Advertisement

Clinical Pharmacokinetics

, Volume 36, Issue 6, pp 453–470 | Cite as

Therapeutic Drug Concentration Monitoring Using Saliva Samples

Focus on Anticonvulsants
  • Hua Liu
  • Mauricio R. Delgado
Review Article Concepts

Abstract

In the last 30 years there has been great interest in the use of saliva in therapeutic drug monitoring. Numerous investigators have suggested that saliva be used as an alternative body fluid for the therapeutic drug monitoring of anticonvulsant drugs. Not only can saliva be obtained easily on multiple occasions with minimal discomfort to the patient but, more importantly, useful relationships exist between the saliva and blood concentrations of the most commonly used anticonvulsant drugs.

The measurement of anticonvulsant drug concentrations in saliva has been applied to pharmacokinetic and pharmacodynamic studies, and for therapeutic drug monitoring in a variety of seizure disorders. However, this simple and noninvasive method is not widely accepted in clinical practice. Several recent developments in sample collection and analytical methods, and the growing interest in free drug concentrations, provide a renewed impetus for saliva sampling for therapeutic drug monitoring of anticonvulsant drugs.

Salivary flow rates vary significantly both between individuals and under different conditions. The use of stimulated saliva has several advantages over resting saliva. The salivary flow rate and pH, sampling conditions, contamination and many other pathophysiological factors may influence the concentrations of the medication in saliva. However, under standardised and well-controlled sampling condition, therapeutic drug monitoring of anticonvulsant drugs in saliva can be useful for determining compliance with medication in paediatric patients, for analysing the concentration of free drug and in situations where repeated sampling is necessary.

Saliva is an alternative matrix for the therapeutic drug monitoring of carbamazepine, phenytoin, primidone and ethosuximide because the concentrations of these medications in saliva reflect the concentrations of the drug in serum. This is not the case for valproic acid (valproate sodium) and some controversy exists for phenobarbital. Further studies are required to assess the clinical value of monitoring anticonvulsant drugs and their metabolites in saliva, to examine the influence of pathophysiological factors on salivary drug concentrations, to improve the design of special devices to reproducibly and conveniently collect saliva samples, and to develop and use new analytical methods to achieve more sensitive and accurate results.

Keywords

High Performance Liquid Chromatography Adis International Limited Carbamazepine Valproic Acid Therapeutic Drug Monitoring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mandel ID. Salivary diagnosis: promises, promises. Ann N Y Acad Sci 1993; 694: 1–10.PubMedCrossRefGoogle Scholar
  2. 2.
    McAuliffe JJ, Sherwin AL, Leppik IE, et al. Salivary levels of anticonvulsants: a practical approach to drug monitoring. Neurology 1977; 27 (5): 409–13.PubMedCrossRefGoogle Scholar
  3. 3.
    Horning MG, Brown L, Nowlin J, et al. Use of saliva in therapeutic drug monitoring. Clin Chem 1977; 23 (2 Pt 1): 157–64.PubMedGoogle Scholar
  4. 4.
    Mucklow JC, Bending MR, Kahn GC, et al. Drug concentration in saliva. Clin Pharmacol Ther 1978; 24 (5): 563–70.PubMedGoogle Scholar
  5. 5.
    Knott C, Reynolds F. The place of saliva in antiepileptic drug monitoring. Ther Drug Monit 1984; 6 (1): 35–41.PubMedCrossRefGoogle Scholar
  6. 6.
    Herkes GK, Eadie MJ. Possible roles for frequent salivary antiepileptic drug monitoring in the management of epilepsy. Epilepsy Res 1990; 6 (2): 146–54.PubMedCrossRefGoogle Scholar
  7. 7.
    Gorodischer R, Koren G. Salivary excretion of drugs in children: theoretical and practical issues in therapeutic drug monitoring. Dev Pharmacol Ther 1992; 19 (4): 161–77.PubMedGoogle Scholar
  8. 8.
    Drobitch RK, Svensson CK. Therapeutic drug monitoring in saliva: an update. Clin Pharmacokinet 1992; 23 (5): 365–79.PubMedCrossRefGoogle Scholar
  9. 9.
    Siegel IA. The role of saliva in drug monitoring. Ann N Y Acad Sci 1993; 694: 86–90.PubMedCrossRefGoogle Scholar
  10. 10.
    Gorodischer R, Burtin P, Verjee Z, et al. Is saliva suitable for therapeutic monitoring of anticonvulsants in children: an evaluation in the routine clinical setting. Ther Drug Monit 1997; 19 (6): 637–42.PubMedCrossRefGoogle Scholar
  11. 11.
    Wilson JT. Clinical correlates of drugs in saliva. Ann N Y Acad Sci 1993; 694: 48–61.PubMedCrossRefGoogle Scholar
  12. 12.
    Herkes GK, Eadie MJ. Salivary concentrations of antiepileptic drugs, oestradiol and progesterone throughout pregnancy in epileptic women. Clin Exp Neurol 1992; 29: 74–80.PubMedGoogle Scholar
  13. 13.
    Herkes GK, Eadie MJ. Daily salivary anticonvulsant monitoring in patients with intractable epilepsy. Clin Exp Neurol 1989; 26: 141–9.PubMedGoogle Scholar
  14. 14.
    Goodman DB. Fundamental principles involved in developing a new saliva-based diagnostic test. Ann N Y Acad Sci 1993; 694: 78–85.PubMedCrossRefGoogle Scholar
  15. 15.
    Levy RH, Schmidt D. Utility of free level monitoring of antiepileptic drugs. Epilepsia 1985; 26 (3): 199–205.PubMedCrossRefGoogle Scholar
  16. 16.
    Liu H, Delgado MR, Forman LJ, et al. Simultaneous determination of carbamazepine, phenytoin, phenobarbital, primidone and their principal metabolites by high-performance liquid chromatography with photodiode-array detection. J Chromatogr 1993; 616 (1): 105–15.PubMedCrossRefGoogle Scholar
  17. 17.
    Gorodischer R, Burtin P, Hwang P, et al. Saliva versus blood sampling for therapeutic drug monitoring in children: patient and parental preferences and an economic analysis. Ther Drug Monit 1994; 16 (5): 437–43.PubMedCrossRefGoogle Scholar
  18. 18.
    Jusko WJ, Milsap RL. Pharmacokinetic principles of drug distribution in saliva. Ann N Y Acad Sci 1993; 694: 36–47.PubMedCrossRefGoogle Scholar
  19. 19.
    Herkes GK, McKinnon GE, Eadie MJ. Simultaneous quantitation of salivary carbamazepine, carbamazepine-10,11-epoxide, phenytoin and phenobarbitone by high-performance liquid chromatography. J Chromatogr 1989; 496 (1): 147–54.PubMedGoogle Scholar
  20. 20.
    Baum BJ. Principles of saliva secretion. Ann N Y Acad Sci 1993; 694: 17–23.PubMedCrossRefGoogle Scholar
  21. 21.
    Turner RJ. Mechanisms of fluid secretion by salivary glands. Ann N Y Acad Sci 1993; 694: 24–35.PubMedCrossRefGoogle Scholar
  22. 22.
    Haeckel R. Factors influencing the saliva/plasma ratio of drugs. Ann N Y Acad Sci 1993; 694: 128–42.PubMedCrossRefGoogle Scholar
  23. 23.
    Brugmann G, Kleinau E, Nolte R, et al. Comparison of phenytoin determinations in plasma, plasma dialysate and saliva for control of antiepileptic therapy in children. Klin Wochenschr 1979; 57 (2): 93–4.PubMedCrossRefGoogle Scholar
  24. 24.
    Bachmann K, Forney RBJ, Voeller K. Monitoring phenytoin in salivary and plasma ultrafiltrates of pediatric patients. Ther Drug Monit 1983; 5 (3): 325–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Bartels H, Gunther E, Wallis S. Flow-dependent salivary primidone levels in epileptic children. Epilepsia 1979; 20 (4): 431–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Kristensen O, Larsen HF. Value of saliva samples in monitoring carbamazepine concentrations in epileptic patients. Acta Neurol Scand 1980; 61 (6): 344–50.PubMedCrossRefGoogle Scholar
  27. 27.
    Rosenthal E, Hoffer E, Ben-Aryeh H, et al. Use of saliva in home monitoring of carbamazepine levels. Epilepsia 1995; 36 (1): 72–4.PubMedCrossRefGoogle Scholar
  28. 28.
    Bartels H, Oldigs HD, Gunther E. Use of saliva in monitoring carbamazepine medication in epileptic children. Eur J Pediatr 1977; 126 (1–2): 37–44.PubMedCrossRefGoogle Scholar
  29. 29.
    Matin SB, Wan SH, Karam JH. Pharmacokinetics of tolbutamide: prediction by concentration in saliva. Clin Pharmacol Ther 1974; 16 (6): 1052–8.PubMedGoogle Scholar
  30. 30.
    Nishihara K, Uchino K, Saitoh Y, et al. Estimation of plasma unbound phenobarbital concentration by using mixed saliva. Epilepsia 1979; 20 (1): 37–45.PubMedCrossRefGoogle Scholar
  31. 31.
    Dawes C. Considerations in the development of diagnostic tests on saliva. Ann N Y Acad Sci 1993; 694: 265–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Miles MV, Tennison MB, Greenwood RS. Intraindividual variability of carbamazepine, phenobarbital, and phenytoin concentrations in saliva. Ther Drug Monit 1991; 13 (2): 166–71.PubMedCrossRefGoogle Scholar
  33. 33.
    Kamali F, Thomas SH. Effect of saliva flow rate on saliva phenytoin concentrations: implications for therapeutic monitoring. Eur J Clin Pharmacol 1994; 46 (6): 565–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Parry JV. Simple and reliable salivary tests for HIV and hepatitis A and B virus diagnosis and surveillance. Ann N Y Acad Sci 1993; 694: 216–33.PubMedCrossRefGoogle Scholar
  35. 35.
    Navazesh M. Methods for collecting saliva. Ann N Y Acad Sci 1993; 694: 72–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Dickinson RG, Hooper WD, King AR, et al. Fallacious results from measuring salivary carbamazepine concentrations. Ther Drug Monit 1985; 7 (1): 41–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Thieme T, Fitchen J, Bartos F, et al. Therapeutic drug monitoring using oral samples collected with the OraSure device. Ann N Y Acad Sci 1993; 694: 337–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Paton RD, Logan RW. Salivary drug measurement: acautionary tale [letter]. Lancet 1986; II (8519): 1340.CrossRefGoogle Scholar
  39. 39.
    Knott C, Reynolds F. Citrate and salivary drug measurement [letter]. Lancet 1987; I (8524): 97.CrossRefGoogle Scholar
  40. 40.
    Nau H, Jesdinsky D, Wittfoht W. Microassay for primidone and its metabolites phenylethylmalondiamide, phenobarbital and p-hydroxyphenobarbital in human serum, saliva, breast milk and tissues by gas chromatography-mass spectrometry using selected ion monitoring. J Chromatogr 1980; 182 (1): 71–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Dilli S, Pillai D. Analysis of trace amounts of barbiturates in saliva. J Chromatogr 1980; 190 (1): 113–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Liu H, Delgado MR, Iannaccone ST, et al. Determination of total and free carbamazepine and the principal metabolites in serum by high-performance liquid chromatography with photodiode-array detection. Ther Drug Monit 1993; 15 (4): 317–27.PubMedCrossRefGoogle Scholar
  43. 43.
    Johannessen SI. Methods of determination of antiepileptic drugs. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. 4th ed. New York: Raven Press, 1995: 243–70.Google Scholar
  44. 44.
    Alexishvili MM, Rukhadze MD, Okujava VM. Simultaneous determination of carbamazepine and carbamazepine 10,11-epoxide by using microcolumn HPLC: study of pharmacokinetics of carbamazepine in a volunteer. Biomed Chromatogr 1997; 11 (1): 36–41.PubMedCrossRefGoogle Scholar
  45. 45.
    Miles MV, Tennison MB, Greenwood RS, et al. Evaluation of the Ames Seralyzer for the determination of carbamazepine, phenobarbital, and phenytoin concentrations in saliva. Ther Drug Monit 1990; 12 (5): 501–10.PubMedCrossRefGoogle Scholar
  46. 46.
    Schramm W, Annesley TM, Siegel GJ, et al. Measurement of phenytoin and carbamazepine in an ultrafiltrate of saliva. Ther Drug Monit 1991; 13 (5): 452–60.PubMedCrossRefGoogle Scholar
  47. 47.
    Eadie MJ. The role of therapeutic drug monitoring in improving the cost effectiveness of anticonvulsant therapy. Clin Pharmacokinet 1995; 29 (1): 29–35.PubMedCrossRefGoogle Scholar
  48. 48.
    Rylance GW, Moreland TA. Saliva carbamazepine and phenytoin level monitoring. Arch Dis Child 1981; 56 (8): 637–40.PubMedCrossRefGoogle Scholar
  49. 49.
    Hamilton MJ, Cohen AF, Yuen AW, et al. Carbamazepine and lamotrigine in healthy volunteers: relevance to early tolerance and clinical trial dosage. Epilepsia 1993; 34 (1): 166–73.PubMedCrossRefGoogle Scholar
  50. 50.
    Reynolds F, Knott C. Saliva monitoring of anticonvulsants. J Clin Chem Clin Biochem 1989; 27 (4): 226–7.PubMedGoogle Scholar
  51. 51.
    Knott C, Reynolds F. Value of saliva anticonvulsant monitoring in pregnancy and the newborn. J Clin Chem Clin Biochem 1989; 27 (4): 227–8.PubMedGoogle Scholar
  52. 52.
    Choonara IA, Rane A. Therapeutic drug monitoring of anticonvulsants: state of the art. Clin Pharmacokinet 1990; 18 (4): 318–28.PubMedCrossRefGoogle Scholar
  53. 53.
    Liu H, Delgado MR, Browne RH. Interactions of valproic acid with carbamazepine and its metabolites’ concentrations, concentrations ratios, and level/dose ratios in epileptic children. Clin Neuropharmacol 1995; 18 (1): 1–12.PubMedCrossRefGoogle Scholar
  54. 54.
    Moreland TA, Priestman DA, Rylance GW. Saliva carbamazepine levels in children before and during multiple dosing. Br J Clin Pharmacol 1982; 13 (5): 647–51.PubMedCrossRefGoogle Scholar
  55. 55.
    Chee KY, Lee D, Byron D, et al. A simple collection method for saliva in children: potential for home monitoring of carbamazepine therapy. Br J Clin Pharmacol 1993; 35 (3): 311–3.PubMedCrossRefGoogle Scholar
  56. 56.
    Liu H, Delgado MR. Influence of sex, age, weight, and carbamazepine dose on serum concentrations, concentration ratios, and level/dose ratios of carbamazepine and its metabolites. Ther Drug Monit 1994; 16 (5): 469–76.PubMedCrossRefGoogle Scholar
  57. 57.
    Eeg-Olofsson O, Nilsson HL, Tonnby B, et al. Diurnal variation of carbamazepine and carbamazepine-10,11-epoxide in plasma and saliva in children with epilepsy: a comparison between conventional and slow-release formulations. J Child Neurol 1990; 5 (2): 159–65.PubMedCrossRefGoogle Scholar
  58. 58.
    Tomlin PI, McKinlay I, Smith I. A study on carbamazepine levels, including estimation of 10–11 epoxy-carbamazepine and levels in free plasma and saliva. Dev Med Child Neurol 1986; 28 (6): 713–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Van HG. Comparative study of the levels of anticonvulsants and their free fractions in venous blood, saliva and capillary blood in man. J Pharmacol 1984; 15 (1): 27–35.Google Scholar
  60. 60.
    Liu H, Delgado MR. Interactions of phenobarbital and phenytoin with carbamazepine and its metabolites’ concentrations, concentration ratios, and level/dose ratios in epileptic children. Epilepsia 1995; 36 (3): 249–54.PubMedCrossRefGoogle Scholar
  61. 61.
    MacKichan JJ, Duffner PK, Cohen ME. Salivary concentrations and plasma protein binding of carbamazepine and carbamazepine-10,11-epoxide in epileptic patients. Br J Clin Pharmacol 1981; 12 (1): 31–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Goldsmith RF, Ouvrier RA. Salivary anticonvulsant levels in children: a comparison of methods. Ther Drug Monit 1981; 3 (2): 151–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Liu H, Delgado MR. Improved therapeutic monitoring of drug interactions in epileptic children using carbamazepine polytherapy. Ther Drug Monit 1994; 16 (2): 132–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Paxton JW, Donald RA. Concentrations and kinetics of carbamazepine in whole saliva, parotid saliva, serum ultrafiltrate, and serum. Clin Pharmacol Ther 1980; 28 (5): 695–702.PubMedCrossRefGoogle Scholar
  65. 65.
    Westenberg HGM, van der Kleijn E, Oei TT, et al. Kinetics of carbamazepine and carbamazepine-epoxide, determined by use of plasma and saliva. Clin Pharmacol Ther 1978; 23 (3): 320–8.PubMedGoogle Scholar
  66. 66.
    Liu H, Delgado MR. The influence of polytherapy on the relationships between serum carbamazepine and its metabolites in epileptic children. Epilepsy Res 1994; 17 (3): 257–69.PubMedCrossRefGoogle Scholar
  67. 67.
    Westenberg HGM, de Zeeuw RA, van der Kleijn E, et al. Relationship between carbamazepine concentrations in plasma and saliva in man as determined by liquid chromatography. Clin Chim Acta 1977; 79 (1): 155–61.PubMedCrossRefGoogle Scholar
  68. 68.
    Troupin AS, Friel P. Anticonvulsant level in saliva, serum, and cerebrospinal fluid. Epilepsia 1975; 16 (2): 223–7.PubMedCrossRefGoogle Scholar
  69. 69.
    Rodin EA, DeSousa G, Haidukewych D, et al. Dissociation between free and bound phenytoin levels in presence of valproate sodium. Arch Neurol 1981; 38 (4): 240–2.PubMedCrossRefGoogle Scholar
  70. 70.
    Ball DE, McLaughlin WS, Seymour RA, et al. Plasma and saliva concentrations of phenytoin and 5-(4-hydroxyphenyl)-5-phenylhydantoin in relation to the incidence and severity of phenytoin-induced gingival overgrowth in epileptic patients. J Periodontal 1996; 67 (6): 597–602.CrossRefGoogle Scholar
  71. 71.
    Lifshitz M, Ben-Zvi Z, Gorodischer R. Monitoring phenytoin therapy using citric acid-stimulated saliva in infants and children. Ther Drug Monit 1990; 12 (4): 334–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Sobaniec W. A correlation between the levels of phenobarbital, phenytoin and valproic acid in the blood serum and in saliva from children treated due to epilepsy. Mater Med Pol 1989; 21 (4): 323–6.PubMedGoogle Scholar
  73. 73.
    Tsanaclis LM, Allen J, Perucca E, et al. Effect of valproate on free plasma phenytoin concentrations. Br J Clin Pharmacol 1984; 18 (1): 17–20.PubMedCrossRefGoogle Scholar
  74. 74.
    Aman MG, Paxton JW, Werry JS. Fluctuations in steady-state phenytoin concentrations as measured in saliva in children. Pediatr Pharmacol (New York) 1983; 3 (2): 87–94.Google Scholar
  75. 75.
    Hassell T, O’Donnell J, Pearlman J, et al. Salivary phenytoin levels in institutionalized epileptics. J Chronic Dis 1983; 36 (12): 899–906.PubMedCrossRefGoogle Scholar
  76. 76.
    Knott C, Hamshaw-Thomas A, Reynolds F. Phenytoin-valproate interaction: importance of saliva monitoring in epilepsy. BMJ Clin Res Ed 1982; 284 (6308): 13–6.CrossRefGoogle Scholar
  77. 77.
    Friedman TM, Litt IF, Henson R, et al. Saliva phenobarbital and phenytoin concentrations in epileptic adolescents. J Pediatr 1981; 98 (4): 645–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Pisani FD, Di PR. Intravenous valproate: effects on plasma and saliva phenytoin levels. Neurology 1981; 31 (4): 467–70.PubMedCrossRefGoogle Scholar
  79. 79.
    Zysset T, Rudeberg A, Vassella F, et al. Phenytoin therapy for epileptic children: evaluation of salivary and plasma concentrations and of methods of assessing compliance. Dev Med Child Neurol 1981; 23 (1): 66–75.PubMedCrossRefGoogle Scholar
  80. 80.
    Mucklow JC, Bacon CJ, Hierons AM, et al. Monitoring of phenobarbitone and phenytoin therapy in small children by salivary samples. Ther Drug Monit 1981; 3 (3): 275–7.PubMedCrossRefGoogle Scholar
  81. 81.
    Knott C, Williams CP, Reynolds F. Phenytoin kinetics during pregnancy and the Puerperium. Br J Obstet Gynaecol 1986; 93 (10): 1030–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Cook CE, Amerson E, Poole WK, et al. Phenytoin and phenobarbital concentrations in saliva and plasma measured by radioimmunoassay. Clin Pharmacol Ther 1975; 18 (06): 742–7.PubMedGoogle Scholar
  83. 83.
    Cai WM, Zhu GZ, Chen G. Free phenytoin monitoring in serum and saliva of epileptic patients in China. Ther Drug Monit 1993; 15 (1): 31–4.PubMedCrossRefGoogle Scholar
  84. 84.
    Reynolds F, Ziroyanis PN, Jones NF, et al. Salivary phenytoin concentrations in epilepsy and in chronic renal failure. Lancet 1976; II (7982): 384–6.CrossRefGoogle Scholar
  85. 85.
    Schmidt D, Kupferberg J. Diphenylhydantoin, phenobarbital, and primidone in saliva, plasma, and cerebrospinal fluid. Epilepsia 1975; 16 (5): 735–41.PubMedCrossRefGoogle Scholar
  86. 86.
    Shen D. Saliva phenobarbital concentration in epileptics. Chung Hua Shen Ching Ching Shen Ko Tsa Chih 1989; 22 (6): 369–70.Google Scholar
  87. 87.
    Tokugawa K, Ueda K, Fujito H, et al. Correlation between the saliva and free serum concentration of phenobarbital in epileptic children. Eur J Pediatr 1986; 145 (5): 401–2.PubMedCrossRefGoogle Scholar
  88. 88.
    Luoma PV, Heikkinen JE, Ylostalo PR. Phenobarbital pharmacokinetics and salivary and serum concentrations in pregnancy. Ther Drug Monit 1982; 4 (1): 65–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Liu H, Montoya JL, Forman LJ, et al. Determination of free valproic acid: evaluation of the Centrifree system and comparison between high-performance liquid chromatography and enzyme immunoassay. Ther Drug Monit 1992; 14 (6): 513–21.PubMedCrossRefGoogle Scholar
  90. 90.
    Suzuki Y, Uematsu T, Mizuno A, et al. Analysis of the transport of valproic acid into saliva from serum. Biol Pharm Bull 1994; 17 (2): 340–4.PubMedCrossRefGoogle Scholar
  91. 91.
    Nitsche V, Mascher H. The pharmacokinetics of valproic acid after oral and parenteral administration in healthy volunteers. Epilepsia 1982; 23 (2): 153–62.PubMedCrossRefGoogle Scholar
  92. 92.
    Abbott FS, Burton R, Orr J, et al. Valproic acid analysis in saliva and serum using selected ion monitoring (electron ionization) of the tert-butyldimethylsilyl derivatives. J Chromatogr 1982; 227 (2): 433–44.PubMedCrossRefGoogle Scholar
  93. 93.
    Monaco F, Piredda S, Mutani R, et al. The free fraction of valproic acid in tears, saliva, and cerebrospinal fluid. Epilepsia 1982; 23 (1): 23–6.PubMedCrossRefGoogle Scholar
  94. 94.
    Buchanan N, Ponniah P. Value of measuring salivary and free serum sodium valproate concentrations [letter]. Med J Aust 1981; 1 (10): 539–40.PubMedGoogle Scholar
  95. 95.
    Fung K, Ueda K. Saliva and serum valproic acid levels in epileptic children [letter]. J Pediatr 1982; 100 (3): 512.PubMedGoogle Scholar
  96. 96.
    Piredda S, Monaco F. Ethosuximide in tears, saliva, and cerebrospinal fluid. Ther Drug Monit 1981; 3 (4): 321–3.PubMedCrossRefGoogle Scholar
  97. 97.
    Bachmann K, Schwartz J, Sullivan T, et al. Single sample estimate of ethosuximide clearance. Int J Clin Pharmacol Ther Toxicol 1986; 24 (10): 546–50.PubMedGoogle Scholar
  98. 98.
    Macdonald RL. Benzodiazepines: mechanisms of action. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. 4th ed. New York: Raven Press, 1995: 695–703.Google Scholar
  99. 99.
    DiGregorio GJ, Piraino AJ, Ruch E. Diazepam concentrations in parotid saliva, mixed saliva, and plasma. Clin Pharmacol Ther 1978; 24 (6): 720–5.PubMedGoogle Scholar
  100. 100.
    Giles HG, Miller R, Macleod SM, et al. Diazepam and N-desmethyldiazepam in saliva of hospital inpatients. J Clin Pharmacol 1980; 20 (2–3): 71–6.PubMedGoogle Scholar
  101. 101.
    Schmidt D. Diazepam. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. 4th ed. New York: Raven Press, 1995: 705–24.Google Scholar
  102. 102.
    Tjaden UR, Meeles MT, Thys CP, et al. Determination of some benzodiazepines and metabolites in serum, urine and saliva by high-performance liquid chromatography. J Chromatogr 1980; 181 (2): 227–41.PubMedCrossRefGoogle Scholar
  103. 103.
    Hallstrom C, Lader MH. Diazepam and N-desmethyldiazepam concentrations in saliva, plasma and CSF. Br J Clin Pharmacol 1980; 9 (4): 333–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Baruzzi A, Michelucci R, Tassinari CA. Nitrazepam. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. 4th ed. New York: Raven Press, 1995: 735–49.Google Scholar
  105. 105.
    deGier JJ, ’t Hart BJ, Wilderink PF, et al. Comparison of plasma and saliva levels of diazepam. Br J Clin Pharmacol 1980; 10 (2): 151–5.CrossRefGoogle Scholar
  106. 106.
    Takatori T, Tomii S, Terazawa K, et al. Acomparative study of diazepam levels in bone marrow versus serum, saliva and brain tissue. Int J Legal Med 1991; 104 (4): 185–8.PubMedCrossRefGoogle Scholar
  107. 107.
    Johannessen SI. Laboratory monitoring of antiepileptic drugs. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. 4th ed. New York: Raven Press, 1995: 179–88.Google Scholar
  108. 108.
    ’t Hart BJ. Serum albumin binding of some benzodiazepines. Practical implications for the relation between free serum and saliva concentrations. Pharm Weekbl Sci 1988; 10 (6): 287–8.CrossRefGoogle Scholar
  109. 109.
    Bardy AH, Seppala T, Salokorpi T, et al. Monitoring of concentrations of clobazam and norclobazam in serum and saliva of children with epilepsy. Brain Dev 1991; 13 (3): 174–9.PubMedCrossRefGoogle Scholar
  110. 110.
    ’t Hart BJ, Wilting J. Sensitive gas chromatographic method for determining nitrazepam in serum and saliva. J Chromatogr 1988; 424 (2): 403–9.Google Scholar
  111. 111.
    Kangas L, Allonen H, Lammintausta R, et al. Pharmacokinetics of nitrazepam in saliva and serum after a single oral dose. Acta Pharmacol Toxicol (Copenh) 1979; 45 (1): 20–4.CrossRefGoogle Scholar
  112. 112.
    Rambeck B, Wolf P. Lamotrigine clinical pharmacokinetics. Clin Pharmacokinet 1993; 25 (6): 433–43.PubMedCrossRefGoogle Scholar
  113. 113.
    Trnavska Z, Krejcova H, Tkaczykovam, et al. Phamiacokinetics of lamotrigine (Lamictal) in plasma and saliva. Eur J Drug Metab Pharmacokinet 1991; Spec No 3: 211–5.Google Scholar
  114. 114.
    Cohen AF, Land GS, Breimer DD, et al. Lamotrigine, a new anticonvulsant: pharmacokinetics in normal humans. Clin Pharmacol Ther 1987; 42 (5): 535–41.PubMedCrossRefGoogle Scholar
  115. 115.
    Cohen AF, Ashby L, Crowley D, et al. Lamotrigine (BW430C), a potential anticonvulsant: effects on the central nervous system in comparison with phenytoin and diazepam. Br J Clin Pharmacol 1985; 20 (6): 619–29.PubMedCrossRefGoogle Scholar
  116. 116.
    Cardot JM, Degen P, Flesch G, et al. Comparison of plasma and saliva concentrations of the active monohydroxy metabolite of oxcarbazepine in patients at steady state. Biopharm Drug Dispos 1995; 16 (7): 603–14.PubMedCrossRefGoogle Scholar
  117. 117.
    Klitgaard NA, Kristensen O. Use of saliva for monitoring oxcarbazepine therapy in epileptic patients. Eur J Clin Pharmacol 1986; 31 (1): 91–4.PubMedCrossRefGoogle Scholar
  118. 118.
    Theisohn M, Heimann G. Disposition of the antiepileptic oxcarbazepine and its metabolites in healthy volunteers. Eur J Clin Pharmacol 1982; 22 (6): 545–51.PubMedCrossRefGoogle Scholar
  119. 119.
    Kristensen O, Klitgaard NA, Jonsson B, et al. Pharmacokinetics of 10-OH-carbazepine, the main metabolite of the antiepileptic oxcarbazepine, from serum and saliva concentrations. Acta Neurol Scand 1983; 68 (3): 145–50.PubMedCrossRefGoogle Scholar
  120. 120.
    Benetello P, Furlanut M, Fortunato M, et al. Oral gabapentin disposition in patients with epilepsy after a high-protein meal. Epilepsia 1997; 38 (10): 1140–2.PubMedCrossRefGoogle Scholar
  121. 121.
    Durham SL, Hoke JF, Chen TM. Pharmacokinetics and metabolism of vigabatrin following a single oral dose of [14C]vigabatrin in healthy male volunteers. Drug Metab Dispos 1993; 21 (3): 480–4.PubMedGoogle Scholar

Copyright information

© Adis International Limited 1999

Authors and Affiliations

  1. 1.Department of ResearchTexas Scottish Rite Hospital for ChildrenDallasUSA
  2. 2.Department of NeurologyTexas Scottish Rite Hospital for ChildrenDallasUSA

Personalised recommendations