Wynne HA, Rawlins MD. Are systemic levels of nonsteroidal anti-inflammatory drugs relevant to acute upper gastrointestinal haemorrhage? Eur J Clin Pharmacol. 1993; 44: 309–13.PubMedCrossRefGoogle Scholar
  78. 78.
    Davies NM, Jamali F. Influence of flurbiprofen dosage form on gastroenteropathy in the rat: evidence of shift in the toxicity site. Pharm Res. 1997; 11(6): 255–9.Google Scholar
  79. 79.
    Held H. Elimination shalbwertszeiten und serum protein bindung des antirheumatikums naproxen bei niereninsuffizienz. Z Rheumatol. 1979; 38: 111–9.PubMedGoogle Scholar
  80. 80.
    Ritch AES, Perera WNR, Jones CJ. Pharmacokinetics of azapropazone in the elderly. Br J Clin Pharmacol. 1982; 14: 116–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Meffin PJ. The effects of renal dysfunction on the disposition of NSAIDs forming acyl-glucuronides. Agents Actions. 1985; 17: 85–9.Google Scholar
  82. 82.
    Brater CG. Drug-drug and drug-disease interactions with non-steroidal anti-inflammatory drugs. Am J Med 1986; 80 (Suppl. 1A): 62–77.PubMedCrossRefGoogle Scholar
  83. 83.
    Richardson CJ, Blocka KLN, Ross SG, et al. Effects of age and sex on piroxicam disposition. Clin Pharmacol Ther. 1985; 37: 13–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Woodhouse KW, Wynne H. The pharmacokinetics of non-steroidal anti-inflammatory drugs in the elderly. Clin Pharmacokinet. 1987; 12: 111–2.PubMedCrossRefGoogle Scholar
  85. 85.
    Orme M. NSAIDs in the healthy elderly. In: Famaey JP, Paulus HE, editors. Therapeutic applications of NSAIDs. New York (NY): Marcel Dekker, 1992: 191–210.Google Scholar
  86. 86.
    Montamat SC, Cusack BJ, Vestal RE. Management of drug therapy in the elderly. Med Intell. 1989; 321(5): 303–9.Google Scholar
  87. 87.
    Brouwers JRBJ, de Smet PAGM. Pharmacokinetic-pharmaco-dynamic drug interactions with nonsteroidal anti-inflammatory drugs. Clin Pharmacokinet. 1994; 27(6): 462–85.PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 2000

Authors and Affiliations

  1. 1.Faculty of PharmacyUniversity of SydneySydneyAustralia
  2. 2.Respiratory Research GroupUniversity of CalgaryCalgaryCanada

Personalised recommendations