Advertisement

Clinical Pharmacokinetics

, Volume 34, Issue 1, pp 25–56 | Cite as

Pharmacokinetics of Drugs Used in Critically Ill Adults

  • Bradley M. Power
  • A. Millar Forbes
  • P. Vernon van Heerden
  • Kenneth F. Ilett
Review Article Special Populations

Summary

Critically ill patients exhibit a range of organ dysfunctions and often require treatment with a variety of drugs including sedatives, analgesics, neuromuscular blockers, antimicrobials, inotropes and gastric acid suppressants. Understanding how organ dysfunction can alter the pharmacokinetics of drugs is a vital aspect of therapy in this patient group. Many drugs will need to be given intravenously because of gastrointestinal failure. For those occasions on which the oral route is possible, bioavailability may be altered by hypomotility, changes in gastrointestinal pH and enteral feeding. Hepatic and renal dysfunction are the primary determinants of drug clearance, and hence of steady-state drug concentrations, and of efficacy and toxicity in the individual patient.

Oxidative metabolism is the main clearance mechanism for many drugs and there is increasing recognition of the importance of decreased activity of the hepatic cytochrome P450 system in critically ill patients. Renal failure is equally important with both filtration and secretion clearance mechanisms being required for the removal of parent drugs and their active metabolites. Changes in the steady-state volume of distribution are often secondary to renal failure and may lower the effective drug concentrations in the body. Failure of the central nervous system, muscle, the endothelial system and endocrine system may also affect the pharmacokinetics of specific drugs. Time-dependency of alterations in pharmacokinetic parameters is well documented for some drugs. Understanding the underlying pathophysiology in the critically ill and applying pharmacokinetic principles in selection of drug and dose regimen is, therefore, crucial to optimising the pharmacodynamic response and outcome.

Keywords

Adis International Limited Midazolam Teicoplanin Alfentanil Antimicrob Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mann HJ, Fuhs DW, Cerra FB. Pharmacokinetics and pharmacodynamics in critically ill patients. World J Surg 1987; 11: 210–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Fuhs DW, Mann HJ, Kubajak CA, et al. Intrapatient variation of aminoglycoside pharmacokinetics in critically ill surgery patients. Clin Pharm 1988; 7: 207–13.PubMedGoogle Scholar
  3. 3.
    Jellett LB, Heazlewood VJ. Pharmacokinetics in acute illness. Med J Aust 1990; 153: 534–41.PubMedGoogle Scholar
  4. 4.
    Zielmann S, Mielck F, Kahl R, et al. A rational basis for the measurement of free phenytoin concentration in critically ill trauma patients. Ther Drug Monit 1994; 16: 139–44.PubMedCrossRefGoogle Scholar
  5. 5.
    Park GR. Molecular mechanisms of drug metabolism in the critically ill. Br J Anaesth 1996; 77: 32–49.PubMedCrossRefGoogle Scholar
  6. 6.
    Hawker F. The critically ill patient with abnormal liver function tests. In: Park GR, editor. The liver. London: WB Saunders Co Ltd, 1993: 286–323.Google Scholar
  7. 7.
    Park GR, Miller E. What changes drug metabolism in critically ill patients. III: effect of pre-existing disease on the metabolism of midazolam. Anaesthesia 1996; 51: 431–4.PubMedCrossRefGoogle Scholar
  8. 8.
    Park GR, Miller E, Navapurkar V. What changes drug metabolism in critically ill patients. II: serum inhibits the metabolism of midazolam in human hepatocytes. Anaesthesia 1996; 51: 11–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Park GR, Pichard L, Tinel M, et al. What changes drug metabolism in critically ill patients: two preliminary studies in isolated human hepatocytes. Anaesthesia 1994; 49: 188–91.PubMedCrossRefGoogle Scholar
  10. 10.
    Shelly MP, Mendel L, Park GR. Failure of critically ill patients to metabolise midazolam. Anaesthesia 1987; 42: 619–26.PubMedCrossRefGoogle Scholar
  11. 11.
    Muller CM, Scierka A, Stiller RL, et al. Nitric oxide mediates hepatic cytochrome P450 dysfunction induced by endotoxin. Anesthesiology 1996; 84: 1435–42.PubMedCrossRefGoogle Scholar
  12. 12.
    Slaughter RL, Edwards DJ. Recent advances: the cytochrome P450 enzymes [review]. Ann Pharmacother 1995; 29: 619–24.PubMedGoogle Scholar
  13. 13.
    Kerremans AL. Cytochrome P450 isoenzymes: importance for the internist [review]. Neth J Med 1996; 48: 237–43.PubMedCrossRefGoogle Scholar
  14. 14.
    Macnab MS, Macrae DJ, Guy E, et al. Profound reduction in morphine clearance and liver blood flow in shock. Intens Care Med 1986; 12: 366–9.CrossRefGoogle Scholar
  15. 15.
    Bower S, Sear JW, Roy RC, et al. Effects of different hepatic pathologies on disposition of alfentanil in anaesthetized patients. Br J Anaesth 1992; 68: 462–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Bodenham A, Shelly MP, Park GR. The altered pharmacokinetics and pharmacodynamics of drugs commonly used in critically ill patients. Clin Pharmacokinet 1988; 14: 347–73.PubMedCrossRefGoogle Scholar
  17. 17.
    Russell WJ, Frewin DB, Jonsson JR. Pulmonary extraction of catecholamines in critically ill patients. Anaesth Intens Care 1982; 10: 319–23.Google Scholar
  18. 18.
    Watling SM, Dasta JF. Aminoglycoside dosing considerations in intensive care unit patients. Ann Pharmacother 1993; 27: 351–7.PubMedGoogle Scholar
  19. 19.
    Martin C, Lambert D, Bruguerolle B, et al. Ofloxacin pharmacokinetics in mechanically ventilated patients. Antimicrob Agents Chemother 1991; 35: 1582–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Golper TA, Vincent HH, Kroh UF. Drug use in critically ill patients with acute renal failure. In: Bellomo R, Romeo C, editors. Acute renal failure in the critically ill. Berlin: Springer-Verlag, 1996: 407–34.Google Scholar
  21. 21.
    Moller JC, Gilman JT, Kearns GL, et al. Effect of extracorporeal membrane oxygenation on tobramycin pharmacokinetics in sheep. Crit Care Med 1992; 20: 1454–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Dagan O, Klein J, Gruenwald C, et al. Preliminary studies of the effects of extracorporeal membrane oxygenator on the disposition of common pediatric drugs. Ther Drug Monit 1993; 15: 263–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Shelly MP, Cory EP, Park GR. Pharmacokinetics of morphine in two children before and after liver transplantation. Br J Anaesth 1986; 58: 1218–23.PubMedCrossRefGoogle Scholar
  24. 24.
    Osborne RJ, Joel SP, Slevin ML. Morphine intoxication in renal failure: the role of morphine-6-glucuronide. BMJ Clin Res Ed 1994; 1986: 1548–9.Google Scholar
  25. 25.
    Bauer TM, Ritz R, Haberthur C, et al. Prolonged sedation due to accumulation of conjugated metabolites of midazolam. Lancet 1995; 346: 145–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Touchette MA, Patel RV, Anandan JV, et al. Vancomycin removal by high-flux polysulfone hemodialysis membranes in critically ill patients with end-stage renal disease. Am J Kidney Dis 1995; 26: 469–74.PubMedCrossRefGoogle Scholar
  27. 27.
    Kihara M, Ikeda Y, Shibata K, et al. Pharmacokinetic profiles of intravenous imipenem/cilastatin during slow hemodialysis in critically ill patients. Clin Nephrol 1994; 42: 193–7.PubMedGoogle Scholar
  28. 28.
    Fish DN, Bainbridge JL, Peloquin CA. Variable disposition of ciprofloxacin in critically ill patients undergoing continuous arteriovenous hemodiafiltration. Pharmacotherapy 1995; 15: 236–45.PubMedGoogle Scholar
  29. 29.
    Kihara M, Ikeda Y, Takagi N, et al. Pharmacokinetics of singledose intravenous amikacin in critically ill patients undergoing slow hemodialysis. Intens Care Med 1995; 21: 348–51.CrossRefGoogle Scholar
  30. 30.
    Davies SP, Lacey LF, Kox WJ, et al. Pharmacokinetics of cefuroxime and ceftazidime in patients with acute renal failure treated by continuous arteriovenous haemodialysis. Nephrol Dialysis Transplant 1991; 6: 971–6.Google Scholar
  31. 31.
    Reetze-Bonorden P, Bohler J, Keller E. Drug dosage in patients during continuous renal replacement therapy: pharmacokinetic and therapeutic considerations. Clin Pharmacokinet 1993; 24: 362–79.PubMedCrossRefGoogle Scholar
  32. 32.
    Ernest D, Cutler DJ. Gentamicin clearance during continuous arteriovenous hemodiafiltration. Crit Care Med 1992; 20: 586–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Armstrong DK, Hodgman T, Visconti JA, et al. Hemodialysis of amikacin in critically ill patients. Crit Care Med 1988; 16: 517–20.PubMedCrossRefGoogle Scholar
  34. 34.
    Schetz M, Ferdinande P, Van den Berghe G, et al. Pharmacokinetics of continuous renal replacement therapy. Intens Care Med 1995; 21: 612–20.CrossRefGoogle Scholar
  35. 35.
    Keller E, Fecht H, Bohler J, et al. Single-dose kinetics of imipenem/cilastatin during continuous arteriovenous haemofiltration in intensive care patients. Nephrol Dialysis Transplant 1989; 4: 640–5.Google Scholar
  36. 36.
    Przechera M, Bengel D, Risler T. Pharmacokinetics of imipenem/cilastatin during continuous arteriovenous hemofiltration. Contrib Nephrol 1991; 93: 131–4.PubMedGoogle Scholar
  37. 37.
    Reetze-Bonorden P, Bohler J, Kohler C, et al. Elimination of vancomycin in patients on continuous arteriovenous hemodialysis. Contrib Nephrol 1991; 93: 135–9.PubMedGoogle Scholar
  38. 38.
    Randall CTC, Tett SE. Phenytoin pharmacokinetics after intravenous administration to patients receiving enterai tube feeding. Pharm World Sci 1994; 16: 217–24.CrossRefGoogle Scholar
  39. 39.
    Robert S, Zarowitz BJ, Peterson EL, et al. Predictability of creatinine clearance estimates in critically ill patients. Crit Care Med 1993; 21: 1487–95.PubMedCrossRefGoogle Scholar
  40. 40.
    Reves JG, Fragen RJ, Vinik HR, et al. Midazolam: pharmacology and uses. Anesthesiology 1985; 62: 310–24.PubMedCrossRefGoogle Scholar
  41. 41.
    Aitkenhead AR, Pepperman ML, Willatts SM, et al. Comparison of propofol and midazolam for sedation in critically ill patients. Lancet 1989; II: 704–9.CrossRefGoogle Scholar
  42. 42.
    Shapiro JM, Westphal LM, White PF, et al. Midazolam infusion for sedation in the intensive care unit: effect on adrenal function. Anesthesiology 1986; 64: 394–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Smith MT, Eadie MJ, Brophy TO. The pharmacokinetics of midazolam in man. Eur J Clin Pharmacol 1981; 19: 271–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Harper KW, Collier PS, Dundee JW, et al. Age and nature of operation influence the pharmacokinetics of midazolam. Br J Anaesth 1985; 57: 866–71.PubMedCrossRefGoogle Scholar
  45. 45.
    Amrein R, Hetzel W. Pharmacology of Dormicum (midazolam) and Anexate (flumazenil). Acta Anaesth Scand 1994; 92 Suppl.: 6–15.Google Scholar
  46. 46.
    Allonen H, Ziegler G, Klotz U. Midazolam kinetics. Clin Pharmacol Ther 1981; 30: 653–61.PubMedCrossRefGoogle Scholar
  47. 47.
    Mandema JW, Tuk B, van Steveninck AL, et al. Pharmacokinetic-phannacodynamic modeling of the central nervous system effects of midazolam and its main metabolite alpha-hydroxymidazolam in healthy volunteers. Clin Pharmacol Ther 1992; 51: 715–28.PubMedCrossRefGoogle Scholar
  48. 48.
    Greenblatt DJ, Abernethy DR, Locniskar A, et al. Effect of age, gender, and obesity on midazolam kinetics. Anesthesiology 1984; 61: 27–35.PubMedGoogle Scholar
  49. 49.
    Ziegler WH, Schalch E, Leishman B, et al. Comparison of the effects of intravenously administered midazolam, triazolam and their hydroxy metabolites. Br J Clin Pharmacol 1983; 16 Suppl. 1: 63S–9S.PubMedCrossRefGoogle Scholar
  50. 50.
    Lauven PM, Schwilden H, Stoeckel H, et al. The effects of a benzodiazepine antagonist Ro 15-1788 in the presence of stable concentrations of midazolam. Anesthesiology 1985; 63: 61–4.PubMedCrossRefGoogle Scholar
  51. 51.
    Kanto J, Aaltonen L, Himberg JJ, et al. Midazolam as an intravenous induction agent in the elderly: a clinical and pharmacokinetic study. Anesth Analg 1986; 65: 15–20.PubMedCrossRefGoogle Scholar
  52. 52.
    Halliday NJ, Dundee JW, Collier PS, et al. Influence of plasma proteins on the onset of hypnotic action of intravenous midazolam. Anaesthesia 1985; 40: 763–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Vinik HR, Reves JG, Greenblatt DJ, et al. The pharmacokinetics of midazolam in chronic renal failure patients. Anesthesiology 1983; 59: 390–4.PubMedCrossRefGoogle Scholar
  54. 54.
    Trouvin JH, Farinotti R, Haberer JP, et al. Pharmacokinetics of midazolam in anaesthetized cirrhotic patients. Br J Anaesth 1988; 60: 762–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Rinetti M, Ascalone V, Colombi Zinelli L, et al. A pharmacokinetic study on midazolam in compensated liver cirrhosis. Int J Clin Pharmacol Res 1985; 5: 405–11.PubMedGoogle Scholar
  56. 56.
    MacGilchrist AJ, Birnie GG, Cook A, et al. Pharmacokinetics and pharmacodynamics of intravenous midazolam in patients with severe alcoholic cirrhosis. Gut 1986; 27: 190–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Shafer A, Doze VA, White PR. Pharmacokinetic variability of midazolam infusions in critically ill patients. Crit Care Med 1990; 18: 1039–41.PubMedCrossRefGoogle Scholar
  58. 58.
    Oldenhof H, de Jong M, Steenhoek A, et al. Clinical pharmacokinetics of midazolam in intensive care patients, a wide interpatient variability? Clin Pharmacol Ther 1988; 43: 263–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Michalk S, Moncorge C, Fichelle A, et al. Midazolam infusion for basal sedation in intensive care: absence of accumulation. Intens Care Med 1988; 15: 37–41.CrossRefGoogle Scholar
  60. 60.
    Byatt CM, Lewis LD, Dawling S, et al. Accumulation of midazolam after repeated dosage in patients receiving mechanical ventilation in an intensive care unit. BMJ Clin Res Ed 1994; 1984: 799–800.Google Scholar
  61. 61.
    Byrne A, Yeoman PM, Mace P. Accumulation of midazolam in patients receiving mechanical ventilation [letter]. BMJ 1984; 289: 1309.CrossRefGoogle Scholar
  62. 62.
    Malacrida R, Fritz ME, Suter PM, et al. Pharmacokinetics of midazolam administered by continuous intravenous infusion to intensive care patients. Crit Care Med 1992; 20: 1123–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Vree TB, Shimoda M, Driessen JJ, et al. Decreased plasma albumin concentration results in increased volume of distribution and decreased elimination of midazolam in intensive care patients. Clin Pharmacol Ther 1989; 46: 537–44.PubMedCrossRefGoogle Scholar
  64. 64.
    Dirksen MS, Vree TB, Driessen JJ. Clinical pharmacokinetics of long-term infusion of midazolam in critically ill patientspreliminary results. Anaesth Intens Care 1987; 15: 440–4.Google Scholar
  65. 65.
    Driessen JJ, Vree TB, Guelen PJ. The effects of acute changes in renal function on the pharmacokinetics of midazolam during long-term infusion in ICU patients. Acta Anaesthesiol Belg 1991; 42: 149–55.PubMedGoogle Scholar
  66. 66.
    Maitre PO, Funk B, Crevoisier C, et al. Pharmacokinetics of midazolam in patients recovering from cardiac surgery. Eur J Clin Pharmacol 1989; 37: 161–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Gamble JA, Dundee JW, Gray RC. Plasma diazepam concentrations following prolonged administration. Br J Anaesth 1976; 48: 1087–90.PubMedCrossRefGoogle Scholar
  68. 68.
    Herman RJ, Wilkinson GR. Disposition of diazepam in young and elderly subjects after acute and chronic dosing. Br J Clin Pharmacol 1996; 42: 147–55.PubMedCrossRefGoogle Scholar
  69. 69.
    Greenblatt DJ, Laughren TP, Allen MD, et al. Plasma diazepam and desmethyldiazepam concentrations during long-term diazepam therapy. Br J Clin Pharmacol 1981; 11: 35–40.PubMedCrossRefGoogle Scholar
  70. 70.
    Klotz U, Antonin KH, Brugel H, et al. Disposition of diazepam and its major metabolite desmethyldiazepam in patients with liver disease. Clin Pharmacol Ther 1977; 21: 430–6.PubMedGoogle Scholar
  71. 71.
    Ochs HR, Greenblatt DJ, Kaschell HJ, et al. Diazepam kinetics in patients with renal insufficiency or hyperthyroidism. Br J Clin Pharmacol 1981; 12: 829–32.PubMedCrossRefGoogle Scholar
  72. 72.
    Shapiro BA, Warren J, Egol AB, et al. Practice parameters for intravenous analgesia and sedation for adult patients in the intensive care unit: an executive summary: Society of Critical Care Medicine [see comments]. Crit Care Med 1995; 23: 1596–600.PubMedCrossRefGoogle Scholar
  73. 73.
    Bachmann KA, Nunlee M, Martin M, et al. The use of single sample clearance estimates to probe hepatic drug metabolism: handprinting the influence of cigarette smoking on human hepatic drug metabolism. Xenobiotica 1990; 20: 537–47.PubMedCrossRefGoogle Scholar
  74. 74.
    Boucher BA, Kuhl DA, Fabian TC, et al. Effect of neurotrauma on hepatic drug clearance. Clin Pharmacol Ther 1991; 50: 87–97.CrossRefGoogle Scholar
  75. 75.
    Shafer A, Doze VA, Shafer SL, et al. Pharmacokinetics and pharmacodynamics of propofol infusions during general anesthesia. Anesthesiology 1988; 69: 348–56.PubMedCrossRefGoogle Scholar
  76. 76.
    Gepts E, Camu F, Cockshott ID, et al. Disposition of propofol administered as constant rate intravenous infusions in humans. Anesth Analg 1987; 66: 1256–63.PubMedCrossRefGoogle Scholar
  77. 77.
    Veroli P, O’Kelly B, Bertrand F, et al. Extrahepatic metabolism of propofol in man during the anhepatic phase of orthotopic liver transplantation. Br J Anaesth 1992; 68: 183–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Gray PA, Park GR, Cockshott ID, et al. Propofol metabolism in man during the anhepatic and reperfusion phases of liver transplantation. Xenobiotica 1992; 22: 105–14.PubMedCrossRefGoogle Scholar
  79. 79.
    Raoof AA, van Obbergh LJ, de Ville de Goyet J, et al. Extrahepatic glucuronidation of propofol in man: possible contribution of gut wall and kidney. Eur J Clin Pharmacol 1996; 50: 91–6.PubMedCrossRefGoogle Scholar
  80. 80.
    McMurray TJ, Collier PS, Carson IW, et al. Propofol sedation after open heart surgery: a clinical and pharmacokinetic study. Anaesthesia 1990; 45: 322–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Frenkel C, Schuttler J, Ihmsen H, et al. Pharmacokinetics and pharmacodynamics of propofol/alfentanil infusions for sedation in ICU patients. Intens Care Med 1995; 21: 981–8.CrossRefGoogle Scholar
  82. 82.
    Servin F, Desmonts JM, Haberer JP, et al. Pharmacokinetics and protein binding of propofol in patients with cirrhosis. Anesthesiology 1988; 69: 887–91.PubMedCrossRefGoogle Scholar
  83. 83.
    Schuttler J, Ihmsen H. Population pharmacokinetics of propofol [abstract]. Anaesthesiology 1993; 79: A331.Google Scholar
  84. 84.
    Albanese J, Martin C, Lacarelle B, et al. Pharmacokinetics of long-term propofol infusion used for sedation in ICU patients. Anesthesiology 1990; 73: 214–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Bailie GR, Cockshott ID, Douglas EJ, et al. Pharmacokinetics of propofol during and after long-term continuous infusion for maintenance of sedation in ICU patients. Br J Anaesth 1992; 68: 486–91.PubMedCrossRefGoogle Scholar
  86. 86.
    Eddleston JM, Pollard BJ, Blades JF, et al. The use of propofol for sedation of critically ill patients undergoing haemodiafiltration. Intens Care Med 1995; 21: 342–7.CrossRefGoogle Scholar
  87. 87.
    Ball M, McQuay HJ, Moore RA, et al. Renal failure and the use of morphine in intensive care. Lancet 1985; I: 784–6.CrossRefGoogle Scholar
  88. 88.
    Milne RW, Nation RL, Somogyi AA, et al. The influence of renal function on the renal clearance of morphine and its glucuronide metabolites in intensive-care patients. Br J Clin Pharmacol 1992; 34: 53–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Armstrong PJ, Bersten A. Normeperidine toxicity. Anesth Analg 1986; 65: 536–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Szeto HH, Inturrisi CE, Houde R, et al. Accumulation of normeperidine, an active metabolite of meperidine, in patients with renal failure of cancer. Ann Intern Med 1977; 86: 738–41.PubMedGoogle Scholar
  91. 91.
    Sanford TJJ, Gutstein HB. Fentanyl, sufentanil and alfentanil: comparative pharmacology. In: Barash PG, Cullen BF, Stoelting RK, editors. Clinical anesthesia. 2nd ed. Philadelphia: JB Lippincott, 1995: 1–20.Google Scholar
  92. 92.
    Bovill JG, Sebel PS. Pharmacokinetics of high-dose fentanyl: a study in patients undergoing cardiac surgery. Br J Anaesth 1980; 52: 795–801.PubMedCrossRefGoogle Scholar
  93. 93.
    Haberer JP, Schoeffler P, Couderc E, et al. Fentanyl pharmacokinetics in anaesthetized patients with cirrhosis. Br J Anaesth 1982; 54: 1267–70.PubMedCrossRefGoogle Scholar
  94. 94.
    Alazia M, Levron JC, Guidon MD, et al. Pharmacokinetics of fentanyl (F) during continuous infusion in critically ill patients [abstract]. Anesthesiology 1987; 67: A665.CrossRefGoogle Scholar
  95. 95.
    Katz R, Kelly HW. Pharmacokinetics of continuous infusions of fentanyl in critically ill children. Crit Care Med 1993; 21: 995–1000.PubMedCrossRefGoogle Scholar
  96. 96.
    Rosow C. Newer opioid analgesics and antagonists. Anaesth Clin North Am 1988; 6: 319–32.Google Scholar
  97. 97.
    Chauvin M, Bonnet F, Montembault C, et al. The influence of hepatic plasma flow on alfentanil plasma concentration plateaus achieved with an infusion model in humans: measurement of alfentanil hepatic extraction coefficient. Anesth Analg 1986; 65: 999–1003.PubMedCrossRefGoogle Scholar
  98. 98.
    Chauvin M, Ferrier C, Haberer JP, et al. Sufentanil pharmacokinetics in patients with cirrhosis. Anesth Analg 1989; 68: 1–4.PubMedCrossRefGoogle Scholar
  99. 99.
    Yate PM, Thomas D, Short SM, et al. Comparison of infusions of alfentanil or pethidine for sedation of ventilated patients on the ITU. Br J Anaesth 1986; 58: 1091–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Yun CH, Wood M, Wood AJ, et al. Identification of the pharmacogenetic determinants of alfentanil metabolism: cytochrome P-450 3A4: an explanation of the variable elimination clearance. Anesthesiology 1992; 77: 467–74.PubMedCrossRefGoogle Scholar
  101. 101.
    Dershwitz M, Hoke JF, Rosow CE, et al. Pharmacokinetics and pharmacodynamics of remifentanil in volunteer subjects with severe liver disease. Anesthesiology 1996; 84: 812–20.PubMedCrossRefGoogle Scholar
  102. 102.
    Elliot JM, Bion JF. The use of neuromuscular blocking drugs in intensive care practice. Acta Anaesth Scand 1995; 106 Suppl.: 70–82.CrossRefGoogle Scholar
  103. 103.
    Gooch JL, Suchyta MR, Balbierz JM, et al. Prolonged paralysis after treatment with neuromuscular junction blocking agents [see comments]. Crit Care Med 1991; 19: 1125–31.PubMedCrossRefGoogle Scholar
  104. 104.
    Partridge BL, Abrams JH, Bazemore C, et al. Prolonged neuromuscular blockade after long-term infusion of vecuronium bromide in the intensive care unit [see comments]. Crit Care Med 1990; 18: 1177–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Leatherman JW, Fluegel WL, David WS, et al. Muscle weakness in mechanically ventilated patients with severe asthma. Am J Respir Crit Care Med 1996; 153: 1686–90.PubMedGoogle Scholar
  106. 106.
    Khuenl-Brady KS, Reitstatter B, Schlager A, et al. Long-term administration of pancuronium and pipecuronium in the intensive care unit [see comments]. Anesth Analg 1994; 78: 1082–6.PubMedCrossRefGoogle Scholar
  107. 107.
    Shapiro BA, Warren J, Egol AB, et al. Practice parameters for sustained neuromuscular blockade in the adult critically ill patient: an executive summary: Society of Critical Care Medicine. Crit Care Med 1995; 23: 1601–5.PubMedCrossRefGoogle Scholar
  108. 108.
    Vandenbrom RH, Wierda JM. Pancuronium bromide in the intensive care unit: a case of overdose. Anesthesiology 1988; 69: 996–7.PubMedCrossRefGoogle Scholar
  109. 109.
    Ward S, Judge S, Corail I. Pharmacokinetics of pancuronium bromide in liver failure. Br J Anaesth 1982; 54: 227P.Google Scholar
  110. 110.
    Agoston S, Vandenbrom RH, Wierda JM. Clinical pharmacokinetics of neuromuscular blocking drugs. Clin Pharmacokinet 1992; 22: 94–115.PubMedCrossRefGoogle Scholar
  111. 111.
    Agoston S, Vandenbrom RHG, Wierda JMKH. Use of neuromuscular blocking agents in the intensive care unit. In: Partridge BL, editor. Advances in the use of muscle relaxants. Philadelphia: WB Saunders, 1993: 345–59.Google Scholar
  112. 112.
    Segredo V, Matthay MA, Sharma ML, et al. Prolonged neuromuscular blockade after long-term administration of vecuronium in two critically ill patients. Anesthesiology 1990; 72: 566–70.PubMedCrossRefGoogle Scholar
  113. 113.
    Ward S, Weatherley BC. Pharmacokinetics of atracurium and its metabolites. Br J Anaesth 1986; 58 Suppl. 1: 6S–10S.PubMedGoogle Scholar
  114. 114.
    Parker CJ, Jones JE, Hunter JM. Disposition of infusions of atracurium and its metabolite, laudanosine, in patients in renal and respiratory failure in an ITU. Br J Anaesth 1988; 61: 531–40.PubMedCrossRefGoogle Scholar
  115. 115.
    Bion JF, Bowden MI, Chow B, et al. Atracurium infusions in patients with fulminant hepatic failure awaiting liver transplantation. Intens Care Med 1993; 19 Suppl. 2: S94–8.CrossRefGoogle Scholar
  116. 116.
    Yate PM, Flynn PJ, Arnold RW, et al. Clinical experience and plasma laudanosine concentrations during the infusion of atracurium in the intensive therapy unit. Br J Anaesth 1987; 59: 211–7.PubMedCrossRefGoogle Scholar
  117. 117.
    Cook DR, Freeman JA, Lai AA, et al. Pharmacokinetics of mivacurium in normal patients and in those with hepatic or renal failure. Br J Anaesth 1992; 69: 580–5.PubMedCrossRefGoogle Scholar
  118. 118.
    deBros F, Goudsouzian N, Chakravorty S, et al. Pharmacokinetic evaluation of the cis-cis isomer, alcohol and ester metabolites of mivacurium during prolonged infusions in neurosurgical patients. Anesthesiology 1994; 81 Suppl. 3A: 1085.Google Scholar
  119. 119.
    Forrest A, Nix DE, Ballow CH, et al. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother 1993; 37: 1073–81.PubMedCrossRefGoogle Scholar
  120. 120.
    Goss TF, Forrest A, Nix DE, et al. Mathematical examination of dual individualization principles. II: the rate of bacterial eradication at the same area under the inhibitory curve is more rapid for ciprofloxacin than for cefmenoxime. Ann Pharmacother 1994; 28: 863–8.PubMedGoogle Scholar
  121. 121.
    Whipple JK, Ausman RK, Franson T, et al. Effect of individualized pharmacokinetic dosing on patient outcome. Crit Care Med 1991; 19: 1480–5.PubMedCrossRefGoogle Scholar
  122. 122.
    Nicolau DP, Crowe H, Nightingale CH, et al. Bioavailability of fluconazole administered via a feeding tube in intensive care unit patients. J Antimicrob Chemother 1995; 36: 395–401.PubMedCrossRefGoogle Scholar
  123. 123.
    Chin TW, Vandenbroucke A, Fong IW. Pharmacokinetics of trimethoprim-sulfamethoxazole in critically ill and non-critically ill AIDS patients. Antimicrob Agents Chemother 1995; 39: 28–33.PubMedCrossRefGoogle Scholar
  124. 124.
    Dive A, Miesse C, Galanti L, et al. Effect of erythromycin on gastric motility in mechanically ventilated critically ill patients: a double-blind, randomized, placebo-controlled study. Crit Care Med 1995; 23: 1356–62.PubMedCrossRefGoogle Scholar
  125. 125.
    Healy DP, Brodbeck MC, Clendening CE. Ciprofloxacin absorption is impaired in patients given enterai feedings orally and via gastrostomy and jejunostomy tubes. Antimicrob Agents Chemother 1996; 40: 6–10.PubMedGoogle Scholar
  126. 126.
    Barker EM, Aitchison JM, Cridland JS, et al. Rectal administration of metronidazole in severely ill patients. BMJ Clin Res Ed 1994; 1983: 311–3.Google Scholar
  127. 127.
    Kleinschmidt R, Rommelsheim K, Exner M, et al. The effectiveness of intratracheal antibiotic administration: clinical, microbiologic and pharmacologic results. Anasth Intensivther Notf Med 1989; 24: 143–6.PubMedCrossRefGoogle Scholar
  128. 128.
    Bressolle F, de la Coussaye JE, Ayoub R, et al. Endotracheal and aerosol administrations of ceftazidime in patients with nosocomial pneumonia: pharmacokinetics and absolute bioavailability. Antimicrob Agents Chemother 1992; 36: 1404–11.PubMedCrossRefGoogle Scholar
  129. 129.
    Jensen T, Pedersen SS, Garne S, et al. Colistin inhalation therapy in cystic fibrosis patients with chronic Pseudomonus aeruginosa lung infection. J Antimicrob Chemother 1987; 19: 831–8.PubMedCrossRefGoogle Scholar
  130. 130.
    Masur H. Prevention and treatment of pneumocystis pneumonia [published erratum appears in N Engl J Med 1993; 328: 1136]. N Engl J Med 1992; 327: 1853–60.PubMedCrossRefGoogle Scholar
  131. 131.
    Kropec A, Daschner FD. Penetration into tissues of various drugs active against gram-positive bacteria. J Antimicrob Chemother 1991; 27: Suppl. B: 9–15.PubMedCrossRefGoogle Scholar
  132. 132.
    van Dalen R, Vree TB. Pharmacokinetics of antibiotics in critically ill patients. Intens Care Med 1990; 16 Suppl. 3: S235–8.CrossRefGoogle Scholar
  133. 133.
    Sun H, Maderazo EG, Krusell AR. Serum protein-binding characteristics of vancomycin. Antimicrob Agents Chemother 1993; 37: 1132–6.PubMedCrossRefGoogle Scholar
  134. 134.
    St Peter WL, Redic-Kill KA, Halstenson CE. Clinical pharmacokinetics of antibiotics in patients with impaired renal function. Clin Pharmacokinet 1992; 22: 169–210.PubMedCrossRefGoogle Scholar
  135. 135.
    Elston AC, Bayliss MK, Park GR. Effect of renal failure on drug metabolism by the liver. Br J Anaesth 1993; 71: 282–90.PubMedCrossRefGoogle Scholar
  136. 136.
    Slugg PH, Haug MT, Pippenger CE. Ranitidine pharmacokinetics and adverse central nervous system reactions. Arch Intern Med 1992; 152: 2325–9.PubMedCrossRefGoogle Scholar
  137. 137.
    Charbonneau P, Harding I, Garaud JJ, et al. Teicoplanin: a welltolerated and easily administered alternative to vancomycin for gram-positive infections in intensive care patients. Intens Care Med 1994; 20 Suppl. 4: S35–42.CrossRefGoogle Scholar
  138. 138.
    Hofmann W, Kroh U, Lennartz H. Infection-induced change in the pharmacokinetics of cefotaxime: dose calculation in multiple organ failure and relevance of score systems. Klin Wochenschr 1991; 69 Suppl. 26: 32–5.PubMedGoogle Scholar
  139. 139.
    van Dalen R, Vree TB, Baars AM, et al. Dosage adjustment for ceftazidime in patients with impaired renal function. Eur J Clin Pharmacol 1986; 30: 597–605.PubMedCrossRefGoogle Scholar
  140. 140.
    Bressolle F, Gouby A, Martinez JM, et al. Population pharmacokinetics of amikacin in critically ill patients. Antimicrob Agents Chemother 1996; 40: 1682–9.PubMedGoogle Scholar
  141. 141.
    Debord J, Pessis C, Voultoury JC, et al. Population pharmacokinetics of amikacin in intensive care unit patients studied by NPEM algorithm. Fund Clin Pharmacol 1995; 9: 57–61.CrossRefGoogle Scholar
  142. 142.
    Gauthier T, Lacarelle B, Marre F, et al. Predictive performance of two software packages (USC*PACK PC and Abbott PKS system) for the individualization of amikacin dosage in intensive care unit patients. Int J B iomed Comput 1994; 36: 131–4.CrossRefGoogle Scholar
  143. 143.
    Garraffo R, Iliadis A, Cano JP, et al. Application of Bayesian estimation for the prediction of an appropriate dosage regimen of amikacin. J Pharm Sci 1989; 78: 753–7.PubMedCrossRefGoogle Scholar
  144. 144.
    Lenert LA, Klostermann H, Coleman RW, et al. Practical computer-assisted dosing for aminoglycoside antibiotics. Antimicrob Agents Chemother 1992; 36: 1230–5.PubMedCrossRefGoogle Scholar
  145. 145.
    Kumana CR, Yuen KY. Parenteral aminoglycoside therapy: selection, administration and monitoring [review]. Drugs 1994; 47: 902–13.PubMedCrossRefGoogle Scholar
  146. 146.
    Hickling K, Begg E, Moore ML. A prospective randomised trial comparing individualised pharmacokinetic dosage prediction for aminoglycosides with prediction based on estimated creatinine clearance in critically ill patients. Intens Care Med 1989; 15: 233–7.CrossRefGoogle Scholar
  147. 147.
    Pryka RD, Rodvold KA, Erdman SM. An updated comparison of drug dosing methods. IV: vancomycin. Clin Pharmacokinet 1991; 20: 463–76.PubMedCrossRefGoogle Scholar
  148. 148.
    Reed RL, Wu AH, Miller-Crotchett P, et al. Pharmacokinetic monitoring of nephrotoxic antibiotics in surgical intensive care patients. J Trauma 1989; 29: 1462–8.PubMedCrossRefGoogle Scholar
  149. 149.
    Zarowitz BJ, Robert S, Mlynarek M, et al. Determination of gentamicin pharmacokinetics by bioelectrical impedance in critically ill adults. J Clin Pharmacol 1993; 33: 562–7.PubMedGoogle Scholar
  150. 150.
    Jelliffe RW, Iglesias T, Hurst AK, et al. Individualising gentamicin dosage regimens: a comparative review of selected models, data fitting methods and monitoring strategies [review]. Clin Pharmacokinet 1991; 21: 461–78.PubMedCrossRefGoogle Scholar
  151. 151.
    Notterman DA, Greenwald BM, Moran F, et al. Dopamine clearance in critically ill infants and children: effect of age and organ system dysfunction. Clin Pharmacol Ther 1990; 48: 138–47.PubMedCrossRefGoogle Scholar
  152. 152.
    Marik PE. Aminoglycoside volume of distribution and illness severity in critically ill septic patients. Anaesth Intens Care 1993; 21: 172–3.Google Scholar
  153. 153.
    Lacarelle B, Granthil C, Manelli JC, et al. Evaluation of a Bayesian method of amikacin dosing in intensive care unit patients with normal or impaired renal function. Ther Drug Monit 1987; 9: 154–60.PubMedCrossRefGoogle Scholar
  154. 154.
    Armendariz E, Chelluri L, Ptachcinski R. Pharmacokinetics of amikacin during continuous veno-venous hemofiltration. Crit Care Med 1990; 18: 675–6.PubMedCrossRefGoogle Scholar
  155. 155.
    Triginer C, Izquierdo I, Fernandez R, et al. Gentamicin volume of distribution in critically ill septic patients. Intens Care Med 1990; 16: 303–6.CrossRefGoogle Scholar
  156. 156.
    Dasta JF, Armstrong DK. Variability in aminoglycoside pharmacokinetics in critically ill surgical patients. Crit Care Med 1988; 16: 327–30.PubMedCrossRefGoogle Scholar
  157. 157.
    Benet LZ, Zech K. Pharmacokinetics: a relevant factor for the choice of a drug? Aliment Pharmacol Ther 1994; 8 Suppl. 1: 25–32.PubMedGoogle Scholar
  158. 158.
    Martin C, Thomachot L, Albanese J. Clinical pharmacokinetics of cefotetan. Clin Pharmacokinet 1994; 26: 248–58.PubMedCrossRefGoogle Scholar
  159. 159.
    Rondanelli R, Dionigi RV, Regazzi MB, et al. Ceftazidime in the treatment of Pseudomonas infections in intensive-care patients. Int J Clin Pharmacol Ther Toxicol 1986; 24: 457–9.PubMedGoogle Scholar
  160. 160.
    Strenkoski LC, Nix DE. Cefpirome clinical pharmacokinetics. Clin Pharmacokinet 1993; 25: 263–73.PubMedCrossRefGoogle Scholar
  161. 161.
    Heinemeyer G, Link J, Weber W, et al. Clearance of ceftriaxone in critical care patients with acute renal failure. Intens Care Med 1990; 16: 448–53.CrossRefGoogle Scholar
  162. 162.
    Mattie H. Clinical pharmacokinetics of aztreonam: an update. Clin Pharmacokinet 1994; 26: 99–106.PubMedCrossRefGoogle Scholar
  163. 163.
    Vos MC, Vincent HH, Yzerman EP. Clearance of imipenem/cilastatin in acute renal failure patients treated by continuous hemodiafiltration (CAVHD). Intens Care Med 1992; 18: 282–5.CrossRefGoogle Scholar
  164. 164.
    Ambrose PJ. Clinical pharmacokinetics of chloramphenicol and chloramphenicol succinate. Clin Pharmacokinet 1984; 9: 222–38.PubMedCrossRefGoogle Scholar
  165. 165.
    Murphy S, Pinney RJ. Teicoplanin or vancomycin in the treatment of gram-positive infections? J Clin Pharm Ther 1995; 20: 5–11.PubMedCrossRefGoogle Scholar
  166. 166.
    Hillaire-Buys D, Peyriere H, Lobjoie E, et al. Influence of arterio-venous haemofiltration on teicoplanin elimination. Br J Clin Pharmacol 1995; 40: 95–7.PubMedCrossRefGoogle Scholar
  167. 167.
    Wolter K, Claus M, Wagner K, et al. Teicoplanin pharmacokinetics and dosage recommendations in chronic hemodialysis patients and in patients undergoing continuous veno-venous hemodialysis. Clin Nephrol 1994; 42: 389–97.PubMedGoogle Scholar
  168. 168.
    Brogden RN, Peters DH. Teicoplanin: a reappraisal of its antimicrobial activity, pharmacokinetic properties and therapeutic efficacy. Drugs 1994; 47: 823–54.PubMedCrossRefGoogle Scholar
  169. 169.
    Santre C, Leroy O, Simon M, et al. Pharmacokinetics of vancomycin during continuous hemodiafiltration. Intens Care Med 1993; 19: 347–50.CrossRefGoogle Scholar
  170. 170.
    Mazzei T, Surrenti C, Novelli A, et al. Pharmacokinetics of azithromycin in patients with impaired hepatic function. J Antimicrob Chemother 1993; 31 Suppl. E: 57–63.PubMedCrossRefGoogle Scholar
  171. 171.
    Dunn CJ, Barradell LB. Azithromycin: a review of its pharmacological properties and use as a 3-day therapy in respiratory tract infections. Drugs 1996; 51: 483–505.PubMedCrossRefGoogle Scholar
  172. 172.
    Plaisance KI, Drusano GL, Forrest A, et al. Pharmacokinetic evaluation of two dosage regimens of clindamycin phosphate. Antimicrob Agents Chemother 1989; 33: 618–20.PubMedCrossRefGoogle Scholar
  173. 173.
    Sorgel F, Kinzig M. Pharmacokinetic characteristics of piperacillin/tazobactam. Intens Care Med 1994; 20 Suppl. 3: S14–20.CrossRefGoogle Scholar
  174. 174.
    Johnson CA, Halstenson CE, Kelloway JS, et al. Single-dose pharmacokinetics of piperacillin and tazobactam in patients with renal disease. Clin Pharmacol Ther 1992; 51: 32–41.PubMedCrossRefGoogle Scholar
  175. 175.
    Forrest A, Ballow CH, Nix DE, et al. Development of a population pharmacokinetic model and optimal sampling strategies for intravenous ciprofloxacin. Antimicrob Agents Chemother 1993; 37: 1065–72.PubMedCrossRefGoogle Scholar
  176. 176.
    Lipman J, Scribante J, Pinder M, et al. Serum levels of ciprofloxacin (400 mg IVI Q8H) in severe sepsis. Intens Care Med 1996; 22: S392.Google Scholar
  177. 177.
    Hess MM, Boucher BA, Laizure SC, et al. Trimethoprimsulfamethoxazole pharmacokinetics in trauma patients. Pharmacotherapy 1993; 13: 602–6.PubMedGoogle Scholar
  178. 178.
    Raghuram TC, Krishnaswamy K. Pharmacokinetics of tetracycline in nutritional edema. Chemotherapy 1982; 28: 428–33.PubMedCrossRefGoogle Scholar
  179. 179.
    Houghton GW, Dennis MJ, Gabriel R. Pharmacokinetics of metronidazole in patients with varying degrees of renal failure. Br J Clin Pharmacol 1985; 19: 203–9.PubMedCrossRefGoogle Scholar
  180. 180.
    Ljungberg B, Nilsson-Ehle I, Ursing B. Metronidazole: pharmacokinetic observations in severely ill patients. J Antimicrob Chemother 1984; 14: 275–83.PubMedCrossRefGoogle Scholar
  181. 181.
    Lau AH, Lam NP, Piscitelli SC, et al. Clinical pharmacokinetics of metronidazole and other nitroimidazole anti-infectives. Clin Pharmacokinet 1992; 23: 328–64.PubMedCrossRefGoogle Scholar
  182. 182.
    Israili ZH, Rogers CM, el-Attar H. Pharmacokinetics of antituberculosis drugs in patients. J Clin Pharmacol 1987; 27: 78–83.PubMedCrossRefGoogle Scholar
  183. 183.
    Gallis HA, Drew RH, Pickard WW. Amphotericin B: 30 years of clinical experience. Revs Infect Dis 1990; 12: 308–29.CrossRefGoogle Scholar
  184. 184.
    Kowalsky SF, Dixon DM. Fluconazole: a new antifungal agent [review]. Clin Pharm 1991; 10: 179–94.PubMedGoogle Scholar
  185. 185.
    Nicolau DP, Crowe H, Nightingale CH, et al. Effect of continuous arteriovenous hemodiafiltration on the pharmacokinetics of fluconazole. Pharmacotherapy 1994; 14: 502–5.PubMedGoogle Scholar
  186. 186.
    Fabris A, Pellanda MV, Gardin C, et al. Pharmacokinetics of antifungal agents. Peritoneal Dialysis International 1993; 13 Suppl. 2: S380–2.PubMedGoogle Scholar
  187. 187.
    Boelaert J, Schurgers M, Matthys E, et al. Itraconazole pharmacokinetics in patients with renal dysfunction. Antimicrob Agents Chemother 1988; 32: 1595–7.PubMedCrossRefGoogle Scholar
  188. 188.
    Cauwenbergh G. Pharmacokinetics of itraconazole [review, in German]. Mycoses 1994; 37 Suppl. 2: 27–33.PubMedCrossRefGoogle Scholar
  189. 189.
    Lampe D, Kreutzberg S, Prumke HJ. Therapeutic drug monitoring of itraconazole: a report of experiences [in German]. Mycoses 1994; 37 Suppl. 2: 34–9.PubMedGoogle Scholar
  190. 190.
    Almond MK, Fan S, Dhillon S, et al. Avoiding acyclovir neurotoxicity in patients with chronic renal failure undergoing haemodialysis. Nephron 1995; 69: 428–32.PubMedCrossRefGoogle Scholar
  191. 191.
    O’Brien JJ, Campoli-Richards DM. Acyclovir: an updated review of its antiviral activity, pharmacokinetic properties and therapeutic efficacy. Drugs 1989; 37: 233–309.PubMedCrossRefGoogle Scholar
  192. 192.
    Laskin OL. Clinical pharmacokinetics of acyclovir. Clin Pharmacokinet 1983; 8: 187–201.PubMedCrossRefGoogle Scholar
  193. 193.
    Morse GD, Shelton MJ, O’Donnell AM. Comparative pharmacokinetics of antiviral nucleoside analogues. Clin Pharmacokinet 1993; 24: 101–23.PubMedCrossRefGoogle Scholar
  194. 194.
    Aweeka FT, Gambertoglio JG, Kramer F, et al. Foscarnet and ganciclovir pharmacokinetics during concomitant or alternating maintenance therapy for AIDS-related cytomegalovirus retinitis. Clin Pharmacol Ther 1995; 57: 403–12.PubMedCrossRefGoogle Scholar
  195. 195.
    Markham A, Faulds D. Ganciclovir: an update of its therapeutic use in cytomegalovirus infection. Drugs 1994; 48: 455–84.PubMedCrossRefGoogle Scholar
  196. 196.
    Benet LZ, Oie S, Schwartz JB. Appendix II: design and optimisation of dosage regimens; pharmacokinetic data. In: Hardman JG, Limbird LE, Molinoff PB, editor. Goodman and Gilman’s the pharmacological basis of therapeutics. New York: McGraw-Hill, 1996: 1707–92.Google Scholar
  197. 197.
    Badewitz-Dodd LH, editor. MIMS Australia. Sydney: Medi Media, 1996.Google Scholar
  198. 198.
    Reynolds JEF, editor. Martindale: the extra pharmacopoeia. London: The Pharmaceutical Press, 1996.Google Scholar
  199. 199.
    Mazzei T, Novelli A, De Lalla F, et al. Tissue penetration and pulmonary disposition of tobramycin. J Chemother 1995; 7: 363–70.PubMedGoogle Scholar
  200. 200.
    Santre C, Georges H, Jacquier JM, et al. Amikacin levels in bronchial secretions of 10 pneumonia patients with respiratory support treated once daily versus twice daily. Antimicrob Agents Chemother 1995; 39: 264–7.PubMedCrossRefGoogle Scholar
  201. 201.
    Barclay ML, Begg EJ, Hickling KG. What is the evidence for once-daily aminoglycoside therapy? Clin Pharmacokinet 1994; 27: 32–48.PubMedCrossRefGoogle Scholar
  202. 202.
    Nicolau DP, Freeman CD, Belliveau PP, et al. Experience with a once-daily aminoglycoside program administered to 2,184 adult patients. Antimicrob Agents Chemother 1995; 39: 650–5.PubMedCrossRefGoogle Scholar
  203. 203.
    Novelli A, Mazzei T, Fallani S, et al. In vitro postantibiotic effect and postantibiotic leukocyte enhancement of tobramycin. J Chemother 1995; 7: 355–62.PubMedGoogle Scholar
  204. 204.
    Barza M, Ioannidis JP, Cappelleri JC, et al. Single or multiple daily doses of aminoglycosides: a meta-analysis. BMJ 1996; 312: 338–45.PubMedCrossRefGoogle Scholar
  205. 205.
    Marra F, Bonewald LF, Park-Snyder S, et al. Characterization and regulation of the latent transforming growth factor-beta complex secreted by vascular pericytes. J Cell Physiol 1996; 166: 537–46.PubMedCrossRefGoogle Scholar
  206. 206.
    Hickling KG, Begg EJ, Perry RE, et al. Serum aminoglycoside clearance is predicted as poorly by renal aminoglycoside clearance as by creatinine clearance in critically ill patients. Crit Care Med 1991; 19: 1041–7.PubMedCrossRefGoogle Scholar
  207. 207.
    Watling SM, Kisor DF. Population pharmacokinetics: development of a medical intensive care unit-specific gentamicin dosing nomogram. Ann Pharmacother 1993; 27: 151–4.PubMedGoogle Scholar
  208. 208.
    Debord J, Voultoury JC, Lachatre G, et al. Pharmacokinetics and dosage regimens of amikacin in intensive care unit patients. Int J Biomed Comput 1994; 36: 135–7.PubMedCrossRefGoogle Scholar
  209. 209.
    Buylaert WA, Herregods LL, Mortier EP, et al. Cardiopulmonary bypass and the pharmacokinetics of drugs: an update. Clin Pharmacokinet 1989; 17: 10–26.PubMedCrossRefGoogle Scholar
  210. 210.
    Miglioli PA, Merlo F, Campanile F, et al. Effects of cardiopulmonary bypass on teicoplanin serum disposition. Int J Clin Pharmacol Res 1995; 15: 23–5.PubMedGoogle Scholar
  211. 211.
    Pryka RD, Rodvold KA, Ting W, et al. Effects of cardiopulmonary bypass surgery on intravenous ciprofloxacin disposition. Antimicrob Agents Chemother 1993; 37: 2106–11.PubMedCrossRefGoogle Scholar
  212. 212.
    Nau R, Prange HW, Muth P, et al. Passage of cefotaxime and ceftriaxone into cerebrospinal fluid of patients with uninflamed meninges. Antimicrob Agents Chemother 1993; 37: 1518–24.PubMedCrossRefGoogle Scholar
  213. 213.
    Young RJ, Lipman J, Gin T, et al. Do the recommended ceftazidime regimens maintain optimal plasma concentrations in critically ill patients?. Intens Care Med 1996; 22 Suppl. 3: S392.Google Scholar
  214. 214.
    Mouton JW, den Hollander JG. Killing of Pseudomonas aeruginosa during continuous and intermittent infusion of ceftazidime in an in vitro pharmacokinetic model. Antimicrob Agents Chemother 1994; 38: 931–6.PubMedCrossRefGoogle Scholar
  215. 215.
    Stoeckel K, Koup JR. Pharmacokinetics of ceftriaxone in patients with renal and liver insufficiency and correlations with a physiologic nonlinear protein binding model. Am J Med 1984; 77: 26–32.PubMedGoogle Scholar
  216. 216.
    Yuk-Choi JH, Nightingale CH, Williams Jr TW. Considerations in dosage selection for third generation cephalosporins. Clin Pharmacokinet 1992; 22: 132–43.PubMedCrossRefGoogle Scholar
  217. 217.
    Losno Garcia R, Santivanez V, Battilana CA. Single-dose pharmacokinetics of ceftriaxone in patients with end-stage renal disease and hemodialysis [published erratum appears in Chemotherapy 1989; 35 (3): 235]. Chemotherapy 1988; 34: 261–6.PubMedCrossRefGoogle Scholar
  218. 218.
    Keller E, Bohler J, Busse-Grawitz A, et al. Single dose kinetics of piperacillin during continuous arteriovenous hemodialysis in intensive care patients. Clin Nephrol 1995; 43 Suppl. 1: S20–3.PubMedGoogle Scholar
  219. 219.
    Fabre D, Bressolle F, Gomeni R, et al. Steady-state pharmacokinetics of ciprofloxacin in plasma from patients with nosocomial pneumonia: penetration of the bronchial mucosa. Antimicrob Agents Chemother 1991; 35: 2521–5.PubMedCrossRefGoogle Scholar
  220. 220.
    Schwartz J, Jauregui L, Lettieri J, et al. Impact of ciprofloxacin on theophylline clearance and steady-state concentrations in serum. Antimicrob Agents Chemother 1988; 32: 75–7.PubMedCrossRefGoogle Scholar
  221. 221.
    Yuen GJ, Drusano GL, Forrest A, et al. Prospective use of optimal sampling theory: steady-state ciprofloxacin pharmacokinetics in critically ill trauma patients. Clin Pharmacol Ther 1989; 46: 451–7.PubMedCrossRefGoogle Scholar
  222. 222.
    Buijk SLCE, Van den Berg MFQ, Mouton JW, et al. Bioavailability of ciprofloxacin after multiple oral and intravenous doses in intensive care patients with gram negative intra-abdominal infections. Intens Care Med 1996; 22 Suppl. 3: S391.CrossRefGoogle Scholar
  223. 223.
    Yuk JH, Nightingale CH, Sweeney KR, et al. Relative bioavailability in healthy volunteers of ciprofloxacin administered through a nasogastric tube with and without enterai feeding. Antimicrob Agents Chemother 1989; 33: 1118–20.PubMedCrossRefGoogle Scholar
  224. 224.
    Mueller BA, Brierton DG, Abel SR, et al. Effect of enterai feeding with ensure on oral bioavailabilities of ofloxacin and ciprofloxacin. Antimicrob Agents Chemother 1994; 38: 2101–5.PubMedCrossRefGoogle Scholar
  225. 225.
    Frost RW, Lasseter KC, Noe AJ, et al. Effects of aluminum hydroxide and calcium carbonate antacids on the bioavailability of ciprofloxacin. Antimicrob Agents Chemother 1992; 36: 830–2.PubMedCrossRefGoogle Scholar
  226. 226.
    Bressolle F, Goncalves F, Gouby A, et al. Pefloxacin clinical pharmacokinetics. Clin Pharmacokinet 1994; 27: 418–46.PubMedCrossRefGoogle Scholar
  227. 227.
    Lamp KC, Bailey EM, Rybak MJ. Ofloxacin clinical pharmacokinetics [review]. Clin Pharmacokinet 1992; 22: 32–46.PubMedCrossRefGoogle Scholar
  228. 228.
    Alarabi AA, Cars O, Danielson BG, et al. Pharmacokinetics of intravenous imipenem/cilastatin during intermittent haemofiltration. J Antimicrob Chemother 1990; 26: 91–8.PubMedCrossRefGoogle Scholar
  229. 229.
    Clissold SP, Todd PA, Campoli-Richards DM. Imipenem/cilastatin: a review of its antibacterial activity, pharmacokinetic properties and therapeutic efficacy. Drugs 1987; 33: 183–241.PubMedCrossRefGoogle Scholar
  230. 230.
    Drusano GL, Hutchison M. The pharmacokinetics of meropenem. Scand J Infect Dis 1995; Suppl. 96: 11–6.Google Scholar
  231. 231.
    Mouton JW, van den Anker JN. Meropenem clinical pharmacokinetics. Clin Pharmacokinet 1995; 28: 275–86.PubMedCrossRefGoogle Scholar
  232. 232.
    Ackerman BH, Vannier AM. Necessity of a loading dose when using vancomycin in critically ill patients. J Antimicrob Chemother 1992; 29: 460–1.PubMedCrossRefGoogle Scholar
  233. 233.
    Lamer C, de Beco V, Soler P, et al. Analysis of vancomycin entry into pulmonary lining fluid by bronchoalveolar lavage in critically ill patients. Antimicrob Agents Chemother 1993; 37: 281–6.PubMedCrossRefGoogle Scholar
  234. 234.
    Luer MS, Hatton J. Vancomycin administration into the cerebrospinal fluid: a review. Ann Pharmacother 1993; 27: 912–21.PubMedGoogle Scholar
  235. 235.
    Leader WG, Chandler MH, Castiglia M. Pharmacokinetic optimisation of vancomycin therapy. Clin Pharmacokinet 1995; 28: 327–42.PubMedCrossRefGoogle Scholar
  236. 236.
    Trautmann M, Wiedeck H, Ruhnke M, et al. Teicoplanin: 10 years of clinical experience. Infection 1994; 22: 430–6.PubMedCrossRefGoogle Scholar
  237. 237.
    Mann HJ, Townsend RJ, Fuhs DW, et al. Decreased hepatic clearance of clindamycin in critically ill patients with sepsis. Clin Pharm 1987; 6: 154–9.PubMedGoogle Scholar
  238. 238.
    Periti P, Mazzei T, Mini E, et al. Pharmacokinetic drug interactions of macrolides. Clin Pharmacokinet 1992; 23: 106–31.PubMedCrossRefGoogle Scholar
  239. 239.
    Singlas E. Clinical pharmacokinetics of azithromycin. Pathol Biol 1995; 43: 505–11.PubMedGoogle Scholar
  240. 240.
    Chopra I, Hawkey PM, Hinton M. Tetracyclines, molecular and clinical aspects. J Antimicrob Chemother 1992; 29: 245–77.PubMedCrossRefGoogle Scholar
  241. 241.
    Neuvonen PJ, Penttila O. Interaction between doxycycline and barbiturates. BMJ 1974; I: 535–6.CrossRefGoogle Scholar
  242. 242.
    Penttila O, Neuvonen PJ, Aho K, et al. Interaction between doxycycline and some antiepileptic drugs. BMJ 1974; 2: 470–2.PubMedCrossRefGoogle Scholar
  243. 243.
    Plaisance KI, Quintiliani R, Nightingale CH. The pharmacokinetics of metronidazole and its metabolites in critically ill patients. J Antimicrob Chemother 1988; 21: 195–200.PubMedCrossRefGoogle Scholar
  244. 244.
    Kerremans AL. Cytochrome P450 isoenzymes: importance for the internist. Neth J Med 1996; 48: 237–43.PubMedCrossRefGoogle Scholar
  245. 245.
    Chandler MH, Toler SM, Rapp RP, et al. Multiple-dose pharmacokinetics of concurrent oral ciprofloxacin and rifampin therapy in elderly patients. Antimicrob Agents Chemother 1990; 34: 442–7.PubMedCrossRefGoogle Scholar
  246. 246.
    Debruyne D, Ryckelynck JP. Clinical pharmacokinetics of fluconazole. Clin Pharmacokinet 1993; 24: 10–27.PubMedCrossRefGoogle Scholar
  247. 247.
    Thaler F, Bernard B, Tod M, et al. Fluconazole penetration in cerebral parenchyma in humans at steady state. Antimicrob Agents Chemother 1995; 39: 1154–6.PubMedCrossRefGoogle Scholar
  248. 248.
    Janknegt R, de Marie S, Bakker-Woudenberg IA, et al. Liposomal and lipid formulations of amphotericin B: clinical pharmacokinetics. Clin Pharmacokinet 1992; 23: 279–91.PubMedCrossRefGoogle Scholar
  249. 249.
    Hoffman BB, Lefkowitz RJ. Catecholamines, sympathomimetic drugs, and adrenergic receptor antagonists. In: Hardman JG, Limbird LE, Molinoff PB, editors. Goodman & Gilman’s the pharmacological basis of therapeutics. New York: McGraw-Hill, 1996: 199–248.Google Scholar
  250. 250.
    Kulka PJ, Tryba M. Inotropic support of the critically ill patient: a review of the agents. Drugs 1993; 45: 654–67.PubMedCrossRefGoogle Scholar
  251. 251.
    Lisbom A, Van der Salm TJ, Visner MS. Management of the postoperative cardiac surgical patient. In: Rippe JM, Irwin RS, Fink MP, editors. Intensive care medicine. Boston: Little Brown & Company, 1996: 1764–81.Google Scholar
  252. 252.
    Sumikawa K, Hayashi Y, Yamatodani A, et al. Contribution of the lungs to the clearance of exogenous dopamine in humans. Anesth Analg 1991; 72: 622–6.PubMedCrossRefGoogle Scholar
  253. 253.
    Ratge D, Gehrke A, Melzner I, et al. Free and conjugated catecholamines in human plasma during physical exercise. Clin Exp Pharmacol Physiol 1986; 13: 543–53.PubMedCrossRefGoogle Scholar
  254. 254.
    Le Corre P, Malledant Y, Tanguy M, et al. Steady-state pharmacokinetics of dopamine in adult patients. Crit Care Med 1993; 21: 1652–7.PubMedCrossRefGoogle Scholar
  255. 255.
    Eldadah MK, Schwartz PH, Harrison R, et al. Pharmacokinetics of dopamine in infants and children. Crit Care Med 1991; 19: 1008–11.PubMedCrossRefGoogle Scholar
  256. 256.
    Bhatt-Mehta V, Nahata MC, McClead RE, et al. Dopamine pharmacokinetics in critically ill newborn infants. Eur J Clin Pharmacol 1991; 40: 593–7.PubMedGoogle Scholar
  257. 257.
    Bhatt-Mehta V, Nahata MC. Dopamine and dobutamine in pediatric therapy. Pharmacotherapy 1989; 9: 303–14.PubMedGoogle Scholar
  258. 258.
    Zaritsky A, Lotze A, Stull R, et al. Steady-state dopamine clearance in critically ill infants and children. Crit Care Med 1988; 16: 217–20.PubMedCrossRefGoogle Scholar
  259. 259.
    Padbury JF, Agata Y, Baylen BG, et al. Pharmacokinetics of dopamine in critically ill newborn infants. J Paediatr 1990; 117: 472–6.CrossRefGoogle Scholar
  260. 260.
    Klem C, Dasta JF, Reilley TE, et al. Variability in dobutamine pharmacokinetics in unstable critically ill surgical patients. Crit Care Med 1994; 22: 1926–32.PubMedGoogle Scholar
  261. 261.
    Kates RE, Leier CV. Dobutamine pharmacokinetics in severe heart failure. Clin Pharmacol Ther 1978; 24: 537–41.PubMedGoogle Scholar
  262. 262.
    Klem C, Dasta JF, Reilley TE, et al. Pulmonary extraction of dobutamine in critically ill surgical patients. Anesth Analg 1995; 81: 287–91.PubMedGoogle Scholar
  263. 263.
    Maynard ND, Bihari DJ, Dalton RN, et al. Increasing splanchnic blood flow in the critically ill. Chest 1995; 108: 1648–54.PubMedCrossRefGoogle Scholar
  264. 264.
    Gray PA, Jones T, Park GR. Blood concentrations of dopexamine in patients during and after orthotopic liver transplantation. Br J Clin Pharmacol 1994; 37: 89–92.PubMedCrossRefGoogle Scholar
  265. 265.
    Neale MG, Baker P, Brown K, et al. Pharmacokinetics and metabolism of dopexamine in man. Acta Pharmacol Toxicol 1986; 59 Suppl. V: 69.Google Scholar
  266. 266.
    Stroshane RM, Koss RF, Biddlecome CE, et al. Oral and intravenous pharmacokinetics of milrinone in human volunteers. J Pharm Sci 1984; 73: 1438–41.PubMedCrossRefGoogle Scholar
  267. 267.
    Hamilton RA, Kowalsky SF, Wright EM, et al. Effect of the acetylator phenotype on amrinone pharmacokinetics. Clin Pharmacol Ther 1986; 40: 615–9.PubMedCrossRefGoogle Scholar
  268. 268.
    Steinberg C, Notterman DA. Pharmacokinetics of cardiovascular drugs in children: inotropes and vasopressors. Clin Pharmacokinet 1994; 27: 345–67.PubMedCrossRefGoogle Scholar
  269. 269.
    Baim DS. Effect of phosphodiesterase inhibition on myocardial oxygen consumption and coronary blood flow. Am J Cardiol 1989; 63: 23A–6A.PubMedCrossRefGoogle Scholar
  270. 270.
    Ross MP, Allen-Webb EM, Pappas JB, et al. Amrinone-associated thrombocytopenia: pharmacokinetic analysis. Clin Pharmacol Ther 1993; 53: 661–7.PubMedCrossRefGoogle Scholar
  271. 271.
    Butterworth JF, Hines RL, Royster RL, et al. A pharmacokinetic and pharmacodynamic evaluation of milrinone in adults undergoing cardiac surgery. Anesth Analg 1995; 81: 783–92.PubMedGoogle Scholar
  272. 272.
    Bailey JM, Levy JH, Kikura M, et al. Pharmacokinetics of intravenous milrinone in patients undergoing cardiac surgery. Anesthesiology 1994; 81: 616–22.PubMedCrossRefGoogle Scholar
  273. 273.
    Prielipp RC, MacGregor DA, Butterworth JF, et al. Pharmacodynamics and pharmacokinetics of milrinone administration to increase oxygen delivery in critically ill patients. Chest 1996; 109: 1291–301.PubMedCrossRefGoogle Scholar
  274. 274.
    Ostro MJ. Pharmacodynamics and pharmacokinetics of parenteral histamine (H2)-receptor antagonists. Am J Med 1987; 83: 15–22.PubMedCrossRefGoogle Scholar
  275. 275.
    Gladziwa U, Klotz U. Pharmacokinetics and pharmacodynamics of H2 receptor antagonists in patients with renal insufficiency. Clin Pharmacokinet 1993; 24: 319–32.PubMedCrossRefGoogle Scholar
  276. 276.
    Nation RL, Ilett KF, Tjokrosetio R, et al. Pharmacokinetics of cimetidine in critically ill patients. Eur J Clin Pharmacol 1984; 26: 341–6.PubMedCrossRefGoogle Scholar
  277. 277.
    Pancorbo S, Bubrick MP, Chin TW, et al. Cimetidine dynamics after single intravenous doses. Clin Pharmacol Ther 1982; 31: 83–8.PubMedCrossRefGoogle Scholar
  278. 278.
    Ilett KF, Nation RL, Tjokrosetio R, et al. Pharmacokinetics of ranitidine in critically ill patients. Br J Clin Pharmacol 1986; 21: 279–88.PubMedCrossRefGoogle Scholar
  279. 279.
    Geus WP, Vinks AATMM, Lamers CBHW. Pharmacokinetics of ranitidine in a homogeneous population of intensive care unit patients during intermittent and continuous administration. Scand J Gastroenterol 1992; 27 Suppl. 194: 55–8.CrossRefGoogle Scholar
  280. 280.
    Yate PM, Arnold RW, Flynn PJ, et al. Atracurium infusions in the intensive care unit including measurement of laudanosine [abstract]. Anesthesiology 1992; 63: A313.CrossRefGoogle Scholar
  281. 281.
    Andersson T, Olsson R, Regardh CG, et al. Pharmacokinetics of [14C]omeprazole in patients with liver cirrhosis. Clin Pharmacokinet 1993; 24: 71–8.PubMedCrossRefGoogle Scholar
  282. 282.
    Andersson T, Andren K, Cederberg C, et al. Pharmacokinetics and bioavailability of omeprazole after single and repeated oral administration in healthy subjects. Br J Clin Pharmacol 1990; 29: 557–63.PubMedCrossRefGoogle Scholar
  283. 283.
    Cederberg C, Andersson T, Skanberg I. Omeprazole: phannacokinetics and metabolism in man. Scand J Gastroenterol 1989; 166 Suppl.: 33–40.CrossRefGoogle Scholar
  284. 284.
    Delhotal-Landes B, Flouvat B, Duchier J, et al. Pharmacokinetics of lansoprazole in patients with renal or liver disease of varying severity. Eur J Clin Pharmacol 1993; 45: 367–71.PubMedCrossRefGoogle Scholar
  285. 285.
    Wilde MI, McTavish D. Omeprazole: an update of its phannacology and therapeutic use in acid-related disorders. Drugs 1994; 48: 91–132.PubMedCrossRefGoogle Scholar
  286. 286.
    Pue MA, Laroche J, Meineke I, et al. Pharmacokinetics of pantoprazole following single intraveous and oral administration to healthy male subjects. Eur J Clin Pharmacol 1993; 44: 575–8.PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 1998

Authors and Affiliations

  • Bradley M. Power
    • 1
  • A. Millar Forbes
    • 1
    • 2
  • P. Vernon van Heerden
    • 1
  • Kenneth F. Ilett
    • 2
    • 3
  1. 1.Department of Intensive CareSir Charles Gairdner HospitalNedlandsAustralia
  2. 2.Department of PharmacologyUniversity of Western AustraliaNedlandsAustralia
  3. 3.Clinical Pharmacology and Toxicology LaboratoryThe Western Australian Center for Pathology and Medical ResearchNedlandsAustralia

Personalised recommendations