Clinical Pharmacokinetics

, Volume 33, Issue 5, pp 344–400

Pharmacokinetic and Pharmacodynamic Principles of Illicit Drug Use and Treatment of Illicit Drug Users

Review Article Disease Management


Many clinicians are confronted by the use of illicit drugs on a daily basis. The unsanctioned use of opioids, psychostimulants, benzodiazepines, alcohol and nicotine is a major cause of morbidity and mortality. Multiple factors have inhibited the scientific study of these agents including prohibition, public denial and lack of commercial interests. In dealing with problems related to these drugs, clinicians need a scientific understanding of their pharmacology, quantifiable effects and potential adverse effects.

Illicit drug users select drugs with particular pharmacokinetic parameters and pharmacodynamic properties. Generally, rapid absorption, rapid entry into the central nervous system, high bioavailability, short half-life, small volume of distribution and high free drug clearance are pharmacokinetic characteristics which predict a high potential for harmful use because these factors increase positive reinforcement. Drug users adapt the method and route of drug administration to optimise the delivery of the drug to the brain while attempting to maximise the bioavailability of the drug. Inhalation and smoking are the routes of administration which allow the most rapid delivery of drug to the brain, while intravenous injection maximises the bioavailability of an administered drug. Each route of administration results in attendant complications related to mucosal damage, carcinogenesis and risk of infection. Negative reinforcement or withdrawal is a major drive to recurrent use. Many illicit drugs have pharmacological features that promote dependence, including long half-life, low free drug clearance and sufficient drug exposure to allow development of tolerance.

The preventive or reductive pharmacotherapeutics of illicit drug use makes use of several subsets of agents: those which act on the same receptor or system as the illicit drug (such as methadone), those which produce an adverse reaction on consumption of the illicit drug (such as disulfiram) and those which symptomatically attenuate illicit drug withdrawal symptoms (such as clonidine). Many new agents are being trialled as potential preventive or reductive agents. It is important to consider pharmacotherapy as only one potential part of the treatment of illicit drug users.

The complications of illicit drug use present many therapeutic challenges. As with all patients consuming multiple drugs, illicit drug users are prone to developing drug interactions. The most common interactions seen in practice are pharmacodynamic in nature, most often due to the additive effects of different drugs on the central nervous system. However, alcohol, cocaine, disulfiram, methadone and tricyclic antidepressants may be involved in important pharmacokinetic interactions. Of these the effect of long term alcohol consumption in increasing the hepatotoxicity of paracetamol and of cytochrome P450 3A microsomal enzyme stimulating drugs in diminishing the efficacy of methadone are the most commonly encountered.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DiClemente CC, Prochaska JO, Fairhurst SK, et al. The process of smoking cessation: an analysis of precontemplation, contemplation, and preparation stages of change. J Consult Clin Psychol 1991; 59(2): 295–304PubMedGoogle Scholar
  2. 2.
    Farrell M, Ward J, Mattick R, et al. Methodone maintenance treatment in opiate dependence: a review. BMJ 1994; 309(6960): 997–1001PubMedGoogle Scholar
  3. 3.
    Mattick RP, Hall W. A treatment outline for approaches to opioid dependence [National Drug Strategy Monograph. Vol. 2]. Canberra: Australian Government Printing Service, 1993Google Scholar
  4. 4.
    Wodak A. Managing illicit drug use: a practical guide. Drugs 1994; 47(3): 446–57PubMedGoogle Scholar
  5. 5.
    Phillips AG, Fibiger HC. Neuroanatomical bases of intracranial self-stimulation: untangling the Gordian knot. In: Liebman JM, Cooper SJ, editors. The neuropharmacological basis of reward. New York: Oxford University Press, 1989Google Scholar
  6. 6.
    Wise RA. The neurobiology of craving: implications for the understanding and treatment of addiction. J Abnormal Psychol 1988; 97(2): 118–32Google Scholar
  7. 7.
    Moss SJ, Smart TG, Blackstone CD, et al. Functional modulation of GABAA receptors by cAMP-dependent protein phosphorylation. Science 1992; 257(5070): 661–5PubMedGoogle Scholar
  8. 8.
    Sellers EM, Toneatto T, Romach MK, et al. Clinical efficacy of the 5-HT3 antagonist ondansetron in alcohol abuse and dependence. Alcohol Clin Exp Res 1994; 18(4): 879–85PubMedGoogle Scholar
  9. 9.
    Gianoulakis C, de Waele JP. Genetics of alcoholism: role of the endogenous opioid system. Metab Brain Dis 1994; 9(2): 105–31PubMedGoogle Scholar
  10. 10.
    Froehlich JC, Li TK. Recent developments in alcoholism: opioid peptides. Recent Develop Alcohol 1993; 11: 187–205Google Scholar
  11. 11.
    Gawin FH. Neuroleptic reduction of cocaine-induced paranoia but not euphoria? Psychopharmacology 1986; 90(1): 142–3PubMedGoogle Scholar
  12. 12.
    Grunberg NE. Overview: biological processes relevant to drugs of dependence. Addiction 1994; 89(11): 1443–6PubMedGoogle Scholar
  13. 13.
    Nestler EJ. Molecular mechanisms of drug addiction. J Neuroscience 1992; 12(7): 2439–50Google Scholar
  14. 14.
    Nestler EJ, Hope BT, Widnell KL. Drug addiction: a model for the molecular basis of neural plasticity. Neuron 1993; 11(6): 995–1006PubMedGoogle Scholar
  15. 15.
    Nestler EJ. Molecular neurobiology of drug addiction. Neuropsychopharmacology 1994; 11(2): 77–87PubMedGoogle Scholar
  16. 16.
    Nestler EJ. Under siege: the brain on opiates. Neuron 1996; 16(5): 897–900PubMedGoogle Scholar
  17. 17.
    Leshner AI. Molecular mechanisms of cocaine addiction. N Engl J Med 1996; 335(2): 128–9PubMedGoogle Scholar
  18. 18.
    Busto U, Sellers EM. Pharmacokinetic determinants of drug abuse and dependence: a conceptual perspective. Clin Pharmacokinet 1986; 11(2): 144–53PubMedGoogle Scholar
  19. 19.
    Duman RS, Tallman JF, Nestler EJ. Acute and chronic opiate-regulation of adenylate cyclase in brain: specific effects in locus coeruleus. J Pharmacol Exp Ther 1988; 246(3): 1033–9PubMedGoogle Scholar
  20. 20.
    Meunier JC. Opioid receptors, tolerance and dependence. Therapie 1992; 47(6): 495–502PubMedGoogle Scholar
  21. 21.
    Uhl GR, Ryan JP, Schwartz JP. Morphine alters preproenkephalin gene expression. Brain Res 1988; 459(2): 391–7PubMedGoogle Scholar
  22. 22.
    Kennedy C, Henderson G. Mu-opioid receptor inhibition of calcium current: development of homologous tolerance in single SH-SY5Y cells after chronic exposure to morphine in vitro. Mol Pharmacol 1991; 40(6): 1000–5PubMedGoogle Scholar
  23. 23.
    Milligan G. Agonist regulation of cellular G protein levels and distribution: mechanisms and functional implications. Trends Pharmacol Sci 1993; 14(11): 413–8PubMedGoogle Scholar
  24. 24.
    Gossop M, Griffiths P, Powis B, et al. Severity of dependence and route of administration of heroin, cocaine and amphetamines. Br J Addict 1992; 87(11): 1527–36PubMedGoogle Scholar
  25. 25.
    Jones RT. Psychopharmacology of cocaine. In: Washton AM, Gold MS, editors. Cocaine: a clinician’s handbook. New York: Guildford Press, 1987: 55–72Google Scholar
  26. 26.
    Snyder CA, Wood RW, Graefe JF, et al. ‘Crack smoke’ is a respirable aerosol of cocaine base. Pharmacol Biochem Behav 1988; 29(1): 93–5PubMedGoogle Scholar
  27. 27.
    Jeffcoat AR, Perez-Reyes M, Hill JM, et al. Cocaine disposition in humans after intravenous injection, nasal insufflation (snorting), or smoking. Drug Metab Dispos 1989; 17(2): 153–9PubMedGoogle Scholar
  28. 28.
    Cook CE. Pyrolytic characteristics, pharmacokinetics, and bioavailability of smoked heroin, cocaine, phencyclidine, and methamphetamine. NIDA Res Monogr 1991; 115: 6–23PubMedGoogle Scholar
  29. 29.
    Cho AK. Ice: a new dosage form of an old drug. Science 1990; 249:631–4PubMedGoogle Scholar
  30. 30.
    Tashkin DP, Gorelick D, Khalsa ME, et al. Respiratory effects of cocaine freebasing among habitual cocaine users. J Addict Dis 1992; 11(4): 59–70PubMedGoogle Scholar
  31. 31.
    Tashkin DP, Khalsa ME, Gorelick D, et al. Pulmonary status of habitual cocaine smokers. Am Rev Respir Dis 1992; 145(1): 92–100PubMedGoogle Scholar
  32. 32.
    Albertson TE, Walby WF, Deriet RW. Stimulant induced pulmonary toxicity. Chest 1995; 108: 1140–49PubMedGoogle Scholar
  33. 33.
    Lindgren JE, Ohlsson A, Agurell S, et al. Clinical effects and plasma levels of delta 9-tetrahydrocannabinol (delta 9-THC) in heavy and light users of cannabis. Psychopharmacology 1981; 74(3): 208–12PubMedGoogle Scholar
  34. 34.
    Svensson CK. Clinical pharmacokinetics of nicotine. Clin Pharmacokinet 1987; 12(1): 30–40PubMedGoogle Scholar
  35. 35.
    Darby TD, McNamee JE, van Rossum JM. Cigarette smoking pharmacokinetics and its relationship to smoking behaviour. Clin Pharmacokinet 1984; 9(5): 435–49PubMedGoogle Scholar
  36. 36.
    Benowitz NL, Hall SM, Herning RI, et al. Smokers of low-yield cigarettes do not consume less nicotine. N Engl J Med 1983; 309(3): 139–42PubMedGoogle Scholar
  37. 37.
    Scavone JM, Greenblatt DJ, Friedman H, et al. Enhanced bioavailability of triazolam following sublingual versus oral administration. J Clin Pharmacol 1986; 26(3): 208–10PubMedGoogle Scholar
  38. 38.
    Griffiths RR, McLeod DR, Bigelow GE, et al. Relative abuse liability of diazepam and oxazepam: behavioral and subjective dose effects. Psychopharmacology 1984; 84(2): 147–54PubMedGoogle Scholar
  39. 39.
    Mumford GK, Evans SM, Fleishaker JC, et al. Alprazolam absorption kinetics affects abuse liability. Clin Pharmacol Ther 1995; 57(3): 356–65PubMedGoogle Scholar
  40. 40.
    Berkowitz BA. The relationship of pharmacokinetics to pharmacological activity: morphine, methadone and naloxone. Clin Pharmacokinet 1976; 1(3): 219–30PubMedGoogle Scholar
  41. 41.
    Sawynok J. The therapeutic use of heroin: a review of the pharmacological literature. Can J Physiol Pharamcol 1986; 64(1): 1–6Google Scholar
  42. 42.
    Griffiths RR, Lukas SE, Bradford LD, et al. Self-injection of barbiturates and benzodiazepines in baboons. Psychopharmacology 1981; 75(2): 101–9PubMedGoogle Scholar
  43. 43.
    Sawe J. High-dose morphine and methadone in cancer patients: clinical pharmacokinetic considerations of oral treatment. Clin Pharmacokinet 1986; 11(2): 87–106PubMedGoogle Scholar
  44. 44.
    Paul D, Standifer KM, Inturrisi CE, et al. Pharmacological characterization of morphine-6 beta-glucuronide, a very potent morphine metabolite. J Pharmacol Exp Ther 1989; 251(2): 477–83PubMedGoogle Scholar
  45. 45.
    Hucks D, Thompson PI, McLoughlin L, et al. Explanation at the opioid receptor level for differing toxicity of morphine and morphine 6-glucuronide. Br J Cancer 1992; 65(1): 122–6PubMedGoogle Scholar
  46. 46.
    Osborne RJ, Joel SP, Slevin ML. Morphine intoxication in renal failure: the role of morphine-6-glucuronide. Br Med J Clin Res Ed 1986; 292(6535): 1548–9PubMedGoogle Scholar
  47. 47.
    Hasselstrom J, Berg U, Lofgren A, et al. Long lasting respiratory depression induced by morphine-6-glucuronide? Br J Clin Pharmacol 1989; 27(4): 515–8PubMedGoogle Scholar
  48. 48.
    Milne RW, Nation RL, Somogyi AA, et al. The influence of renal function on the renal clearance of morphine and its glucuronide metabolites in intensive-care patients. Br J Clin Pharmacol 1992; 34(1): 53–9PubMedGoogle Scholar
  49. 49.
    Hasselstrom J, Sawe J. Morphine pharmacokinetics and metabolism in humans: enterohepatic cycling and relative contribution of metabolites to active opioid concentrations. Clin Pharmacokinet 1993; 24(4): 344–54PubMedGoogle Scholar
  50. 50.
    Osborne R, Thompson P, Joel S, et al. The analgesic activity of morphine-6-glucuronide. Br J Clin Pharmacol 1992; 34(2): 130–8PubMedGoogle Scholar
  51. 51.
    Neumann PB, Henriksen H, Grosman N, et al. Plasma morphine concentrations during chronic oral administration in patients with cancer pain. Pain 1982; 13(3): 247–52PubMedGoogle Scholar
  52. 52.
    Kaiko RF, Wallenstein SL, Rogers AG, et al. Analgesic and mood effects of heroin and morphine in cancer patients with postoperative pain. N Engl J Med 1981; 304(25): 1501–5PubMedGoogle Scholar
  53. 53.
    Mule SJ, Casella GA. Rendering the ‘poppy-seed defense’ defenseless: identification of 6-monoacetylmorphine in urine by gas chromatography/mass spectroscopy. Clin Chem 1988; 34(7): 1427–30PubMedGoogle Scholar
  54. 54.
    Glare PA, Walsh TD. Clinical pharmacokinetics of morphine. Ther Drug Monit 1991; 13(1): 1–23PubMedGoogle Scholar
  55. 55.
    Cone EJ, Dickerson S, Paul BD, et al. Forensic drug testing for opiates. IV: analytical sensitivity, specificity, and accuracy of commercial urine opiate immunoassays. J Anal Toxicol 1992; 16(2): 72–8PubMedGoogle Scholar
  56. 56.
    Kaa E. Impurities, adulterants and diluents of illicit heroin: changes during a 12-year period. Forensic Sci Int 1994; 64(2–3): 171–9PubMedGoogle Scholar
  57. 57.
    Mo BP, Way EL. An assessment of inhalation as a mode of administration of heroin by addicts. J Pharmacol Exp Ther 1966; 154(1): 142–51PubMedGoogle Scholar
  58. 58.
    Cook CE, Brine DR. Pyrolysis products of heroin. J Forensic Sci 1985; 30(1): 251–61PubMedGoogle Scholar
  59. 59.
    Huizer H. Analytical studies on illicit heroin. V: efficacy of volatilization during heroin smoking. Pharm Weekbl Sci 1987; 9(4): 203–11PubMedGoogle Scholar
  60. 60.
    Alvarez M, Barturen B, Regulez P, et al. Microbiological study of 30 samples of heroin. Enferm Infecc Microbiol Clin 1990; 8(4): 231–3PubMedGoogle Scholar
  61. 61.
    Kreek MJ. Rationale for maintenance pharmacotherapy of opioid dependence. In: O’Brien CP, Jaffe AJ, editors. Addictive states. New York: Raven Press, 1992: 205–30Google Scholar
  62. 62.
    Dole VP, Kreek MJ. Methadone plasma level: sustained by a reservoir of drug in tissue. Proc Natl Acad Sci USA 1973; 70(1): 10PubMedGoogle Scholar
  63. 63.
    Nilsson MI, Meresaar U, Anggard E. Clinical pharmacokinetics of methadone. Acta Anaesthesiol Scand 1982; 74 Suppl.: 66–9Google Scholar
  64. 64.
    Nilsson MI, Widerlov E, Meresaar U, et al. Effect of urinary pH on the disposition of methadone in man. Eur J Clin Pharmacol 1982; 22(4): 337–42PubMedGoogle Scholar
  65. 65.
    Bellward GD, Warren PM, Howald W, et al. Methadone maintenance: effect of urinary pH on renal clearance in chronic high and low doses. Clin Pharmacol Ther 1977; 22(1): 92–9PubMedGoogle Scholar
  66. 66.
    Verebely K, Volavka J, Mule S, et al. Methadone in man: pharmacokinetic and excretion studies in acute and chronic treatment. Clin Pharmacol Ther 1975; 18(2): 180–90PubMedGoogle Scholar
  67. 67.
    Garrett ER. Pharmacokinetic investigations of drug abuse. In: Barnett G, Chiang CN, editors. Pharmacokinetics and pharmacodynamics of psychoactive drugs. Foster City (CA): Biomedical Publications, 1985: 1Google Scholar
  68. 68.
    Inturrisi CE. Disposition of narcotics and narcotic antagonists. Ann NY Acad Sci 1976; 281: 273–87PubMedGoogle Scholar
  69. 69.
    Inturrisi CE, Colburn WA, Kaiko RF, et al. Pharmacokinetics and pharmacodynamics of methadone in patients with chronic pain. Clin Pharmacol Ther 1987; 41(4): 392–401PubMedGoogle Scholar
  70. 70.
    de Vos JW, Ufkes JGR, van Wilgenburg H. The role of methadone parmacokinetics in managing maintenance therapy for opiate addicts is limited. Br J Clin Pharmacol 1994; 39: 564PGoogle Scholar
  71. 71.
    Harding-Pink D. Methadone: one person’s maintenance dose is another’s poison. Lancet 1993; 341(8846): 665–6PubMedGoogle Scholar
  72. 72.
    Wu CH, Henry JA. Deaths of heroin addicts starting on methadone maintenance. Lancet 1990; 335(8686): 424PubMedGoogle Scholar
  73. 73.
    Ward J, Mattick RP, Hall W. Key issues in methadone maintenance treatment. Sydney: University of New South Wales Press, 1992Google Scholar
  74. 74.
    Ball JC, Ross A. The effectiveness of methadone maintenance treatments: patients, programs, services and outcome. New York: Springer-Verlag, 1991Google Scholar
  75. 75.
    Rosenbaum M, Irwin J, Murphy S. De facto destabilization as policy: the impact of short-term methadone maintenance. Contemp Drug Probl 1988; 15: 491–517Google Scholar
  76. 76.
    Battersby M, Farrell M, Gossop M, et al. Horse trading: the prescribing of injectable drugs: an evaluation. Drug Alcohol Rev 1992; 11: 35–42PubMedGoogle Scholar
  77. 77.
    Williamson PA, Foreman KJ, White JM, et al. Methadone related overdose deaths in South Australia 1984–1994: how safe is methodone prescribing? Med J Aust 1997; 166: 302–5PubMedGoogle Scholar
  78. 78.
    Sunjic S, Zador D. Methadone-related deaths in New South Wales. Med J Aust 1997; 166: 54–5PubMedGoogle Scholar
  79. 79.
    Resnick RB. Methadone, LAAM, naltrxone and cocaine: clinical pharmacodynamics and treatment issues. In: Barnett G, Chiang CN, editors. Pharmacokinetics and pharmacodynamics of psychoactive drugs. Foster City (CA): Biomedical Publications, 1985: 264Google Scholar
  80. 80.
    Tennant Jr FS, Rawson RA, Pumphrey E, et al. Clinical experiences with 959 opioid-dependent patients treated with levoalpha-acetylmethadol (LAAM). J Subst Abuse Treat 1986; 3(3): 195–202PubMedGoogle Scholar
  81. 81.
    Sollod RM, Goldstein MG. Rx: 3x/week LAAM: alternative to methadone: clinical studies: phase I. NIDA Res Monogr 1976 (8): 39–51PubMedGoogle Scholar
  82. 82.
    Gonzalez JP, Brogden RN. Naltrexone: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy in the management of opioid dependence. Drugs 1988; 35(3): 192–213PubMedGoogle Scholar
  83. 83.
    Christie MJ, Harvey AI. Pharmacological options for the management of opioid dependence. Drug Alcohol Rev 1993; 12: 71–80PubMedGoogle Scholar
  84. 84.
    Meyer MC, Straughn AB, Lo MW, et al. Bioequivalence, doseproportionality, and pharmacokinetics of naltrexone after oral administration. J Clin Psychiatry 1984; 45 (9 Pt 2): 15–9PubMedGoogle Scholar
  85. 85.
    Wall ME, Brine DR, Perez-Reyes M. Metabolism and disposition of naltrexone in man after oral and intravenous administration. Drug Metab Dispos 1981; 9(4): 369–75PubMedGoogle Scholar
  86. 86.
    Wall ME, Brine DR, Perez-Reyes M. The metabolism of naltrexone in man. NIDA Res Monogr 1981; 28: 105–31PubMedGoogle Scholar
  87. 87.
    Verebey K, Volavka J, Mule SJ, et al. Naltrexone: disposition, metabolism, and effects after acute and chronic dosing. Clin Pharmacol Ther 1976; 20(3): 315–28PubMedGoogle Scholar
  88. 88.
    Kogan MJ, Verebey K, Mule SJ. Estimation of the systemic availability and other pharmacokinetic parameters of naltrexone in man after acute and chronic oral administration. Res Commun Chem Pathol Pharmacol 1977; 18(1): 29–34PubMedGoogle Scholar
  89. 89.
    Ludden TM, Malspeis L, Baggot JD, et al. Tritiated naltrexone binding in plasma from several species and tissue distribution in mice. J Pharm Sci 1976; 65(5): 712–6PubMedGoogle Scholar
  90. 90.
    Resnick RB, Volavka J, Freedman AM, et al. Studies of EN-1639A (naltrexone): a new narcotic antagonist. Am J Psychiatry 1974; 131(6): 646–50PubMedGoogle Scholar
  91. 91.
    Kleber HD, Kosten TR, Gaspari J, et al. Nontolerance to the opioid antagonism of naltrexone. Biol Psychiatry 1985; 20(1): 66–72PubMedGoogle Scholar
  92. 92.
    Kosten TA, Kosten TR. Pharmacological blocking agents for treating substance abuse. J Nerv Ment Dis 1991; 179(10): 583–92PubMedGoogle Scholar
  93. 93.
    Morgan C, Kosten TR. Potential toxicity of high dose naltrexone in patients with appetite disorders. In: Reid L, editor. Opioids, bulimia and alcohol abuse and alcoholism. New York: Springer-Verlag, 1990Google Scholar
  94. 94.
    Kosten TR, Kreek MJ, Ragunath J, et al. A preliminary study of beta endorphin during chronic naltrexone maintenance treatment in ex-opiate addicts. Life Sci 1986; 39(1): 55–9PubMedGoogle Scholar
  95. 95.
    Kosten TR, Kreek MJ, Ragunath J, et al. Cortisol levels during chronic naltrexone maintenance treatment in ex-opiate addicts. Biol Psychiatry 1986; 21(2): 217–20PubMedGoogle Scholar
  96. 96.
    Bradford A, Hurley F, Golondzowski O, et al. Interim report on clinic intake and safety data collected from 17 NIDA-funded naltrexone studies. NIDA Res Monogr 1976 (9): 163–71PubMedGoogle Scholar
  97. 97.
    Meyer RE, Mirin SM. The heroin stimulus: implications for the theory of addiction. New York: Plenum, 1982Google Scholar
  98. 98.
    Washton AM, Pottash AC, Gold MS. Naltrexone in addicted business executives and physicians. J Clin Psychiatry 1984; 45 (9 Pt 2): 39–41PubMedGoogle Scholar
  99. 99.
    Washton AM, Gold MS, Pottash AC. Naltrexone in addicted physicians and business executives. NIDA Res Monogr 1984; 55: 185–90PubMedGoogle Scholar
  100. 100.
    McQuay HJ, Moore RA, Bullingham RES. Buprenorphine kinetics. In: Foley, Inturissi, editors. Advances in pain research and therapy. Vol. 8. New York: Plenum, 1986: 271–83Google Scholar
  101. 101.
    Motwani JG, Lipworth BJ. Clinical pharmacokinetics of drug administered buccally and sublingually. Clin Pharmacokinet 1991; 21(2): 83–94PubMedGoogle Scholar
  102. 102.
    Bullingham RE, McQuay HJ, Porter EJ, et al. Sublingual buprenorphine used postoperatively: ten hour plasma drug concentration analysis. Br J Clin Pharmacol 1982; 13(5): 665–73PubMedGoogle Scholar
  103. 103.
    Cone EJ, Gorodetzky CW, Yousefnejad D, et al. The metabolism and excretion of buprenorphine in humans. Drug Metab Dispos 1984; 12(5): 577–81PubMedGoogle Scholar
  104. 104.
    Heel RC, Brogden RN, Speight TM, et al. Buprenorphine: a review of its pharmacological properties and therapeutic efficacy. Drugs 1979; 17(2): 81–110PubMedGoogle Scholar
  105. 105.
    Cowan A, Lewis JW, Macfarlane IR. Agonist and antagonist properties of buprenorphine, a new antinociceptive agent. Br J Pharmacol 1977; 60(4): 537–45PubMedGoogle Scholar
  106. 106.
    Negus SS, Dykstra LA. Kappa antagonist properties of buprenorphine in the shock titration procedure. Eur J Pharmacol 1988; 156(1): 77–86PubMedGoogle Scholar
  107. 107.
    Negus SS, Picker MJ, Dykstra LA. Kappa antagonist properties of buprenorphine in non-tolerant and morphine-tolerant rats. Psychopharmacology 1989; 98(1): 141–3PubMedGoogle Scholar
  108. 108.
    Hambrook JM, Rance MJ. The interaction of buprenorphine with the opiate receptor: lipophilicity as a determining factor in drug-receptor kinetics. In: Kosterlitz H, editor. Opiates and endogenous opioid peptides. Amsterdam: Eiselvier 1976: 281–6Google Scholar
  109. 109.
    Rance MJ. Animal and molecular pharmacology of mixed agonist-antagonist analgesic drugs. Br J Clin Pharmacol 1979; 7(Suppl. 3): 281S–6SPubMedGoogle Scholar
  110. 110.
    Woods JH, France CP, Winger GD. Behavioral pharmacology of buprenorphine: issues relevant to its potential in treating drug abuse. NIDA Res Monogr 1992; 121: 12–27PubMedGoogle Scholar
  111. 111.
    France CP, Jacobson AE, Woods JH. Discriminative stimulus effects of reversible and irreversible opiate agonists: morphine, oxymorphazone and buprenorphine. J Pharmacol Exp Ther 1984; 230(3): 652–7PubMedGoogle Scholar
  112. 112.
    Rosen MI, Kosten TR. Buprenorphine: beyond methadone? Hosp Commun Psychiatry 1991; 42(4): 347–9Google Scholar
  113. 113.
    Walsh SL, Preston KL, Stitzer ML, et al. Clinical pharmacology of buprenorphine: ceiling effects at high doses. Clin Pharmacol Ther 1994; 55(5): 569–80PubMedGoogle Scholar
  114. 114.
    Fudala PJ, Jaffe JH, Dax EM, et al. Use of buprenorphine in the treatment of opioid addiction, II: physiologic and behavioral effects of daily and alternate-day administration and abrupt withdrawal. Clin Pharmacol Ther 1990; 47(4): 525–34PubMedGoogle Scholar
  115. 115.
    Bond WS. Psychiatric indications for clonidine: the neuropharmacologic and clinical basis. J Clin Psychopharmacol 1986; 6(2): 81–7PubMedGoogle Scholar
  116. 116.
    Covey LS, Glassman AH. A meta-analysis of double-blind placebo-controlled trials of clonidine for smoking cessation. Br J Addict 1991; 86(8): 991–8PubMedGoogle Scholar
  117. 117.
    Gold MS, Redmond Jr DE, Kleber HD. Clonidine blocks acute opiate-withdrawal symptoms. Lancet 1978; 2(8090): 599–602PubMedGoogle Scholar
  118. 118.
    Glassman AH, Stetner F, Walsh BT, et al. Heavy smokers, smoking cessation, and clonidine: results of a double-blind, randomized trial. JAMA 1988; 259(19): 2863–6PubMedGoogle Scholar
  119. 119.
    Gourlay S, Forbes A, Marriner T, et al. A placebo-controlled study of three clonidine doses for smoking cessation. Clin Pharmacol Ther 1994; 55(1): 64–9PubMedGoogle Scholar
  120. 120.
    Langer SZ, Cavero I, Massingham R. Recent developments in noradrenergic neurotransmission and its relevance to the mechanism of action of certain antihypertensive agents. Hypertension 1980; 2(4): 372–82PubMedGoogle Scholar
  121. 121.
    Lowenthal DT, Matzek KM, MacGregor TR. Clin pharmacokinetics of clonidine. Clin Pharmacokinet 1988; 14(5): 287–310PubMedGoogle Scholar
  122. 122.
    Baillie TA, Davies DL, Davies DS, et al. The metabolism of clonidine and related imidazoline derivatives in rat liver. Br J Pharmacol 1978; 63(2): 400PPubMedGoogle Scholar
  123. 123.
    Darda S, Forster HJ, Sthle H. Metabolic degradation of clonidine [in German]. Arzneimittel Forschung 1978; 28(2): 255–9PubMedGoogle Scholar
  124. 124.
    Fauler J, Verner L. The pharmacokinetics of clonidine in high dosage. Eur J Clin Pharmacol 1993; 45(2): 165–7PubMedGoogle Scholar
  125. 125.
    Jarrott B, Conway EL, Maccarrone C, et al. Clonidine: understanding its disposition, sites and mechanism of action. Clin Exper Pharmacol Physiol 1987; 14(5): 471–9Google Scholar
  126. 126.
    Villagra VG, Rosenberger JL, Girolami S. Trandermal clonidine for smoking cessation: a randomisation, double blind, placebo-controlled trial. Circulation 1989; 80: SII–80Google Scholar
  127. 127.
    Cox S, Alcorn R. Lofexidine and opioid withdrawal. Lancet 1995; 345(8962): 1385–6PubMedGoogle Scholar
  128. 128.
    Gold MS, Pottash AC, Sweeney DR, et al. Opiate detoxification with lofexidine. Drug Alcohol Depend 1981; 8(4): 307–15PubMedGoogle Scholar
  129. 129.
    Washton AM, Resnick RB, Geyer G. Opiate withdrawal using lofexidine, a clonidine analogue with fewer side effects. J Clin Psychiatry 1983; 44(9): 335–7PubMedGoogle Scholar
  130. 130.
    Volkow ND, Wang GJ, Fischman MW, et al. Relationship between subjective effects of cocaine and dopamine transporter occupancy. Nature 1997; 386(6627): 827–30PubMedGoogle Scholar
  131. 131.
    Diakogiannis IA, Steinberg M, Kosten TR. Mazindol treatment of cocaine abuse: a double-blind investigation. NIDA Res Monogr 1991; 105:514Google Scholar
  132. 132.
    Margolin A, Avants SK, Kosten TR. Mazindol for relapse prevention to cocaine abuse in methadone-maintained patients. Am J Drug Alcohol Abuse 1995; 21(4): 469–81PubMedGoogle Scholar
  133. 133.
    Stine SM, Krystal JH, Kosten TR, et al. Mazindol treatment for cocaine dependence. Drug Alcohol Depend 1995; 39(3): 245–52PubMedGoogle Scholar
  134. 134.
    Koob GF, Bloom FE. Cellular and molecular mechanisms of drug dependence. Science 1988; 242(4879): 715–23PubMedGoogle Scholar
  135. 135.
    Ritz MC, Lamb RJ, Goldberg SR, et al. Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 1987; 237(4819): 1219–23PubMedGoogle Scholar
  136. 136.
    Post RM, Kopanda RT. Cocaine, kindling, and psychosis. Am J Psychiatry 1976; 133(6): 627–34PubMedGoogle Scholar
  137. 137.
    Gawin FH, Ellinwood Jr EH. Cocaine dependence. Annu Rev Med 1989; 40: 149–61PubMedGoogle Scholar
  138. 138.
    Cook CE, Jeffcoat AR. Pyrolytic degradation of heroin, phencyclidine, and cocaine: identification of products and some observations on their metabolism. NIDA Res Monogr 1990; 99: 97–120PubMedGoogle Scholar
  139. 139.
    Warner EA. Cocaine abuse. Ann Int Med 1993; 119(3): 226–35PubMedGoogle Scholar
  140. 140.
    Grund JP, Adriaans NF, Kaplan CD. Changing cocaine smoking rituals in the Dutch heroin addict population. Br J Addict 1991; 86(4): 439–48PubMedGoogle Scholar
  141. 141.
    Foltin RW, Fischman MW. Self-administration of cocaine by humans: choice between smoked and intravenous cocaine. J Pharmacol Exp Ther 1992; 261(3): 841–9PubMedGoogle Scholar
  142. 142.
    Jones RT. The pharmacology of cocaine smoking in humans. NIDA Res Monogr 1990; 99: 30–41PubMedGoogle Scholar
  143. 143.
    Paly D, Jatlow P, Van Dyke C, et al. Plasma cocaine concentrations during cocaine paste smoking. Life Sci 1982; 30(9): 731–8PubMedGoogle Scholar
  144. 144.
    Jatlow PI. Drug of abuse profile: cocaine. Clin Chem 1987; 33(11 Suppl.):66B–71BPubMedGoogle Scholar
  145. 145.
    Javaid JI, Musa MN, Fischman M, et al. Kinetics of cocaine in humans after intravenous and intranasal administration. Biopharm Drug Dispos 1983; 4(1): 9–18PubMedGoogle Scholar
  146. 146.
    Edwards DJ, Bowles SK. Serum protein binding of cocaine. 88th Annual Scientific Meeting of the American Society of Clinical Pharmacology and Therapeutics [abstract PIIIK-4]; 1987 May; Orlando. Clin Pharmacol Ther 1987; 41(2): 231Google Scholar
  147. 147.
    Edwards DJ, Bowles SK. Protein binding of cocaine in human serum. Pharm Res 1988; 5(7): 440–2PubMedGoogle Scholar
  148. 148.
    Parker RB, Williams CL, Laizure SC, et al. Factors affecting serum protein binding of cocaine in humans. J Pharmacol Exp Ther 1995; 275(2): 605–10PubMedGoogle Scholar
  149. 149.
    Bailey DN. Cocaine and cocaethylene binding in human serum. Am J Clin Pathology 1995; 104(2): 180–6Google Scholar
  150. 150.
    Busto U, Bendayan R, Sellers EM. Clinical pharmacokinetics of non-opiate abused drugs. Clin Pharmacokinet 1989; 16(1): 1–26PubMedGoogle Scholar
  151. 151.
    Chow MJ, Ambre JJ, Ruo TI, et al. Kinetics of cocaine distribution, elimination, and chronotropic effects. Clin Pharmacol Ther 1985; 38(3): 318–24PubMedGoogle Scholar
  152. 152.
    Inaba T, Stewart DJ, Kalow W. Metabolism of cocaine in man. Clin Pharmacol Ther 1978; 23(5): 547–52PubMedGoogle Scholar
  153. 153.
    Stewart DJ, Inaba T, Tang BK, et al. Hydrolysis of cocaine in human plasma by cholinesterase. Life Sci 1977; 20(9): 1557–63PubMedGoogle Scholar
  154. 154.
    Stewart DJ, Inaba T, Lucassen M, et al. Cocaine metabolism: cocaine and norcocaine hydrolysis by liver and serum esterases. Clin Pharmacol Ther 1979; 25(4): 464–8PubMedGoogle Scholar
  155. 155.
    Pasanen M, Pellinen P, Stenback F, et al. The role of CYP enzymes in cocaine-induced liver damage. Arch Toxicol 1995; 69(5): 287–90PubMedGoogle Scholar
  156. 156.
    Kintz P, Sengler C, Cirimele V, et al. Evidence of crack use by anhydroecgonine methylester identification. Hum Exp Toxicol 1997; 16(2): 123–7PubMedGoogle Scholar
  157. 157.
    Hoffman RS, Henry GC, Howland MA, et al. Association between life-threatening cocaine toxicity and plasma cholinesterase activity. Ann Emerg Med 1992; 21(3): 247–53PubMedGoogle Scholar
  158. 158.
    Morishima HO, Whittington RA. Species-, gender-, and pregnancy-related differences in the pharmacokinetics and pharmacodynamics of cocaine. NIDA Res Monogr 1995; 158: 2–21PubMedGoogle Scholar
  159. 159.
    Lukas SE, Sholar MB, Fortin M, et al. Gender and menstrual cycle influences on cocaine’s effects in human volunteers. In: Harris LS, editor. 56th Annual Scientific Meeting: The College on Problems of Drug Dependence. 1994 Jun; Palm Beach (FL). Rockville (MD): NIH (Publication No. 95-3883), 1994: 490Google Scholar
  160. 160.
    Morishima HO, Abe Y, Matsuo M, et al. Gender-related differences in cocaine toxicity in the rat. J Lab Clin Med 1993; 122(2): 157–63PubMedGoogle Scholar
  161. 161.
    Gawin FH, Ellinwood Jr EH. Cocaine and other stimulants. Actions, abuse, and treatment. N Engl J Med 1988; 318(18): 1173–82PubMedGoogle Scholar
  162. 162.
    Fischman MW, Schuster CR, Hatano Y. A comparison of the subjective and cardiovascular effects of cocaine and lidocaine in humans. Pharmacol Biochem Behav 1983; 18(1): 123–7PubMedGoogle Scholar
  163. 163.
    Shannon M. Clinical toxicity of cocaine adulterants. Ann Emerg Med 1988; 17(11): 1243–7PubMedGoogle Scholar
  164. 164.
    Siegel RK. Cocaine smoking. J Psychoactive Drugs 1982; 14(4): 271–359PubMedGoogle Scholar
  165. 165.
    Gawin FH, Kleber HD. Abstinence symptomatology and psychiatric diagnosis in cocaine abusers: clinical observations. Arch Gen Psychiatry 1986; 43(2): 107–13PubMedGoogle Scholar
  166. 166.
    Mendelson JH, Mello NK, Teoh SK, et al. Cocaine effects on pulsatile secretion of anterior pituitary, gonadal, and adrenal hormones. J Clin Endocrinol Metab 1989; 69(6): 1256–60PubMedGoogle Scholar
  167. 167.
    Brosen K, Gram LF. First-pass metabolism of imipramine and desipramine: impact of the sparteine oxidation phenotype. Clin Pharmacol Ther 1988; 43(4): 400–6PubMedGoogle Scholar
  168. 168.
    Altamura AC, Moro AR, Percudani M. Clinical pharmacokinetics of fluoxetine. Clin Pharmacokinet 1994; 26(3): 201–14PubMedGoogle Scholar
  169. 169.
    Ciraulo DA, Barnhill JG, Jaffe JH. Clinical pharmacokinetics of imipramine and desipramine in alcoholics and normal volunteers. Clin Pharmacol Ther 1988; 43(5): 509–18PubMedGoogle Scholar
  170. 170.
    Amsterdam J, Brunswick D, Mendels J. The clinical application of tricyclic antidepressant pharmacokinetics and plasma levels. Am J Psychiatry 1980; 137(6): 653–62PubMedGoogle Scholar
  171. 171.
    Pollack MH, Rosenbaum JF. Management of antidepressant-induced side effects: a practical guide for the clinician. J Clin Psychiatry 1987; 48(1): 3–8PubMedGoogle Scholar
  172. 172.
    Hamilton MS, Opler LA. Akathisia, suicidality and fluoxetine. J Clin Psychiatry 1992; 54: 405–18Google Scholar
  173. 173.
    Bergeron R, Blier P. Cisapride for the treatment of nausea produced by selective serotonin reiptake inhibitors. Am J Psychiatry 1994; 151: 1084–86PubMedGoogle Scholar
  174. 174.
    Kosten TR, Gawin FH, Silverman DG, et al. Intravenous cocaine challenges during desipramine maintenance. Neuropyschopharmacology 1992; 7: 169–76Google Scholar
  175. 175.
    Tennant Jr FS, Tarver AL. Double-blind comparison of desipramine and placebo in withdrawal from cocaine dependence. NIDA Res Monogr 1984; 55: 159–63PubMedGoogle Scholar
  176. 176.
    Gawin FH, Kleber HD, Byck R, et al. Desipramine facilitation of initial cocaine abstinence. Arch Gen Psychiatry 1989; 46(2): 117–21PubMedGoogle Scholar
  177. 177.
    Ziedonis DM, Kosten TR. Depression as a prognostic factor for pharmacological treatment of cocaine dependence. Psychopharmacol Bull 1991; 27(3): 337–43PubMedGoogle Scholar
  178. 178.
    Kosten TR. Clinical and research perspectives on cocaine abuse: the pharmacotherapy of cocaine abuse. NIDA Res Monogr 1993; 135:48–56PubMedGoogle Scholar
  179. 179.
    Khalsa H, Gawin FH, Rawson R, et al. A desipramine ceiling in cocaine abusers. In: Harris L, editor. 54th Annual Scientific Meeting. College on Problems of Drug Dependence; 1992 Jun; Palm Beach. Rockville (MD): NIH (Publication No 93-3505), 1992:318Google Scholar
  180. 180.
    Schottenfeld RS, Pakes J, Ziedonis D, et al. Buprenorphine: dose-related effects on cocaine and opioid use in cocaine-abusing opioid-dependent humans. Biol Psychiatry 1993; 34(1–2): 66–74PubMedGoogle Scholar
  181. 181.
    Kosten TR, Kleber HD, Morgan C. Treatment of cocaine abuse with buprenorphine. Biol Psychiatry 1989; 26(6): 637–9PubMedGoogle Scholar
  182. 182.
    Kosten TR, Morgan CM, Falcione J, et al. Pharmacotherapy for cocaine-abusing methadone-maintained patients using amantadine or desipramine. Arch Gen Psychiatry 1992; 49(11): 894–8PubMedGoogle Scholar
  183. 183.
    Taylor P. Agents acting at the neuromuscular junction and autonomic ganglia. In: Gilman AG, Rall TW, Nies AS, et al. editors. Goodman and Gilman’s the pharmacological basis of theurapeutics. New York: Pergamon Press, 1990: 181–4Google Scholar
  184. 184.
    Dackis CA, Gold MS. Bromocriptine as treatment of cocaine abuse. Lancet 1985; 1(8438): 1151–2PubMedGoogle Scholar
  185. 185.
    Handelsman L, Rosenblum A, Palij M, et al. Bromocriptine for cocaine dependence: a controlled clinical trial. Am J Addicts 1997; 6(1): 54–64Google Scholar
  186. 186.
    Preston KL, Sullivan JT, Strain EC, et al. Effects of cocaine alone and in combination with bromocriptine in human cocaine abusers. J Pharmacol Exp Ther 1992; 262(1): 279–91PubMedGoogle Scholar
  187. 187.
    Kumor KM, Sherer MA, Gomez J, et al. Subjective response during continuous infusion of cocaine. Pharmacol Biochem Behav 1989; 33(2): 443–52PubMedGoogle Scholar
  188. 188.
    Gawin FH. Chronic neuropharmacology of cocaine: progress in pharmacotherapy. J Clin Psychiatry 1988; 49 Suppl.: 11–6PubMedGoogle Scholar
  189. 189.
    Ross RG, Ward NG. Bromocriptine abuse. Biol Psychiatry 1992; 31(4): 404–6PubMedGoogle Scholar
  190. 190.
    Thompson DF. Amantadine in the treatment of cocaine withdrawal. Ann Pharmacotherapy 1992; 26(7–8): 933–4Google Scholar
  191. 191.
    Gawin FH, Morgan C, Kosten TR, et al. Double-blind evaluation of the effect of acute amantadine on cocaine craving. Psychopharmacology 1989; 97(3): 402–3PubMedGoogle Scholar
  192. 192.
    Morgan C, Kosten T, Gawin F, et al. A pilot trial of amantadine for ambulatory withdrawal for cocaine dependence. NIDA Res Monogr 1988; 81: 81–5PubMedGoogle Scholar
  193. 193.
    Tennant Jr FS, Sagherian AA. Double-blind comparison of amantadine and bromocriptine for ambulatory withdrawal from cocaine dependence. Arch Intern Med 1987; 147(1): 109–12PubMedGoogle Scholar
  194. 194.
    Aoki FY, Sitar DS. Clinical pharmacokinetics of amantadine hydrochloride. Clin Pharmacokinet 1988; 14(1): 35–51PubMedGoogle Scholar
  195. 195.
    Gawin FH, Allen D, Humblestone B. Outpatient treatment of ‘crack’ cocaine smoking with flupenthixol decanoate: a preliminary report. Arch Gen Psychiatry 1989; 46(4): 322–5PubMedGoogle Scholar
  196. 196.
    Khalsa E, Jatlow P, Gawin F. Flupenthixol and desipramine treatment of crack users: double blind results. NIDA Res Monogr 1993; 141: 438Google Scholar
  197. 197.
    Gawin FH, Khalsa-Denison ME, Jatlow P. Flupentixol-induced aversion to crack cocaine. N Engl J Med 1996; 334(20): 1340–1PubMedGoogle Scholar
  198. 198.
    Kosten TR, Kleber HD, Morgan C. Role of opioid antagonists in treating intravenous cocaine abuse. Life Sci 1989; 44(13): 887–92PubMedGoogle Scholar
  199. 199.
    Stine SM, Burns B, Kosten T. Methadone dose for cocaine abuse. Am J Psychiatry 1991; 148(9): 1268PubMedGoogle Scholar
  200. 200.
    Post RM. Time course of action of carbamazepine: implication for mechanism of action. J Clin Psychiatry 1988; 49: 35–46PubMedGoogle Scholar
  201. 201.
    Halikas J, Kemp K, Kuhn K, et al. Carbamazepine for cocaine addiction? Lancet 1989; I(8638): 623–4Google Scholar
  202. 202.
    Rundfeldt C, Honack D, Loscher W. Phenytoin potently increases the threshold for focal seizures in amygdala-kindled rats. Neuropharmacology 1990; 9: 845–51Google Scholar
  203. 203.
    Montoya ID, Levin FR, Fudala PJ, et al. Double-blind comparison of carbamazepine and placebo for treatment of cocaine dependence. Drug Alcohol Depend 1995; 38(3): 213–9PubMedGoogle Scholar
  204. 204.
    Crosby RD, Pearson VL, Eller C, et al. Phenyoin in the treatment of cocaine abuse: double blind study. Clin Pharmacol Ther 1996; 59: 458–68PubMedGoogle Scholar
  205. 205.
    Perez-Reyes M, White R, McDonald S, et al. Pharmacologic effects of methamphetamine vapor inhalation (smoking) in man. NIDA Res Monogr 1991; 105: 575–7Google Scholar
  206. 206.
    Sekine H, Nakahara Y. Abuse of smoking methamphetamine mixed with tobacco. I: inhalation efficiency and pyrolysis products of methamphetamine. J Forensic Sci 1987; 32(5): 1271–80PubMedGoogle Scholar
  207. 207.
    Sekine H, Nakahara Y. Abuse of smoking methamphetamine mixed with tobacco. II: the formation mechanism of pyrolysis products. J Forensic Sci 1990; 35(3): 580–90PubMedGoogle Scholar
  208. 208.
    Kramer JC, Fischman VS, Littlefield DC. Amphetamine abuse: pattern and effects of high doses taken intravenously. JAMA 1967; 201(5): 305–9PubMedGoogle Scholar
  209. 209.
    Anggard E, Gunne LM, Jonsson LE. Relationships between pharmacokinetic and clinical parameters in chronic amphetamine abuse. Acta Pharmacol Toxicol 1970; 28(1): 92Google Scholar
  210. 210.
    Ellison T, Siegel M, Silverman AG, et al. Comparative metabolism of dl-3H-amphetamine hydrochloride in tolerant and nontolerant cats. Proc West Pharmacol Soc 1968; 11: 75–7PubMedGoogle Scholar
  211. 211.
    Anggard E, Jonsson LE, Hogmark AL, et al. Amphetamine metabolism in amphetamine psychosis. Clin Pharmacol Ther 1973; 14(5): 870–80PubMedGoogle Scholar
  212. 212.
    Anggard E, Gunne LM, Niklasson F. Gas Chromatographie determination of amphetamine in blood, tissue, and urine. Scand J Clin Lab Invest 1970; 26(2): 137–43PubMedGoogle Scholar
  213. 213.
    Dring LG, Smith RL, Williams RT. The metabolic fate of amphetamine in man and other species. Biochem J 1970; 116(3): 425–35PubMedGoogle Scholar
  214. 214.
    Caldwell J, Dring LG, Williams RT. Metabolism of (14 C) methamphetamine in man, the guinea pig and the rat. Biochem J 1972; 129(1): 11–22PubMedGoogle Scholar
  215. 215.
    Cho AK, Wright J. Pathways of metabolism of amphetamine and related compounds. Life Sci 1978; 22(5): 363–72PubMedGoogle Scholar
  216. 216.
    Yamada H, Oguri K, Yoshimura H. Effects of several factors on urinary excretion of methamphetamine and its metabolites in rats. Xenobiotica 1986; 16(2): 137–41PubMedGoogle Scholar
  217. 217.
    Kunsman GW, Levine B, Kuhlman JJ, et al. MDA-MDMA concentrations in urine specimens. J Anal Toxicol 1996; 20(7): 517–21PubMedGoogle Scholar
  218. 218.
    Soine WH. Clandestine drug synthesis. Med Res Rev 1986; 6(1): 41–74PubMedGoogle Scholar
  219. 219.
    Kram TC. Reidentification of a major impurity in illicit amphetamine. J Forensic Sci 1979; 24(3): 596–9PubMedGoogle Scholar
  220. 220.
    Frank RS. The clandestine drug laboratory situation in the United States. J Forensic Sci 1983; 28(1): 18–31PubMedGoogle Scholar
  221. 221.
    Steele TD, McCann UD, Ricaurte GA. 3,4-Methylenedioxymethamphetamine (MDMA, ‘Ecstasy’): pharmacology and toxicology in animals and humans. Addiction 1994; 89(5): 539–51PubMedGoogle Scholar
  222. 222.
    Cho AK, Hiramatsu M, Distefano EW, et al. Stereochemical differences in the metabolism of 3,4-methylenedioxymethamphetamine in vivo and in vitro: a pharmacokinetic analysis. Drug Metab Dispos 1990; 18(5): 686–91PubMedGoogle Scholar
  223. 223.
    Tucker GT, Lennard MS, Ellis SW, et al. The demethylenation of methylenedioxymethamphetamine (‘ecstasy’) by debrisoquine hydroxylase (CYP2D6). Biochem Pharmacol 1994; 47(7): 1151–6PubMedGoogle Scholar
  224. 224.
    Fitzgerald RL, Blanke RV, Rosecrans JA, et al. Stereochemistry of the metabolism of MDMA to MDA. Life Sci 1989; 45(4): 295–301PubMedGoogle Scholar
  225. 225.
    Moore KA, Mozayani A, Fierro MF, et al. Distribution of 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyamphetamine (MDA) stereoisomers in a fatal poisoning. Forensic Sci Int 1996; 83(2): 111–9PubMedGoogle Scholar
  226. 226.
    Fitzgerald RL, Blanke RV, Poklis A. Stereoselective pharmacokinetics of 3,4-methylenedioxymethamphetamine in the rat. Chirality 1990; 2(4): 241–8PubMedGoogle Scholar
  227. 227.
    Hiramatsu M, DiStefano E, Chang AS, et al. A pharmacokinetic analysis of 3,4-methylenedioxymethamphetamine effects on monoamine concentrations in brain dialysates. Eur J Pharmacol 1991; 204(2): 135–40PubMedGoogle Scholar
  228. 228.
    Ricaurte GA. Studies of MDMA-induced neurotoxicity in nonhuman primates: a basis for evaluating long-term effects in humans. NIDA Res Monogr 1989; 94: 306–22PubMedGoogle Scholar
  229. 229.
    McCann UD, Ridenour A, Shaham Y, et al. Serotonin neurotoxicity after (+/−)3,4-methylenedioxymethamphetamine (MDMA; ‘Ecstasy’): a controlled study in humans. Neuropsychopharmacology 1994; 10(2): 129–38PubMedGoogle Scholar
  230. 230.
    Yousif MY, Fitzgerald RL, Narasimhachari N, et al. Identification of metabolites of 3,4-methylenedioxymethamphetamine in rats. Drug Alcohol Depend 1990; 26(2): 127–35PubMedGoogle Scholar
  231. 231.
    Helmlin HJ, Bracher K, Bourquin D, et al. Analysis of 3,4-methylenedioxymethamphetamine (MDMA) and its metabolites in plasma and urine by HPLC-DAD and GC-MS. J Anal Toxicol 1996; 20(6): 432–40PubMedGoogle Scholar
  232. 232.
    Cox DE, Williams KR. ‘ADAM’ or ‘EVE’?: a toxicological conundrum. Forensic Sci Int 1996; 77(1–2): 101–8PubMedGoogle Scholar
  233. 233.
    Rudnick G, Wall SC. The molecular mechanism of ‘ecstasy’ [3,4-methylenedioxy-methamphetamine (MDMA)]: serotonin transporters are targets for MDMA-induced serotonin release. Proc Natl Acad Sci USA 1992; 89(5): 1817–21PubMedGoogle Scholar
  234. 234.
    Ricaurte GA, McCann UD. Neurotoxic amphetamine analogues: effects in monkeys and implications for humans. Ann NY Acad Sci 1992; 648: 371–82PubMedGoogle Scholar
  235. 235.
    Milroy CM, Clark JC, Forrest AR. Pathology of deaths associated with ‘ecstasy’ and ‘eve’ misuse. J Clin Pathol 1996; 49(2): 149–53PubMedGoogle Scholar
  236. 236.
    Colado MI, Williams JL, Green AR. The hyperthermic and neurotoxic effects of ‘Ecstasy’ (MDMA) and 3,4 methylenedioxyamphetamine (MDA) in the Dark Agouti (DA) rat, a model of the CYP2D6 poor metabolizer phenotype. Br J Pharmacol 1995; 115(7): 1281–9PubMedGoogle Scholar
  237. 237.
    Billman GE. Cocaine: a review of its toxic actions on cardiac function. Crit Rev Toxicol 1995; 25(2): 113–32PubMedGoogle Scholar
  238. 238.
    Brody SL, Slovis CM, Wrenn KD. Cocaine-related medical problems: consecutive series of 233 patients. Am J Med 1990; 88(4): 325–31PubMedGoogle Scholar
  239. 239.
    Hollander JE. The management of cocaine-associated myocardial ischemia. N Engl J Med 1995; 333(19): 1267–72PubMedGoogle Scholar
  240. 240.
    Mouhaffel AH, Madu EC, Satmary WA, et al. Cardiovascular complications of cocaine. Chest 1995; 107(5): 1426–34PubMedGoogle Scholar
  241. 241.
    Brogan WCd, Lange RA, Kim AS, et al. Alleviation of cocaine-induced coronary vasoconstriction by nitroglycerin. J Am Coll Cardiol 1991; 18(2): 581–6PubMedGoogle Scholar
  242. 242.
    Hollander JE, Hoffman RS, Gennis P, et al. Nitroglycerin in the treatment of cocaine associated chest pain: clinical safety and efficacy. J Toxicol Clin Toxicol 1994; 32(3): 243–56PubMedGoogle Scholar
  243. 243.
    Negus BH, Willard JE, Hillis LD, et al. Alleviation of cocaine-induced coronary artery vasoconstriction with intravenous verapamil. Am J Cardiol 1994; 73: 510–3PubMedGoogle Scholar
  244. 244.
    Hollander JE, Carter WA, Hoffman RS. Use of phentolamine for cocaine-induced myocardial ischemia. N Engl J Med 1992; 327(5): 361PubMedGoogle Scholar
  245. 245.
    Hollander JE, Burstein JL, Hoffman RS, et al. Cocaine-associated myocardial infarction, Clinical safety of thrombolytic therapy: Cocaine Associated Myocardial Infarction (CAMI) Study Group. Chest 1995; 107(5): 1237–41PubMedGoogle Scholar
  246. 246.
    Derlet RW, Horowitz BZ. Cocaine-associated myocardial ischemia. N Engl J Med 1996; 334(8): 535–6 (discussion 536–7)PubMedGoogle Scholar
  247. 247.
    Blaho K, Merigian K, Winbery S. Cocaine-associated myocardial ischemia [discussion 536-7]. N Engl J Med 1996; 334(8): 536PubMedGoogle Scholar
  248. 248.
    Rajput V, Sunnergren KP. Cocaine-associated myocardial ischemia [discussion 536-7]. N Engl J Med 1996; 334(8): 536PubMedGoogle Scholar
  249. 249.
    Hollander JE. Cocaine-associated myocardial ischemia. N Engl J Med 1996; 334: 536–7Google Scholar
  250. 250.
    Lange RA, Cigarroa RG, Yancy Jr CW, et al. Cocaine-induced coronary-artery vasoconstriction. N Engl J Med 1989; 321(23): 1557–62PubMedGoogle Scholar
  251. 251.
    Lange RA, Cigarroa RG, Flores ED, et al. Potentiation of cocaine-induced coronary vasoconstriction by beta-adrenergic blockade. Ann Intern Med 1990; 112(12): 897–903PubMedGoogle Scholar
  252. 252.
    Merigian KS, Park LJ, Leeper KV, et al. Adrenergic crisis from crack cocaine ingestion: report of five cases. J Emerg Med 1994; 12(4): 485–90PubMedGoogle Scholar
  253. 253.
    Gay GR, Loper KA. The use of labetalol in the management of cocaine crisis. Ann Emerg Med 1988; 17(3): 282–3PubMedGoogle Scholar
  254. 254.
    Briggs RS, Birtwell AJ, Pohl JE. Hypertensive response to labetalol in phaeochromocytoma. Lancet 1978; I(8072): 1045–6Google Scholar
  255. 255.
    Huang CN, Wu DJ, Chen KS. Acute myocardial infarction caused by transnasal inhalation of amphetamine. Jpn Heart J 1993; 34(6): 815–8PubMedGoogle Scholar
  256. 256.
    Derlet RW, Horowitz BZ. Cardiotoxic drugs. Emerg Med Clin North Am 1995; 13(4): 771–91PubMedGoogle Scholar
  257. 257.
    Le Gac JM, Picault L, Texier S, et al. Myocardial infarction during amphetamine poisoning. Presse Med 1996; 25(21): 995PubMedGoogle Scholar
  258. 258.
    Cregg MT, Tracey JA. Ecstasy abuse in Ireland. Ir Med J 1993; 86(4): 118–20PubMedGoogle Scholar
  259. 259.
    Beckman KJ, Parker RB, Hariman RJ, et al. Hemodynamic and electrophysiological actions of cocaine: effects of sodium bicarbonate as an antidote in dogs. Circulation 1991; 83(5): 1799–807PubMedGoogle Scholar
  260. 260.
    Chakko S, Sepulveda S, Kessler KM, et al. Frequency and type of electrocardioraphic abnormalities in cocaine abusers (electrocardiogram in cocaine abuse). Am J Cardiol 1994; 74:710–3PubMedGoogle Scholar
  261. 261.
    Stork CM, Redd JT, Fine K, et al. Propoxyphene-induced wide QRS complex dysrhythmia responsive to sodium bicarbonate: a case report. J Toxicol Clin Toxicol 1995; 33(2): 179–83PubMedGoogle Scholar
  262. 262.
    Hantson P, Evenepoel M, Ziade D, et al. Adverse cardiac manifestations following dextropropoxyphene overdose: can naloxone be helpful? Ann Emerg Med 1995; 25(2): 263–6PubMedGoogle Scholar
  263. 263.
    Derlet RW, Albertson TE. Lidocaine potentiation of cocaine toxicity. Ann Emerg Med 1991; 20: 135–38PubMedGoogle Scholar
  264. 264.
    Shih RD, Hollander JE, Burstein JL, et al. Clinical safety of lidocaine in patients with cocaine-associated myocardial infarction. Ann Emerg Med 1995; 26(6): 702–6PubMedGoogle Scholar
  265. 265.
    Drake WM, Broadhurst PA. QT-interval prolongation with Ecstasy. S Afr Med J 1996; 86(2): 180–1PubMedGoogle Scholar
  266. 266.
    Miller BL, Mena I, Giombetti R, et al. Neuropsychiatric effects of cocaine: SPECT measurements. J Addict Dis 1992; 11(4): 47–58PubMedGoogle Scholar
  267. 267.
    Kranzler HR, Satel S, Apter A. Personality disorders and associated features in cocaine-dependent inpatients. Compr Psychiatry 1994; 35(5): 335–40PubMedGoogle Scholar
  268. 268.
    Brady KT, Sonne S, Randall CL, et al. Features of cocaine dependence with concurrent alcohol abuse. Drug Alcohol Depend 1995; 39(1): 69–71PubMedGoogle Scholar
  269. 269.
    Benowitz NL. How toxic is cocaine? Ciba Found Symp 1992; 166: 125–48PubMedGoogle Scholar
  270. 270.
    Williams H, Meagher D, Galligan P. M.D.M.A. (‘Ecstasy’); a case of possible drug-induced psychosis. Ir J Med Sci 1993; 162(2): 43–4PubMedGoogle Scholar
  271. 271.
    Sternbach H. The serotonin syndrome. Am J Psychiatry 1991; 148(6): 705–13PubMedGoogle Scholar
  272. 272.
    Ames D, Wirshing WC. Ecstasy, the serotonin syndrome, and neuroleptic malignant syndrome: a possible link? JAMA 1993; 269(7): 869–70PubMedGoogle Scholar
  273. 273.
    Davis GG, Swalwell CI. The incidence of acute cocaine or methamphetamine intoxication in deaths due to ruptured cerebral (berry) aneurysms. J Forensic Sci 1996; 41(4): 626–8PubMedGoogle Scholar
  274. 274.
    Schievink WI. Intracranial aneurysms. N Engl J Med 1997; 336: 28–40PubMedGoogle Scholar
  275. 275.
    Hughes JC, McCabe M, Evans RJ. Intracranial haemorrhage associated with ingestion of ‘ecstasy’. Arch Emerg Med 1993; 10(4): 372–4PubMedGoogle Scholar
  276. 276.
    Gledhill JA, Moore DF, Bell D, et al. Subarachnoid haemorrhage associated with MDMA abuse. J Neurol Neurosurg Psychiatry 1993; 56(9): 1036–7PubMedGoogle Scholar
  277. 277.
    Koppel BS, Samkoff L, Daras M. Relation of cocaine use to seizures and epilepsy. Epilepsia 1996; 37(9): 875–8PubMedGoogle Scholar
  278. 278.
    Mott SH, Packer RJ, Soldin SJ. Neurologic manifestations of cocaine exposure in childhood. Pediatrics 1994; 93(4): 557–60PubMedGoogle Scholar
  279. 279.
    Kunisaki TA, Augenstein WL. Drug and toxin-induced seizures. Emerg Med Clin North Am 1994; 12: 1027–56PubMedGoogle Scholar
  280. 280.
    Holland RWD, Marx JA, Earnest MP, et al. Grand mal seizures temporally related to cocaine use: clinical and diagnostic features. Ann Emerg Med 1992; 21(7): 772–6PubMedGoogle Scholar
  281. 281.
    Manchanda S, Connolly MJ. Cerebral infarction in association with Ecstasy abuse. Postgrad Med J 1993; 69(817): 874–5PubMedGoogle Scholar
  282. 282.
    Tashkin DP, Kleerup EC, Koyal SN, et al. Acute effects of inhaled and IV cocaine on airway dynamics. Chest 1996; 110: 904–10PubMedGoogle Scholar
  283. 283.
    Meleca RJ, Burgio DL, Carr RM, et al. Mucosal injuries of the upper aerodigestive tract after smoking crack or freebase cocaine. Laryngoscope 1997; 107(5): 620–5PubMedGoogle Scholar
  284. 284.
    Tehan B, Hardern R, Bodenham A. Hyperthermia associated with 3,4-methylenedioxyethamphetamine (‘Eve’). Anaesthesia 1993; 48(6): 507–10PubMedGoogle Scholar
  285. 285.
    Henry JA, Jeffreys KJ, Dawling S. Toxicity and deaths from 3,4-methylenedioxymethamphetamine (‘ecstasy’). Lancet 1992; 340(8816): 384–7PubMedGoogle Scholar
  286. 286.
    Holden R, Jackson MA. Near-fatal hyponatraemic coma due to vasopressin over-secretion after ‘ecstasy’ (3,4-MDMA). Lancet 1996; 347(9007): 1052PubMedGoogle Scholar
  287. 287.
    Denborough MA, Hopkinson KC. Dantrolene and ‘ecstasy’. Med J Aust 1997; 166: 165–6PubMedGoogle Scholar
  288. 288.
    Nash JF, Meltzer HY, Gudelsky GA. Elevation of serum prolactin and corticosterone concentrations in the rat after the administration of 3,4-methylenedioxymethamphetamine. J Pharmacol Exper Ther 1988; 245: 873–9Google Scholar
  289. 289.
    Simantov R, Tauber M. The abused drug MDMA (Ecstasy) induces programmed death of human serotonergic cells. FASEB J 1997; 11(2): 141–6PubMedGoogle Scholar
  290. 290.
    Greer G, Tolbert R. Subjective reports of the effects of MDMA in a clinical setting. J Psychoactive Drugs 1986; 18: 319–27PubMedGoogle Scholar
  291. 291.
    Kessel B. Hyponatraemia after ingestion of ecstasy. BMJ 1994; 308(6925): 414PubMedGoogle Scholar
  292. 292.
    Matthai SM, Davidson DC, Sills JA, et al. Cerebral oedema after ingestion of MDMA (‘ecstasy’) and unrestricted intake of water. BMJ 1996; 312: 1359PubMedGoogle Scholar
  293. 293.
    Parr MJA, Low HM, Botterill P. Hyponatraemia and death after ‘ecstasy’ ingestion. Med J Aust 1997; 166: 136–7PubMedGoogle Scholar
  294. 294.
    Wilkins B. Cerebral oedema after MDMA (‘ecstasy’) and unrestricted water intake: hyponatraemia must be treated with low water input [discussion 690]. BMJ 1996; 313(7058): 689–90PubMedGoogle Scholar
  295. 295.
    Finch E, Sell L, Arnold D. Cerebral oedema after MDMA (‘ecstasy’) and unrestricted water intake: drug workers emphasise that water is not an antidote to drug. BMJ 1996; 313(7058): 690PubMedGoogle Scholar
  296. 296.
    Singarajah C, Lavies NG. An overdose of ecstasy: a role for dantrolene. Anaesthesia 1992; 47(8): 686–7PubMedGoogle Scholar
  297. 297.
    Watson JD, Ferguson C, Hinds CJ, et al. Exertional heat stroke induced by amphetamine analogues: does dantrolene have a place? Anaesthesia 1993; 48(12): 1057–60PubMedGoogle Scholar
  298. 298.
    Webb C, Williams V. Ecstasy intoxication: appreciation of complications and the role of dantrolene. Anaesthesia 1993; 48(6): 542–3PubMedGoogle Scholar
  299. 299.
    McCann UD, Slate SO, Ricaurte GA. Adverse reactions with 3,4-methylenedioxymethamphetamine (MDMA; ‘Ecstacy’). Drug Saf 1996; 15: 107–15PubMedGoogle Scholar
  300. 300.
    Utecht MJ, Stone AF, McCarron MM. Heroin body packers. J Emerg Med 1993; 11(1): 33–40PubMedGoogle Scholar
  301. 301.
    John H, Schoenenberger R, Renner N, et al. Cocaine poisoning from transport of the drug in the gastrointestinal tract (the body-packer syndrome). Deutsche Med Wochenschrift 1992; 117(51–52): 1952–5Google Scholar
  302. 302.
    Bettinger J. Cocaine intoxication: massive overdose. Ann Emerg Med 1980; 9: 429–30PubMedGoogle Scholar
  303. 303.
    McKinney PE, Tomaszewski C, Phillips S, et al. Methamphetamine toxicity prevented by activated charcoal in a mouse model. Ann Emerg Med 1994; 24(2): 220–3PubMedGoogle Scholar
  304. 304.
    Snodgrass WR. Clinical Toxicology. In: Klaasen CD, editor. Casarett and Doull’s toxicology: the basic science of poisons. 5th ed. New York: McGraw-Hill, 1996: 972Google Scholar
  305. 305.
    Tenenbein M, Cohen S, Sitar DS. Whole bowel irrigation as a decontamination procedure after acute drug overdose. Arch Intern Med 1987; 147(5): 905–7PubMedGoogle Scholar
  306. 306.
    Perera KM, Tulley M, Jenner FA. The use of benzodiazepines among drug addicts. Br J Addict 1987; 82(5): 511–5PubMedGoogle Scholar
  307. 307.
    Darke S, Hall W. Levels and correlates of polydrug use among heroin users and regular amphetamine users. Drug Alcohol Depend 1995; 39(3): 231–5PubMedGoogle Scholar
  308. 308.
    Busto U, Sellers EM, Naranjo CA, et al. Patterns of benzodiazepine abuse and dependence. Br J Addict 1986; 81(1): 87–94PubMedGoogle Scholar
  309. 309.
    Brown BS, Chaitkin L. Use of stimulant/depressant drugs by drug abuse clients in selected metropolitan areas. Int J Addicts 1981; 16(8): 1473–90Google Scholar
  310. 310.
    Smart RG, Ogborne AC, Newton-Taylor B. Drug abuse and alcohol problems among cocaine abusers in an assessment/referral service. Br J Addict 1990; 85(12): 1595–8PubMedGoogle Scholar
  311. 311.
    Darke S, Ross J, Cohen J. The use of benzodiazepines among regular amphetamine users. Addiction 1994; 89(12): 1683–90PubMedGoogle Scholar
  312. 312.
    Griffiths RR, McLeod DR, Bigelow GE, et al. Comparison of diazepam and oxazepam: preference, liking and extent of abuse. J Pharmacol Exp Ther 1984; 229(2): 501–8PubMedGoogle Scholar
  313. 313.
    Griffiths RR, Ator NA, Lukas SE, et al. Benzodiazepines: drug discrimination and physiological dependence. NIDA Res Monogr 1984; 49: 163–4PubMedGoogle Scholar
  314. 314.
    Strang J, Des Jarlais DC, Griffiths P, et al. The study of transitions in the route of drug use: the route from one route to another. Br J Addict 1992; 87(3): 473–83PubMedGoogle Scholar
  315. 315.
    Arendt RM, Greenblatt DJ, deJong RH, et al. In vitro correlates of benzodiazepine cerebrospinal fluid uptake, pharmacodynamic action and peripheral distribution. J Pharmacol Exp Ther 1983; 227(1): 98–106PubMedGoogle Scholar
  316. 316.
    Ballinger BR. New drugs: hypnotics and anxiolytics. BMJ 1990; 300(6722): 456–8PubMedGoogle Scholar
  317. 317.
    Livingston MG. Benzodiazepine dependence. Br J Hosp Med 1994; 51(6): 281–6PubMedGoogle Scholar
  318. 318.
    Macdonald RL. Antiepileptic drug actions [discussion S64-8]. Epilepsia 1989; 30Suppl. 1: S19–28PubMedGoogle Scholar
  319. 319.
    Macdonald RL, Kelly KM. Antiepileptic drug mechanisms of action. Epilepsia 1995; 36Suppl. 2: S2–12PubMedGoogle Scholar
  320. 320.
    Twyman RE, Rogers CJ, Macdonald RL. Differential regulation of gamma-aminobutyric acid receptor channels by diazepam and phenobarbital. Ann Neurology 1989; 25(3): 213–20Google Scholar
  321. 321.
    Polc P. Electrophysiology of benzodiazepine receptor ligands: multiple mechanisms and sites of action. Prog Neurobiol 1988; 31(5): 349–423PubMedGoogle Scholar
  322. 322.
    Phillis JW, O’Regan MH. The role of adenosine in the central actions of the benzodiazepines. Prog Neuropsychopharmacol Biol Psychiatry 1988; 12(4): 389–404PubMedGoogle Scholar
  323. 323.
    Nutt DJ. Benzodiazepine dependence in the clinic: a cause for anxiety? Trends Neurosci 1986; 160: 165–78Google Scholar
  324. 324.
    Nutt D, Lawson C. Panic attacks: a neurochemical overview of models and mechanisms. Br J Psychiatry 1992; 160: 165–78PubMedGoogle Scholar
  325. 325.
    Gardner CR. Functional in vivo correlates of the benzodiazepine agonist-inverse agonist continuum. Prog Neurobiol 1988; 31(6): 425–76PubMedGoogle Scholar
  326. 326.
    O’Sullivan GF, Wade DN. Flumazenil in the management of acute drug overdosage with benzodiazepines and other agents. Clin Pharmacol Ther 1987; 42(3): 254–9PubMedGoogle Scholar
  327. 327.
    Amrein R, Leishman B, Bentzinger C, et al. Flumazenil in benzodiazepine antagonism: actions and clinical use in intoxications and anaesthesiology. Med Toxicol Adverse Drug Exp 1987; 2(6): 411–29PubMedGoogle Scholar
  328. 328.
    Amrein R, Hetzel W, Hartmann D, et al. Clinical pharmacology of flumazenil. Eur J Anaesthesiol 1988; 2 Suppl.: 65–80Google Scholar
  329. 329.
    Spivey WH. Flumazenil and seizures: analysis of 43 cases. Clin Ther 1992; 14(2): 292–305PubMedGoogle Scholar
  330. 330.
    Spivey WH, Roberts JR, Deriet RW. A clinical trial of escalating doses of flumazenil for reversal of suspected benzodiazepine overdose in the emergency department. Ann Emerg Med 1993; 22(12): 1813–21PubMedGoogle Scholar
  331. 331.
    Derlet RW, Albertson TE. Flumazenil induces seizures and death in mixed cocaine-diazepam intoxications. Ann Emerg Med 1994; 23(3): 494–8PubMedGoogle Scholar
  332. 332.
    Richards JG, Mohler H. Benzodiazepine receptors. Neuropharmacology 1984; 23(2B): 233–42PubMedGoogle Scholar
  333. 333.
    File SE, Pellow S. Intrinsic actions of the benzodiazepine receptor antagonist Ro 15-1788. Psychopharmacology 1986; 88(1): 1–11PubMedGoogle Scholar
  334. 334.
    Savic I, Widen L, Stone-Elander S. Feasibility of reversing benzodiazepine tolerance with flumazenil. Lancet 1991; 337(8734): 133–7PubMedGoogle Scholar
  335. 335.
    Gonsalves SF, Gallager DW. Spontaneous and RO 15-1788-induced reversal of subsensitivity to GABA following chronic benzodiazepines. Eur J Pharmacol 1985; 110(2): 163–70PubMedGoogle Scholar
  336. 336.
    Woods JH, Katz JL, Winger G. Abuse liability of benzodiazepines. Pharmacol Rev 1987; 39(4): 251–413PubMedGoogle Scholar
  337. 337.
    Woods JH, Winger G. Current benzodiazepine issues [discussion 118, 120–1]. Psychopharmacology 1995; 118(2): 107–15PubMedGoogle Scholar
  338. 338.
    Busto U, Kaplan HL, Zawertailo L, et al. Pharmacologic effects and abuse liability of bretazenil, diazepam, and alprazolam in humans. Clin Pharmacol Ther 1994; 55(4): 451–63PubMedGoogle Scholar
  339. 339.
    Ries RK, Roy-Byrne PP, Ward NG, et al. Carbamazepine treatment for benzodiazepine withdrawal. Am J Psychiatry 1989; 146(4): 536–7PubMedGoogle Scholar
  340. 340.
    Klein E, Colin V, Stolk J, et al. Alprazolam withdrawal in patients with panic disorder and generalized anxiety disorder: vulnerability and effect of carbamazepine. Am J Psychiatry 1994; 151(12): 1760–6PubMedGoogle Scholar
  341. 341.
    Anonymous. Investing in health: World Bank Report. Oxford: Oxford University Press, 1993Google Scholar
  342. 342.
    Rangno RE, Kreeft JH, Sitar DS. Ethanol ‘dose-dependent’ elimination: Michaelis-Menten v classical kinetic analysis. Br J Clin Pharmacol 1981; 12(5): 667–73PubMedGoogle Scholar
  343. 343.
    Dubowski KM. Absorption, distribution and elimination of alcohol: highway safety aspects. J Stud Alcohol 1985; 10 Suppl.: 98–108Google Scholar
  344. 344.
    Frezza M, di Padova C, Pozzato G, et al. High blood alcohol levels in women: the role of decreased gastric alcohol dehydrogenase activity and first-pass metabolism. N Engl J Med 1990; 322(2): 95–9PubMedGoogle Scholar
  345. 345.
    DiPadova C, Worner TM, Julkunen RJ, et al. Effects of fasting and chronic alcohol consumption on the first-pass metabolism of ethanol. Gastroenterology 1987; 92 (5 Pt 1): 1169–73PubMedGoogle Scholar
  346. 346.
    Caballeria J, Frezza M, Hernandez-Munoz R, et al. Gastric origin of the first-pass metabolism of ethanol in humans: effect of gastrectomy. Gastroenterology 1989; 97(5): 1205–9PubMedGoogle Scholar
  347. 347.
    Lieber CS. Alcohol and the liver: 1994 update. Gastroenterology 1994; 106(4): 1085–105PubMedGoogle Scholar
  348. 348.
    Gentry RT, Baraona E, Lieber CS. Rebuttal to antagonist. J Lab Clin Med 1994; 123:31–2Google Scholar
  349. 349.
    Roine RP, Gentry RT, Lim Jr RT, et al. Comparison of blood alcohol concentrations after beer and whiskey. Alcohol Clin Exper Res 1993; 17(3): 709–11Google Scholar
  350. 350.
    Caballeria J, Baraona E, Rodamilans M, et al. Effects of cimetidine on gastric alcohol dehydrogenase activity and blood ethanol levels. Gastroenterology 1989; 96 (2 Pt 1): 388–92PubMedGoogle Scholar
  351. 351.
    Palmer RH, Frank WO, Nambi P, et al. Effects of various concomitant medications on gastric alcohol dehydrogenase and the first-pass metabolism of ethanol. Am J Gastroenterol 1991; 86(12): 1749–55PubMedGoogle Scholar
  352. 352.
    Raufman JP, Notar-Francesco V, Raffaniello RD, et al. Histamine-2 receptor antagonists do not alter serum ethanol levels in fed, nonalcoholic men. Ann Intern Med 1993; 118(7): 488–94PubMedGoogle Scholar
  353. 353.
    Toon S, Khan AZ, Holt BI, et al. Absence of effect of ranitidine on blood alcohol concentrations when taken morning, midday, or evening with or without food. Clin Pharmacol Ther 1994; 55(4): 385–91PubMedGoogle Scholar
  354. 354.
    Dauncey H, Chesher GB, Palmer RH. Cimetidine and ranitidine: lack of effect on the pharmacokinetics of an acute ethanol dose. J Clin Gastroenterol 1993; 17(3): 189–94PubMedGoogle Scholar
  355. 355.
    Smith T, DeMaster EG, Furne JK, et al. First-pass gastric mucosal metabolism of ethanol is negligible in the rat. J Clin Invest 1992; 89(6): 1801–6PubMedGoogle Scholar
  356. 356.
    Levitt MD. Antagonist: the case against first-pass metabolism of ethanol in the stomach. J Lab Clin Med 1994; 123(1): 28–31PubMedGoogle Scholar
  357. 357.
    Baraona E, Yokoyama A, Ishii H, et al. Lack of alcohol dehydrogenase isoenzyme activities in the stomach of Japanese subject. Life Sci 1991; 49(25): 1929–34PubMedGoogle Scholar
  358. 358.
    Baraona E, Gentry RT, Lieber CS. Bioavailability of alcohol: role of gastric metabolism and its interaction with other drugs. Dig Dis 1994; 12(6): 351–67PubMedGoogle Scholar
  359. 359.
    Gentry RT, Baraona E, Lieber CS. Agonist: gastric first pass metabolism of alcohol [discussion 27]. J Lab Clin Med 1994; 123(1): 21–6PubMedGoogle Scholar
  360. 360.
    Hasumura Y, Teschke R, Lieber CS. Acetaldehyde oxidation by hepatic mitochondria: decrease after chronic ethanol consumption. Science 1975; 189(4204): 727–9PubMedGoogle Scholar
  361. 361.
    Bosron WF, Lumeng L, Li TK. Genetic polymorphism of enzymes of alcohol metabolism and susceptibility to alcoholic liver disease. Mol Aspects Med 1988; 10(2): 147–58PubMedGoogle Scholar
  362. 362.
    Nutt DJ, Peters TJ. Alcohol: the drug. Br Med Bull 1994; 50(1): 5–17PubMedGoogle Scholar
  363. 363.
    Shibuya A, Yoshida A. Genotypes of alcohol-metabolizing enzymes in Japanese with alcohol liver diseases: a strong association of the usual Caucasian-type aldehyde dehydrogenase gene (ALDH1 (2)) with the disease. Am J Hum Genet 1988; 43(5): 744–8PubMedGoogle Scholar
  364. 364.
    Shibuya A, Yoshida A. Frequency of the atypical aldehyde dehydrogenase-2 gene (ALDH2 (2)) in Japanese and Caucasians. Am J Hum Genet 1988; 43(5): 741–3PubMedGoogle Scholar
  365. 365.
    Truitt Jr EB, Gaynor CR, Mehl DL. Aspirin attenuation of alcohol-induced flushing and intoxication in Oriental and Occidental subjects. Alcohol Alcohol 1987; Suppl.(1): 595–9Google Scholar
  366. 366.
    Takahashi T, Lasker JM, Rosman AS, et al. Induction of cytochrome P-4502E1 in the human liver by ethanol is caused by a corresponding increase in encoding messenger RNA. Hepatology 1993; 17(2): 236–45PubMedGoogle Scholar
  367. 367.
    Buhler R, Lindros KO, von Boguslawsky K, et al. Perivenous expression of ethanol-inducible cytochrome P450IIE1 in livers from alcoholics and chronically ethanol-fed rats. Alcohol Alcohol 1991; 1 Suppl.: 311–5Google Scholar
  368. 368.
    Ugarte G, Pino ME, Insunza I. Hepatic alcohol dehydrogenase in alcoholic addicts with and without hepatic damage. Am J Dig Dis 1967; 12(6): 589–92PubMedGoogle Scholar
  369. 369.
    De Craemer D, Kerckaert I, Roels F. Hepatocellular peroxisomes in human alcoholic and drug-induced hepatitis: a quantitative study. Hepatology 1991; 14(5): 811–7PubMedGoogle Scholar
  370. 370.
    Peters TJ. Ethanol metabolism. Br Med Bull 1982; 38(1): 17–20PubMedGoogle Scholar
  371. 371.
    Garriott JC. Forensic aspects of ethyl alcohol. Clin Lab Med 1983; 3(2): 385–96PubMedGoogle Scholar
  372. 372.
    Keiding S, Christensen NJ, Damgaard SE, et al. Ethanol metabolism in heavy drinkers after massive and moderate alcohol intake. Biochem Pharmacol 1983; 32(20): 3097–102PubMedGoogle Scholar
  373. 373.
    Lieber CS. Cytochrome P-4502E1: its physiological and pathological role. Physiol Rev 1997; 77(2): 517–44PubMedGoogle Scholar
  374. 374.
    Wilkinson PK, Sedman AJ, Sakmar E, et al. Pharmacokinetics of ethanol after oral administration in the fasting state. J Pharmacokinet Biopharm 1977; 5(3): 207–24PubMedGoogle Scholar
  375. 375.
    Holford NH. Clinical pharmacokinetics of ethanol. Clin Pharmacokinet 1987; 13(5): 273–92PubMedGoogle Scholar
  376. 376.
    Walle AJ, Gruner O, Niedermayer W. Measurement of total body water in patients on maintenance hemodialysis using an ethanol dilution technique. Nephron 1980; 26(6): 286–90PubMedGoogle Scholar
  377. 377.
    O’Neill S, Tipton KF, Prichard JS, et al. Survival after high blood alcohol levels: association with first-order elimination kinetics. Arch Intern Med 1984; 144(3): 641–2PubMedGoogle Scholar
  378. 378.
    Hammond KB, Rumack BH, Rodgerson DO. Blood ethanol: a report of unusually high levels in a living patient. JAMA 1973; 226(1): 63–4PubMedGoogle Scholar
  379. 379.
    Crabb DW, Bosron WF, Li TK. Ethanol metabolism. Pharmacol Ther 1987; 34(1): 59–73PubMedGoogle Scholar
  380. 380.
    Jackson PR, Tucker GT, Woods HF. Backtracking booze with Bayes: the retrospective interpretation of blood alcohol data. Br J Clin Pharmacol 1991; 31(1): 55–63PubMedGoogle Scholar
  381. 381.
    Jones AW. Pharmacokinetics of ethanol in saliva: comparison with blood and breath alcohol profiles, subjective feelings of intoxication, and diminished performance. Clin Chem 1993; 39(9): 1837–44PubMedGoogle Scholar
  382. 382.
    Jones AW, Beylich KM, Bjorneboe A, et al. Measuring ethanol in blood and breath for legal purposes: variability between laboratories and between breath-test instruments. Clin Chem 1992; 38(5): 743–7PubMedGoogle Scholar
  383. 383.
    Jones AW. Variability of the blood: breath alcohol ratio in vivo. J Stud Alcohol 1978; 39(11): 1931–9PubMedGoogle Scholar
  384. 384.
    Cobb PGW, Dabbs MDG. Report on blood alcohol measuring instruments. London: HMSO, 1985Google Scholar
  385. 385.
    Modell JG, Taylor JP, Lee JY. Breath alcohol values following mouthwash use. JAMA 1993; 270(24): 2955–6PubMedGoogle Scholar
  386. 386.
    Brown OM. Breath alcohol after using mouthwash. JAMA 1994; 271(18): 1400–1PubMedGoogle Scholar
  387. 387.
    Caplan RP. The use of a breathalyser as a treatment strategy in long-term alcohol abuse. Br J Addict 1991; 86(11): 1491–3PubMedGoogle Scholar
  388. 388.
    Wiseman SM, Tomson PV, Barnett JM, et al. Use of an alcolmeter to detect problem drinkers. Br Med J Clin Res Ed 1982; 285(6348): 1089–90PubMedGoogle Scholar
  389. 389.
    Prabhu MB, Hurst TS, Cockcroft DW, et al. Airflow obstruction and roadside breath alcohol testing. Chest 1991; 100(2): 585–6PubMedGoogle Scholar
  390. 390.
    Briggs JE, Patel H, Butterfield K, et al. The effects of chronic obstructive airways disease on the ability to drive and to use a roadside alcolmeter. Respir Med 1990; 84(1): 43–6PubMedGoogle Scholar
  391. 391.
    Morris MJ. Alcohol breath testing in patients with respiratory disease. Thorax 1990; 45(10): 717–21PubMedGoogle Scholar
  392. 392.
    Chin JH, Goldstein DB. Membrane-disordering action of ethanol: variation with membrane cholesterol content and depth of the spin label probe. Mol Pharmacol 1981; 19(3): 425–31PubMedGoogle Scholar
  393. 393.
    Wood WG, Schroeder F. Membrane effects of ethanol: bulk lipid versus lipid domains. Life Sci 1988; 43(6): 467–75PubMedGoogle Scholar
  394. 394.
    Wood WG, Schroeder F, Rao AM. Significance of ethanol-induced changes in membrane lipid domains. Alcohol Alcohol 1991; 1 Suppl.: 221–5Google Scholar
  395. 395.
    Hoek JB, Higashi K. Effects of alcohol on polyphosphoinositide-mediated intracellular signaling. Ann NY Acad Sci 1991; 625: 375–87PubMedGoogle Scholar
  396. 396.
    Hoffman PL, Rabe CS, Moses F, et al. N-methyl-D-aspartate receptors and ethanol: inhibition of calcium flux and cyclic GMP production. J Neurochemistry 1989; 52(6): 1937–40Google Scholar
  397. 397.
    Michaelis ML, Michaelis EK. Effects of ethanol on NMDA receptors in brain: possibilities for Mg (2+)-ethanol interactions. Alcohol Clin Exp Res 1994; 18(5): 1069–75PubMedGoogle Scholar
  398. 398.
    Carboni S, Isola R, Gessa GL, et al. Ethanol prevents the glutamate release induced by N-methyl-D-aspartate in the rat striatum. Neurosci Lett 1993; 152(1–2): 133–6PubMedGoogle Scholar
  399. 399.
    Gulya K, Grant KA, Valverius P, et al. Brain regional specificity and time-course of changes in the NMDA receptor-ionophore complex during ethanol withdrawal. Brain Res 1991; 547(1): 129–34PubMedGoogle Scholar
  400. 400.
    Tsai G, Gastfriend DR, Coyle JT. The glutamatergic basis of human alcoholism. Am J Psychiatry 1995; 152(3): 332–40PubMedGoogle Scholar
  401. 401.
    Ticku MK. Alcohol and GABA-benzodiazepine receptor function. Ann Med 1990; 22(4): 241–6PubMedGoogle Scholar
  402. 402.
    File SE, Baldwin HA, Hitchcott PK. Flumazenil but not nitrendipine reverses the increased anxiety during ethanol withdrawal in the rat. Psychopharmacology 1989; 98(2): 262–4PubMedGoogle Scholar
  403. 403.
    Nutt D, Glue P, Molyneux S, et al. Alpha-2-adrenoceptor function in alcohol withdrawal: a pilot study of the effects of iv. clonidine in alcoholics and normals. Alcohol Clin Exp Res 1988; 12(1): 14–8PubMedGoogle Scholar
  404. 404.
    Naranjo CA, Bremner KE. Serotonin-altering medications and desire, consumption and effects of alcohol-treatment implications. EXS 1994; 71: 209–19PubMedGoogle Scholar
  405. 405.
    Davis VE, Brown H, Huff JA, et al. The alteration of serotonin metabolism to 5-hydroxytryptophol by ethanol ingestion in man. J Lab Clin Med 1967; 69(1): 132–40PubMedGoogle Scholar
  406. 406.
    Rosman AS, Lieber CS. Diagnostic utility of laboratory tests in alcoholic liver disease. Clin Chem 1994; 40(8): 1641–51PubMedGoogle Scholar
  407. 407.
    Helander A, Beck O, Jacobsson G, et al. Time course of ethanol-induced changes in serotonin metabolism. Life Sci 1993; 53(10): 847–55PubMedGoogle Scholar
  408. 408.
    Carlsson AV, Hiltunen AJ, Beck O, et al. Detection of relapses in alcohol-dependent patients: comparison of carbohydrate-deficient transferrin in serum, 5-hydroxytryptophol in urine, and self-reports. Alcohol Clin Exp Res 1993; 17(3): 703–8PubMedGoogle Scholar
  409. 409.
    Balldin J, Berggren U, Engel J, et al. Neuroendocrine evidence for reduced serotonergic neurotransmission during heavy drinking. Alcohol Clin Exper Res 1994; 18(4): 822–5Google Scholar
  410. 410.
    Tiihonen J, Kuikka J, Hakola P, et al. Acute ethanol-induced changes in cerebral blood flow. Am J Psychiatry 1994; 151(10): 1505–8PubMedGoogle Scholar
  411. 411.
    Swift RM. Effect of naltrexone on human alcohol consumption. J Clin Psychiatry 1995; 56Suppl. 7: 24–9PubMedGoogle Scholar
  412. 412.
    Swift RM, Whelihan W, Kuznetsov O, et al. Naltrexone-induced alterations in human ethanol intoxication. Am J Psychiatry 1994; 151(10): 1463–7PubMedGoogle Scholar
  413. 413.
    Volpicelli JR, Watson NT, King AC, et al. Effect of naltrexone on alcohol ‘high’ in alcoholics. Am J Psychiatry 1995; 152(4): 613–5PubMedGoogle Scholar
  414. 414.
    Volpicelli JR, Volpicelli LA, O’Brien CP. Medical management of alcohol dependence: clinical use and limitations of naltrexone treatment. Alcohol Alcohol 1995; 30(6): 789–98PubMedGoogle Scholar
  415. 415.
    O’Malley SS, Jaffe AJ, Chang G, et al. Naltrexone and coping skills therapy for alcohol dependence: a controlled study. Arch Gen Psychiatry 1992; 49(11): 881–7PubMedGoogle Scholar
  416. 416.
    Volpicelli JR, Alterman AI, Hayashida M, et al. Naltrexone in the treatment of alcohol dependence. Arch Gen Psychiatry 1992; 49(11): 876–80PubMedGoogle Scholar
  417. 417.
    Lieber CS. Medical disorders of alcoholism. N Engl J Med 1995; 333(16): 1058–65PubMedGoogle Scholar
  418. 418.
    Liskow BI, Goodwin DW. Pharmacological treatment of alcohol intoxication, withdrawal and dependence: a critical review. J Stud Alcohol 1987; 48(4): 356–70PubMedGoogle Scholar
  419. 419.
    Shaw JM, Kolesar GS, Sellers EM, et al. Development of optimal treatment tactics for alcohol withdrawal. I: assessment and effectiveness of supportive care. J Clin Psychopharmacol 1981; 1(6): 382–7PubMedGoogle Scholar
  420. 420.
    Sullivan JT, Sykora K, Schneiderman J, et al. Assessment of alcohol withdrawal: the revised clinical institute withdrawal assessment for alcohol scale (CIWA-Ar). Br J Addict 1989; 84(11): 1353–7PubMedGoogle Scholar
  421. 421.
    Hall W, Zador D. The alcohol withdrwal syndrome. Lancet 1997; 349(9069): 1897–900PubMedGoogle Scholar
  422. 422.
    Adinoff B. Double-blind study of alprazolam, diazepam, clonidine, and placebo in the alcohol withdrawal syndrome: preliminary findings. Alcohol Clin Exp Res 1994; 18(4): 873–8PubMedGoogle Scholar
  423. 423.
    Sellers EM, Naranjo CA, Harrison M, et al. Diazepam loading: simplified treatment of alcohol withdrawal. Clin Pharmacol Ther 1983; 34(6): 822–6PubMedGoogle Scholar
  424. 424.
    Majumdar SK. Chlormethiazole: current status in the treatment of the acute ethanol withdrawal syndrome. Drug Alcohol Depend 1991; 27(3): 201–7PubMedGoogle Scholar
  425. 425.
    Foy A. The management of alcohol withdrawal. Med J Aust 1986; 145(1): 24–7PubMedGoogle Scholar
  426. 426.
    Rathlev NK, D’Onofrio G, Fish SS, et al. The lack of efficacy of phenytoin in the prevention of recurrent alcohol-related seizures. Ann Emerg Med 1994; 23(3): 513–8PubMedGoogle Scholar
  427. 427.
    Shader RI, Greenblatt DJ. Propranolol’s psychiatric side effects. J Clin Psychopharmacol 1983; 3(2): 65PubMedGoogle Scholar
  428. 428.
    Parker WA. Propranolol-induced depression and psychosis. Clin Pharm 1985; 4(2): 214–8PubMedGoogle Scholar
  429. 429.
    Peters DH, Faulds D. Tiapride: a review of its pharmacology and therapeutic potential in the management of alcohol dependence syndrome. Drugs 1994; 47(6): 1010–32PubMedGoogle Scholar
  430. 430.
    Wetterling T, Kanitz RD, Veltrup C, et al. Clinical predictors of alcohol withdrawal delirium. Alcohol Clin Exp Res 1994; 18(5): 1100–2PubMedGoogle Scholar
  431. 431.
    Gallimberti L, Canton G, Gentile N, et al. Gammahydroxybutyric acid for treatment of alcohol withdrawal syndrome. Lancet 1989; II(8666): 787–9Google Scholar
  432. 432.
    Roth RH, Nowycky MC. Dopaminergic neurons: effects elicited by gamma-hydroxybutyrate are reversed by picrotoxin. Biochem Pharmacol 1977; 26(21): 2079–82PubMedGoogle Scholar
  433. 433.
    Vayer P, Mandel P, Maitre M. Gamma-hydroxybutyrate, a possible neurotransmitter. Life Sci 1987; 41(13): 1547–57PubMedGoogle Scholar
  434. 434.
    Ferrara SD, Zotti S, Tedeschi L, et al. Pharmacokinetics of gamma-hydroxybutyric acid in alcohol dependent patients after single and repeated oral doses. Br J Clin Pharmacol 1992; 34(3): 231–5PubMedGoogle Scholar
  435. 435.
    Palatini P, Tedeschi L, Frison G, et al. Dose-dependent absorption and elimination of gamma-hydroxybutyric acid in healthy volunteers. Eur J Clin Pharmacol 1993; 45(4): 353–6PubMedGoogle Scholar
  436. 436.
    Arena C, Fung HL. Absorption of sodium gamma-hydroxybutyrate and its prodrug gamma-butyrolactone: relationship between in vitro transport and in vivo absorption. J Pharm Sci 1980; 69(3): 356–8PubMedGoogle Scholar
  437. 437.
    Gallimberti L, Cibin M, Pagnin P, et al. Gamma-hydroxybutyric acid for treatment of opiate withdrawal syndrome. Neuropsychopharmacology 1993; 9(1): 77–81PubMedGoogle Scholar
  438. 438.
    Ferrara SD, Tedeschi L, Frison G, et al. Fatality due to gammahydroxybutyric acid (GHB) and heroin intoxication. J Forensic Sci 1995; 40(3): 501–4PubMedGoogle Scholar
  439. 439.
    Stell JM, Ryan JM. Ecstasy and neurodegeneration: gamma-Hydroxybutyrate is a new recreational drug that may lead to loss of consciousness. BMJ 1996; 313(7054): 424PubMedGoogle Scholar
  440. 440.
    Anonymous. From the Centers for Disease Control and Prevention: gamma hydroxy butyrate use: New York and Texas, 1995–1996. JAMA 1997; 277(19): 1511Google Scholar
  441. 441.
    Anonymous. Gamma hydroxy butyrate use: New York and Texas, 1995–1996. MMWR Morb Mortal Wkly Rep 1997; 46(13): 281–3Google Scholar
  442. 442.
    Friedman J, Westlake R, Furman M. ‘Grievous bodily harm’: gamma hydroxybutyrate abuse leading to a Wernicke-Korsakoff syndrome. Neurology 1996; 46(2): 469–71PubMedGoogle Scholar
  443. 443.
    Galloway GP, Frederick SL, Staggers Jr FE, et al. Gammahydroxybutyrate: an emerging drug of abuse that causes physical dependence. Addiction 1997; 92(1): 89–96PubMedGoogle Scholar
  444. 444.
    Thomas G, Bonner S, Gascoigne A. Coma induced by abuse of gamma-hydroxybutyrate (GBH or liquid ecstasy): a case report. BMJ 1997; 314(7073): 35–6PubMedGoogle Scholar
  445. 445.
    Hesselbrock MN, Meyer RE, Keener JJ. Psychopathology in hospitalized alcoholics. Arch Gen Psychiatry 1985; 42(11): 1050–5PubMedGoogle Scholar
  446. 446.
    Ciraulo DA, Jaffe JH. Tricyclic antidepressants in the treatment of depression associated with alcoholism. J Clin Psychopharmacol 1981; 1(3): 146–50PubMedGoogle Scholar
  447. 447.
    Anonymous. Tricyclic antidepressants: blood level measurements and clinical outcome: an APA Task Force report: Task Force on the Use of Laboratory Tests in Psychiatry. Am J Psychiatry 1985; 142(2): 155–62Google Scholar
  448. 448.
    Sass H, Soyka M, Mann K, et al. Relapse prevention by acamprosate; results from a placebo-controlled study on alcohol dependence. Arch Gen Psychiatry 1996; 53(8): 673–80PubMedGoogle Scholar
  449. 449.
    Whitworth AB, Fischer F, Lesch OM, et al. Comparison of acamprosate and placebo in long-term treatment of alcohol dependence. Lancet 1996; 347(9013): 1438–42PubMedGoogle Scholar
  450. 450.
    Wilde MI, Wagstaff AJ. Acamprosate: a review of its pharmacolgy and clinical potential in the management of alcohol dependence after detoxification. Drugs 1997; 53(6): 1038–53PubMedGoogle Scholar
  451. 451.
    Brewer C. Controlled trials of antabuse in alcoholism: the importance of supervision and adequate dosage. Acta Psychiatr Scand 1992; 369 Suppl.: 51–8Google Scholar
  452. 452.
    Brewer C. Recent developments in disulfiram treatment. Alcohol Alcohol 1993; 28(4): 383–95PubMedGoogle Scholar
  453. 453.
    Brewer C. Long-term, high-dose disulfiram in the treatment of alcohol abuse. Br J Psychiatry 1993; 163: 687–9PubMedGoogle Scholar
  454. 454.
    Price J. Abstinence and antabuse: symbolism and supervision. Med J Aust 1994; 160(4): 175PubMedGoogle Scholar
  455. 455.
    Brewer C. On the specific effectiveness, and under-valuing, of pharmacological treatments for addiction: a comparison of methodone, naltrexone and disulfiram with psychosocial intervention. Addiction Res 1997; 3: 297–313Google Scholar
  456. 456.
    Fuller RK, Branchey L, Brightwell DR, et al. Disulfiram treatment of alcoholism: a Veterans Administration cooperative study. JAMA 1986; 256(11): 1449–55PubMedGoogle Scholar
  457. 457.
    Kitson TM. The disulfiram-ethanol reaction: a review. J Stud Alcohol 1977; 38(1): 96–113PubMedGoogle Scholar
  458. 458.
    Liskow B, Nickel E, Tunley N, et al. Alcoholics’ attitudes toward and experiences with disulfiram. Am J Drug Alcohol Abuse 1990; 16(1–2): 147–60PubMedGoogle Scholar
  459. 459.
    Shaw GK, Waller S, Majumdar SK, et al. Tiapride in the prevention of relapse in recently detoxified alcoholics. Br J Psychiatry 1994; 165(4): 515–23PubMedGoogle Scholar
  460. 460.
    Gorelick DA, Paredes A. Effect of fluoxetine on alcohol consumption in male alcoholics. Alcohol Clin Exper Res 1992; 16(2): 261–5Google Scholar
  461. 461.
    Naranjo CA, Poulos CX, Bremner KE, et al. Citalopram decreases desirability, liking, and consumption of alcohol in alcohol-dependent drinkers. Clin Pharmacol Ther 1992; 51(6): 729–39PubMedGoogle Scholar
  462. 462.
    Naranjo CA, Ozdemir V, Bremner KE. Diagnosis and pharmacological treatment of alcoholic patients. CNS Drugs 1994; 1: 330–340Google Scholar
  463. 463.
    Monti JM, Alterwain P. Ritanserin decreases alcohol intake in chronic alcoholics. Lancet 1991; 337(8732): 60PubMedGoogle Scholar
  464. 464.
    Volpicelli JR. Naltrexone in alcohol dependence. Lancet 1995; 346(8973): 456PubMedGoogle Scholar
  465. 465.
    O’Malley SS. Strategies to maximize the efficacy of naltrexone for alcohol dependence. NIDA Res Monogr 1995; 150: 53–64PubMedGoogle Scholar
  466. 466.
    Benowitz NL, Jacob Pd, Jones RT, et al. Interindividual variability in the metabolism and cardiovascular effects of nicotine in man. J Pharmacol Exp Ther 1982; 221(2): 368–72PubMedGoogle Scholar
  467. 467.
    Benowitz NL. Pharmacologic aspects of cigarette smoking and nicotine addition. N Engl J Med 1988; 319(20): 1318–30PubMedGoogle Scholar
  468. 468.
    Gorrod JW, Jenner P. The metabolism of tobacco alkaloids: essays in toxicology. New York: Academic Press, 1975: 35–78Google Scholar
  469. 469.
    Gries J-M, Benowitz N, Verotta D. Chronopharmacokinetics of nicotine. Clin Pharmacol Ther 1996; 60: 385–95PubMedGoogle Scholar
  470. 470.
    Lee BL, Jacob Pd, Jarvik ME, et al. Food and nicotine metabolism. Pharmacol Biochem Behav 1989; 33(3): 621–5PubMedGoogle Scholar
  471. 471.
    Hall SM, Herning RI, Jones RT, et al. Blood cotinine levels as indicators of smoking treatment outcome. Clin Pharmacol Ther 1984; 35(6): 810–4PubMedGoogle Scholar
  472. 472.
    Benowitz NL, Jacob PR. Metabolism of nicotine to cotinine studied by a dual stable isotope method. Clin Pharmacol Ther 1994; 56(5): 483–93PubMedGoogle Scholar
  473. 473.
    Benowitz NL, Jacob PR, Sachs DP. Deficient C-oxidation of nicotine. Clin Pharmacol Ther 1995; 57(5): 590–4PubMedGoogle Scholar
  474. 474.
    Henningfield JE, London ED, Benowitz NL. Arterial-venous differences in plasma concentrations of nicotine after cigarette smoking. JAMA 1990; 263(15): 2049–50PubMedGoogle Scholar
  475. 475.
    Anonymous. The health consequences of smoking: nicotine addiction: a report of the Surgeon General. Washington, DC: United States Department of Health and Human Services, 1988Google Scholar
  476. 476.
    Pomerleau OF, Pomerleau CS. Neuroregulators and the reinforcement of smoking: towards a biobehavioral explanation. Neurosci Biobehav Rev 1984; 8(4): 503–13PubMedGoogle Scholar
  477. 477.
    Kadoya C, Domino EF, Matsuoka S. Relationship of electroencephalographic and cardiovascular changes to plasma nicotine levels in tobacco smokers. Clin Pharmacol Ther 1994; 55(4): 370–7PubMedGoogle Scholar
  478. 478.
    Benowitz NL, Porchet H, Sheiner L, et al. Nicotine absorption and cardiovascular effects with smokeless tobacco use: comparison with cigarettes and nicotine gum. Clin Pharmacol Ther 1988; 44(1): 23–8PubMedGoogle Scholar
  479. 479.
    Schneider NG. Nicotine therapy in smoking cessation: pharmacokinetic considerations. Clin Pharmacokinet 1992; 23(3): 169–72PubMedGoogle Scholar
  480. 480.
    Cohen C, Pickworth WB, Bunker EB, et al. Caffeine antagonizes EEG effects of tobacco withdrawal. Pharmacol Biochem Behav 1994; 47(4): 919–36PubMedGoogle Scholar
  481. 481.
    Grunberg NE. Cigarette smoking and body weight: current prespectives and future directions. Ann Behav Med 1989; 11: 154–7Google Scholar
  482. 482.
    Leischow SJ, Stitzer ML. Smoking cessation and weight gain. Br J Addict 1991; 86(5): 577–81PubMedGoogle Scholar
  483. 483.
    Sutherland G, Stapleton JA, Russell MA, et al. Randomised controlled trial of nasal nicotine spray in smoking cessation. Lancet 1992; 340(8815): 324–9PubMedGoogle Scholar
  484. 484.
    Tonnesen P, Norregaard J, Mikkelsen K, et al. A double-blind trial of a nicotine inhaler for smoking cessation. JAMA 1993; 269(10): 1268–71PubMedGoogle Scholar
  485. 485.
    Benowitz NL, Henningfield JE. Establishing a nicotine threshold for addiction: the implications for tobacco regulation. N Engl J Med 1994; 331(2): 123–5PubMedGoogle Scholar
  486. 486.
    Keenan RM, Hatsukami DK, Pentel PR, et al. Pharmacodynamic effects of cotinine in abstinent cigarette smokers. Clin Pharmacol Ther 1994; 55(5): 581–90PubMedGoogle Scholar
  487. 487.
    Akehurst RL, Piercy J. Cost-effectiveness of the use of transdermal Nicorrette patches relative to GP counselling and nicotine gum in prevention of smoking-related diseases. Br J Med Econ 1994; 7: 115–122Google Scholar
  488. 488.
    Akehurst R, Piercy J. Cost-effectiveness of the use of Nicorrette nasal spray to assist quitting smoking among heavy smokers. Br J Med Econ 1994; 7: 155–84Google Scholar
  489. 489.
    Fiscella K, Franks P. Cost-effectiveness of the transdermal nicotine patch as an adjunct to physicians’ smoking cessation counseling. JAMA 1996; 275(16): 1247–51PubMedGoogle Scholar
  490. 490.
    Srivastava ED, Russell MA, Feyerabend C, et al. Sensitivity and tolerance to nicotine in smokers and nonsmokers. Psychopharmacology 1991; 105(1): 63–8PubMedGoogle Scholar
  491. 491.
    Tonnesen P, Fryd V, Hansen M, et al. Two and four mg nicotine chewing gum and group counselling in smoking cessation: an open, randomized, controlled trial with a 22 month follow-up. Addict Behav 1988; 13(1): 17–27PubMedGoogle Scholar
  492. 492.
    Tonnesen P, Fryd V, Hansen M, et al. Effect of nicotine chewing gum in combination with group counseling on the cessation of smoking. N Engl J Med 1988; 318(1): 15–8PubMedGoogle Scholar
  493. 493.
    Henningfield JE, Radzius A, Cooper TM, et al. Drinking coffee and carbonated beverages blocks absorption of nicotine from nicotine polacrilex gum. JAMA 1990; 264(12): 1560–4PubMedGoogle Scholar
  494. 494.
    Gehlbach SH, Williams WA, Perry LD, et al. Green-tobacco sickness: an illness of tobacco harvesters. JAMA 1974; 229(14): 1880–3PubMedGoogle Scholar
  495. 495.
    Benowitz NL, Lake T, Keller KH, et al. Prolonged absorption with development of tolerance to toxic effects after cutaneous exposure to nicotine. Clin Pharmacol Ther 1987; 42(1): 119–20PubMedGoogle Scholar
  496. 496.
    Benowitz NL. Nicotine replacement therapy during pregnancy. JAMA 1991; 266(22): 3174–7PubMedGoogle Scholar
  497. 497.
    Palmer KJ, Buckley MM, Faulds D. Transdermal nicotine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy as an aid to smoking cessation. Drugs 1992; 44(3): 498–529PubMedGoogle Scholar
  498. 498.
    Tonnesen P, Norregaard J, Simonsen K, et al. A double-blind trial of a 16-hour transdermal nicotine patch in smoking cessation. N Engl J Med 1991; 325(5): 311–5PubMedGoogle Scholar
  499. 499.
    Fiore MC, Smith SS, Jorenby DE, et al. The effectiveness of the nicotine patch for smoking cessation: a meta-analysis. JAMA 1994; 271(24): 1940–7PubMedGoogle Scholar
  500. 500.
    Gourlay S. The pros and cons of transdermal nicotine therapy. Med J Aust 1994; 160(3): 152–9PubMedGoogle Scholar
  501. 501.
    Jarvik M. Nasal nicotine solution: its potential in smoking cessation and as a research tool. In: Ockene JK, editor. Pharmacologic treatment of tobacco dependence. Cambridge (MA): Harvard Institute for the Study of Smoking Behaviour and Policy, 1986: 167–73Google Scholar
  502. 502.
    Rose JE. The role of upper airway stimulation in smoking. Prog Clin Biol Res 1988; 261: 95–106PubMedGoogle Scholar
  503. 503.
    Bergstrom M, Nordberg A, Lunell E, et al. Regional deposition of inhaled 11C-nicotine vapor in the human airway as visualized by positron emission tomography. Clin Pharmacol Ther 1995; 57(3): 309–17PubMedGoogle Scholar
  504. 504.
    Newman SP, Moren F, Pavia D, et al. Deposition of pressurized suspension aerosols inhaled through extension devices. Am Rev Respir Dis 1981; 124(3): 317–20PubMedGoogle Scholar
  505. 505.
    Fairer M, Francis AJ, Pearce SJ. Morning serum cortisol concentrations after 2 mg inhaled beclomethasone dipropionate in normal subjects: effect of a 750 ml spacing device. Thorax 1990; 45(10): 740–2Google Scholar
  506. 506.
    O’Callaghan C. Particle size of beclomethasone dipropionate produced by two nebulisers and two spacing devices. Thorax 1990; 45(2): 109–11PubMedGoogle Scholar
  507. 507.
    O’Callaghan C, Cant M, Robertson C. Delivery of beclomethasone dipropionate from a spacer device: what dose is available for inhalation? Thorax 1994; 49(10): 961–4PubMedGoogle Scholar
  508. 508.
    de Wit H, Zacny J. Abuse potential of nicotine replacement therapies. CNS Drugs 1995; 3: 227–36Google Scholar
  509. 509.
    Benowitz NL. Cigarette smoking and nicotine addiction. Med Clin North Am 1992; 76(2): 415–37PubMedGoogle Scholar
  510. 510.
    Porchet HC, Benowitz NL, Sheiner LB, et al. Apparent tolerance to the acute effect of nicotine results in part from distribution kinetics. J Clin Invest 1987; 80(5): 1466–71PubMedGoogle Scholar
  511. 511.
    Porchet HC, Benowitz NL, Sheiner LB. Pharmacodynamic model of tolerance: application to nicotine. J Pharmacol Exp Ther 1988; 244(1): 231–6PubMedGoogle Scholar
  512. 512.
    Fiore MC, Jorenby DE, Baker TB, et al. Tobacco dependence and the nicotine patch: clinical guidelines for effective use. JAMA 1992; 268(19): 2687–94PubMedGoogle Scholar
  513. 513.
    Hurt RD, Eberman KM, Croghan IT, et al. Nicotine dependence treatment during inpatient treatment for other addictions: a prospective intervention trial. Alcohol Clin Exper Res 1994; 18(4): 867–72Google Scholar
  514. 514.
    Westman EC, Levin ED, Rose JE. The nicotine patch in smoking cessation: a randomized trial with telephone counseling. Arch Intern Med 1993; 153(16): 1917–23PubMedGoogle Scholar
  515. 515.
    Tennant Jr FS, Tarver AL, Rawson RA. Clinical evaluation of mecamylamine for withdrawal from nicotine dependence. NIDA Res Monogr 1984; 49: 239–46PubMedGoogle Scholar
  516. 516.
    Rose JE, Behm FM, Westman EC, et al. Mecamylamine combined with nicotine skin patch facilitates smoking cessation beyond nicotine patch treatment alone. Clin Pharmacol Ther 1994; 56(1): 86–99PubMedGoogle Scholar
  517. 517.
    Tennant Jr FS, Tarver AL. Withdrawal from nicotine dependence using mecamylamine: comparison of three-week and six-week dosage schedules. NIDA Res Monogr 1984; 55: 291–7PubMedGoogle Scholar
  518. 518.
    Newhouse PA, Potter A, Corwin J, et al. Age-related effects of the nicotinic antagonist mecamylamine on cognition and behavior. Neuropsychopharmacology 1994; 10(2): 93–107PubMedGoogle Scholar
  519. 519.
    Vinik HR, Bradley Jr EL, Kissin I. Midazolam-alfentanil synergism for anesthetic induction in patients. Anesth Analg 1989; 69(2): 213–7PubMedGoogle Scholar
  520. 520.
    Michalowski P, Rosow CE. Perioperative drug interactions. J Clin Anesth 1993; 5 (6 Suppl. 1): 29S–33SPubMedGoogle Scholar
  521. 521.
    Goodchild CS. GAB A receptors and benzodiazepines. Br J Anaesth 1993; 71(1): 127–33PubMedGoogle Scholar
  522. 522.
    Stella L, Crescenti A, Torri G. Effect of naloxone on the loss of consciousness induced by i.v. anaesthetic agents in man. Br J Anaesth 1984; 56(4): 369–73PubMedGoogle Scholar
  523. 523.
    Mello NK, Negus SS, Lukas SE, et al. A primate model of polydrug abuse: cocaine and heroin combinations. J Pharmacol Exp Ther 1995; 274(3): 1325–37PubMedGoogle Scholar
  524. 524.
    Bonci A, Williams JT. A common mechanism mediates longterm changes in synaptic transmission after chronic cocaine and morphine. Neuron 1996; 16: 1996Google Scholar
  525. 525.
    Smilkstein M, Smolinske SC, Rumack BH. A case: MAO inhibitor/MDMA: agony after ecstacy. Clin Toxicol 1987; 25: 149–59Google Scholar
  526. 526.
    Duxbury AJ. Ecstacy: dental implications. Br Dent J 1993; 175:38PubMedGoogle Scholar
  527. 527.
    Venkatesan K. Pharmacokinetic drug interactions with rifampicin. Clin Pharmacokinet 1992; 22(1): 47–65PubMedGoogle Scholar
  528. 528.
    Borowsky SA, Lieber CS. Interaction of methadone and ethanol metabolism. J Pharmacol Exp Ther 1978; 207(1): 123–9PubMedGoogle Scholar
  529. 529.
    Maurer PM, Bartkowski RR. Drug interactions of clinical significance with opioid analgesics. Drug Saf 1993; 8(1): 30–48PubMedGoogle Scholar
  530. 530.
    Tong TG, Pond SM, Kreek MJ, et al. Phenytoin-induced methadone withdrawal. Ann Intern Med 1981; 94(3): 349–51PubMedGoogle Scholar
  531. 531.
    Kreek MJ, Garfield JW, Gutjahr CL, et al. Rifampin-induced methadone withdrawal. N Engl J Med 1976; 294(20): 1104–6PubMedGoogle Scholar
  532. 532.
    de Vos JW, Geerlings PJ, van den Brink W, et al. Pharmacokinetics of methadone and its primary metabolite in 20 opiate addicts. Eur J Clin Pharmacol 1995; 48(5): 361–6PubMedGoogle Scholar
  533. 533.
    Saxon AJ, Whittaker S, Hawker CS. Valproic acid, unlike other anticonvulsants, has no effect on methadone metabolism: two cases. J Clin Psychiatry 1989; 50(6): 228–9PubMedGoogle Scholar
  534. 534.
    Lertora JJ, Rege AB, Greenspan DL, et al. Pharmacokinetic interaction between zidovudine and valproic acid in patients infected with human immunodeficiency virus. Clin Pharmacol Ther 1994; 56(3): 272–8PubMedGoogle Scholar
  535. 535.
    Bertschy G, Baumann P, Eap CB, et al. Probable metabolic interaction between methadone and fluvoxamine in addict patients. Ther Drug Monit 1994; 16(1): 42–5PubMedGoogle Scholar
  536. 536.
    Schwartz EL, Brechbuhl AB, Kahl P, et al. Pharmacokinetic interactions of zidovudine and methadone in intravenous drug-using patients with HIV infection. J Acquir Immune Defic Syndr 1992; 5(6): 619–26PubMedGoogle Scholar
  537. 537.
    Boyer CS, Petersen DR. Enzymatic basis for the transesterification of cocaine in the presence of ethanol: evidence for the participation of microsomal carboxylesterases. J Pharmacol Exp Ther 1992; 260(3): 939–46PubMedGoogle Scholar
  538. 538.
    Bailey DN. Studies of cocaethylene (ethylcocaine) formation by human tissues in vitro. J Anal Toxicol 1994; 18(1): 13–5PubMedGoogle Scholar
  539. 539.
    Heith AM, Morse CR, Tsujita T, et al. Fatty acid ethyl ester synthase catalyzes the esterification of ethanol to cocaine. Biochem Biophys Res Commun 1995; 208(2): 549–54PubMedGoogle Scholar
  540. 540.
    McCance-Katz EF, Price LH, McDougle CJ, et al. Concurrent cocaine-ethanol ingestion in humans: pharmacology, physiology, behavior, and the role of cocaethylene. Psychopharmacology 1993; 111(1): 39–46PubMedGoogle Scholar
  541. 541.
    Bradberry CW, Nobiletti JB, Elsworth JD, et al. Cocaine and cocaethylene: microdialysis comparison of brain drug levels and effects on dopamine and serotonin. J Neurochemistry 1993; 60(4): 1429–35Google Scholar
  542. 542.
    Iyer RN, Nobiletti JB, Jatlow PI, et al. Cocaine and cocaethylene: effects on extracellular dopamine in the primate. Psychopharmacology 1995; 120(2): 150–5PubMedGoogle Scholar
  543. 543.
    Bailey DN. Serial plasma concentrations of cocaethylene, cocaine, and ethanol in trauma victims. J Anal Toxicol 1993; 17(2): 79–83PubMedGoogle Scholar
  544. 544.
    McCance EF, Price LH, Kosten TR, et al. Cocaethylene: pharmacology, physiology and behavioral effects in humans. J Pharmacol Exp Ther 1995; 274(1): 215–23PubMedGoogle Scholar
  545. 545.
    Grant BF, Harford TC. Concurrent and simultaneous use of alcohol with cocaine: results of national survey. Drug Alcohol Depend 1990; 25(1): 97–104PubMedGoogle Scholar
  546. 546.
    Rounsaville BJ, Anton SF, Carroll K, et al. Psychiatric diagnoses of treatment-seeking cocaine abusers. Arch Gen Psychiatry 1991; 48(1): 43–51PubMedGoogle Scholar
  547. 547.
    Lukas SE, Sholar M, Kouri E, et al. Marihuana smoking increases plasma cocaine levels and subjective reports of euphoria in male volunteers. Pharmacol Biochem Behav 1994; 48(3): 715–21PubMedGoogle Scholar
  548. 548.
    Lin Y, Weidler DJ, Garg DC, et al. Effects of solid food on blood levels of alcohol in man. Res Commun Chem Pathol Pharmacol 1976; 13(4): 713–22PubMedGoogle Scholar
  549. 549.
    Minocha A, Herold DA, Barth JT, et al. Activated charcoal in oral ethanol absorption: lack of effect in humans. J Toxicol Clin Toxicol 1986; 24(3): 225–34PubMedGoogle Scholar
  550. 550.
    Gibbons DO, Lant AF. Effects of intravenous and oral propantheline and metoclopramide on ethanol absorption. Clin Pharmacol Ther 1975; 17(5): 578–84PubMedGoogle Scholar
  551. 551.
    Roine R, Heikkonen E, Salaspuro M. Cisapride enhances alcohol absorption and leads to high blood alcohol levels. Gastroenterology 1992; 102: A507Google Scholar
  552. 552.
    Lukas SE, Benedikt R, Mendelson JH, et al. Marihuana attenuates the rise in plasma ethanol levels in human subjects. Neuropsychopharmacology 1992; 7(1): 77–81PubMedGoogle Scholar
  553. 553.
    Brown SS, Forrest JAH, Roscoe P. A controlled trial of fructose in the treatment of acute alcohol intoxication. Lancet 1972; II: 898–900Google Scholar
  554. 554.
    Kopun M, Propping P. The kinetics of ethanol absorption and elimination in twins and supplementary repetitive experiments in singleton subjects. Eur J Clin Pharmacol 1977; 11(5): 337–44PubMedGoogle Scholar
  555. 555.
    Roine R, Hernandez-Munoz R, Baraona E, et al. Effect of omeprazole on gastric first-pass metabolism of ethanol. Dig Dis Sci 1992; 37(6): 891–6PubMedGoogle Scholar
  556. 556.
    Lau AH, Lam NP, Piscitelli SC, et al. Clinical pharmacokinetics of metronidazole and other nitroimidazole anti-infectives. Clin Pharmacokinet 1992; 23(5): 328–64PubMedGoogle Scholar
  557. 557.
    Kline SS, Mauro VF, Forney Jr RB, et al. Cefotetan-induced disulfiram-type reactions and hypoprothrombinemia. Antimicrob Agents Chemother 1987; 31(9): 1328–31PubMedGoogle Scholar
  558. 558.
    Uri JV, Parks DB. Disulfiram-like reaction to certain cephalosporins. Ther Drug Monit 1983; 5(2): 219–24PubMedGoogle Scholar
  559. 559.
    Johnston C, Wiles PG, Pyke DA. Chlorpropamide-alcohol flush: the case in favour. Diabetologia 1984; 26(1): 1–5PubMedGoogle Scholar
  560. 560.
    Groop L, Eriksson CJ, Huupponen R, et al. Roles of chlorpropamide, alcohol and acetaldehyde in determining the chlorpropamide-alcohol flush. Diabetologia 1984; 26(1): 34–8PubMedGoogle Scholar
  561. 561.
    Krentz AJ, Ferner RE, Bailey CJ. Comparative tolerability profiles of oral antidiabetic agents. Drug Saf 1994; 11(4): 223–41PubMedGoogle Scholar
  562. 562.
    Seeff LB, Cuccherini BA, Zimmerman HJ, et al. Acetaminophen hepatotoxicity in alcoholics: a therapeutic misadventure. Ann Intern Med 1986; 104(3): 399–404PubMedGoogle Scholar
  563. 563.
    Kumar S, Rex DK. Failure of physicians to recognize acetaminophen hepatotoxicity in chronic alcoholics. Arch Intern Med 1991; 151(6): 1189–91PubMedGoogle Scholar
  564. 564.
    Eriksson LS, Broome U, Kalin M, et al. Hepatotoxicity due to repeated intake of low doses of paracetamol. J Intern Med 1992; 231(5): 567–70PubMedGoogle Scholar
  565. 565.
    Perrot N, Nalpas B, Yang CS, et al. Modulation of cytochrome P450 isozymes in human liver, by ethanol and drug intake. Eur J Clin Invest 1989; 19(6): 549–55PubMedGoogle Scholar
  566. 566.
    Prescott LF, Critchley JA. Drug interactions affecting analgesic toxicity. Am J Med 1983; 75(5A): 113–6PubMedGoogle Scholar
  567. 567.
    Lauterburg BH, Velez ME. Glutathione deficiency in alcoholics: risk factor for paracetamol hepatotoxicity. Gut 1988; 29(9): 1153–7PubMedGoogle Scholar
  568. 568.
    Whitcomb DC, Block GD. Association of acetaminophen hepatotoxicity with fasting and ethanol use. JAMA 1994; 272(23): 1845–50PubMedGoogle Scholar
  569. 569.
    Price VF, Jollow DJ. Effect of glucose and gluconeogenic substrates on fasting-induced suppression of acetaminophen glucuronidation in the rat. Biochem Pharmacol 1989; 38(2): 289–97PubMedGoogle Scholar
  570. 570.
    Price VF, Miller MG, Jollow DJ. Mechanisms of fasting-induced potentiation of acetaminophen hepatotoxicity in the rat. Biochem Pharmacol 1987; 36(4): 427–33PubMedGoogle Scholar
  571. 571.
    Crippin JS. Acetaminophen hepatotoxicity: potentiation by isoniazid. Am J Gastroenterol 1993; 88(4): 590–2PubMedGoogle Scholar
  572. 572.
    Henry D, Dobson A, Turner C. Variability in the risk of major gastrointestinal complications from nonaspirin nonsteroidal anti-inflammatory drugs. Gastroenterology 1993; 105(4): 1078–88PubMedGoogle Scholar
  573. 573.
    Strom BL. Adverse reactions to over-the-counter analgesics aken for therapeutic purposes. JAMA 1994; 272(23): 1866–7PubMedGoogle Scholar
  574. 574.
    Cheung L, Potts RG, Meyer KC. Acetaminophen treatment nomogram. N Engl J Med 1994; 330(26): 1907–8PubMedGoogle Scholar
  575. 575.
    Makin AJ, Wendon J, Williams R. Management of severe cases of paracetamol overdosage. Br J Hosp Med 1994; 52(5): 210–3PubMedGoogle Scholar
  576. 576.
    Keays R, Harrison PM, Wendon JA, et al. Intravenous acetylcysteine in paracetamol induced fulminant hepatic failure: a prospective controlled trial. BMJ 1991; 303(6809): 1026–9PubMedGoogle Scholar
  577. 577.
    Harrison PM, Keays R, Bray GP, et al. Improved outcome of paracetamol-induced fulminant hepatic failure by late administration of acetylcysteine. Lancet 1990; 335(8705): 1572–3PubMedGoogle Scholar
  578. 578.
    Svendsen TL, Kristensen MB, Hansen JM, et al. The influence of disulfiram on the half life and metabolic clearance rate of diphenylhydantoin and tolbtamide in man. Eur J Clin Pharmacol 1976; 9(5–6): 439–41Google Scholar
  579. 579.
    O’Reilly RA. Dynamic interaction between disulfiram and separated enantiomorphs of racemic warfarin. Clin Pharmacol Ther 1981; 29(3): 332–6PubMedGoogle Scholar
  580. 580.
    Loi CM, Day JD, Jue SG, et al. Dose-dependent inhibition of theophylline metabolism by disulfiram in recovering alcoholics. Clin Pharmacol Ther 1989; 45(5): 476–86PubMedGoogle Scholar
  581. 581.
    MacLeod SM, Sellers EM, Giles HG, et al. Interaction of disulfiram with benzodiazepines. Clin Pharmacol Ther 1978; 24(5): 583–9PubMedGoogle Scholar
  582. 582.
    Krag B, Dam M, Angelo H, et al. Influence of disulfiram on the serum concentration of carbamazepine in patients with epilepsy. Acta Neurol Scand 1981; 63(6): 395–8PubMedGoogle Scholar
  583. 583.
    Diquet B, Gujadhur L, Lamiable D, et al. Lack of interaction between disulfiram and alprazolam in alcoholic patients. Eur J Clin Pharmacol 1990; 38(2): 157–60PubMedGoogle Scholar
  584. 584.
    Tong TG, Benowitz NL, Kreek MJ. Methadone-disulfiram interaction during methadone maintenance. J Clin Pharmacol 1980; 20(8–9): 506–13PubMedGoogle Scholar
  585. 585.
    Leinonen E, Lillsunde P, Laukkanen V, et al. Effects of carbamazepine on serum antidepressant concentrations in psychiatric patients. J Clin Psychopharmacol 1991; 11(5): 313–8PubMedGoogle Scholar
  586. 586.
    Perry PJ, Browne JL, Prince RA, et al. Effects of smoking on nortriptyline plasma concentrations in depressed patients. Ther Drug Monit 1986; 8(3): 279–84PubMedGoogle Scholar
  587. 587.
    Westermeyer J. Fluoxetine-induced tricyclic toxicity: extent and duration. J Clin Pharmacol 1991; 31(4): 388–92PubMedGoogle Scholar
  588. 588.
    Steiner E, Spina E. Differences in the inhibitory effect of cimetidine on desipramine metabolism between rapid and slow debrisoquin hydroxylators. Clin Pharmacol Ther 1987; 42(3): 278–82PubMedGoogle Scholar
  589. 589.
    Maany I, Dhopesh V, Arndt IO, et al. Increase in desipramine serum levels associated with methadone treatment. Am J Psychiatry 1989; 146(12): 1611–3PubMedGoogle Scholar
  590. 590.
    Hermann DJ, Krol TF, Dukes GE, et al. Comparison of verapamil, diltiazem, and labetalol on the bioavailability and metabolism of imipramine. J Clin Pharmacol 1992; 32(2): 176–83PubMedGoogle Scholar
  591. 591.
    Ayesh R, Dawling S, Widdop B, et al. Influence of quinidine on the pharmacokinetics of nortryptiline and desipramine. Br J Clin Pharmacol 1988; 25: 140–1Google Scholar
  592. 592.
    Spina E, Pollicino AM, Avenoso A, et al. Effect of fluvoxamine on the pharmacokinetics of imipramine and desipramine in healthy subjects. Ther Drug Monit 1993; 15(3): 243–6PubMedGoogle Scholar
  593. 593.
    Spina E, Campo GM, Avenoso A, et al. Interaction between fluvoxamine and imipramine/desipramine in four patients. Ther Drug Monit 1992; 14(3): 194–6PubMedGoogle Scholar
  594. 594.
    Brownstein MJ. A brief history of opiates, opioid peptides, and opioid receptors. Proc Natl Acad Sci USA 1993; 90(12): 5391–3PubMedGoogle Scholar
  595. 595.
    Pasternak GW. Multiple morphine and enkephalin receptors and the relief of pain. JAMA 1988; 259(9): 1362–7PubMedGoogle Scholar
  596. 596.
    Traynor JR, Elliott J. delta-Opioid receptor subtypes and crosstalk with mu-receptors. Trends Pharmacol Sci 1993; 14(3): 84–6PubMedGoogle Scholar
  597. 597.
    North RA, Williams JT, Surprenant A, et al. Mu and delta receptors belong to a family of receptors that are coupled to potassium channels. Proc Natl Acad Sci USA 1987; 84(15): 5487–91PubMedGoogle Scholar
  598. 598.
    Burns M, Baselt RC. Monitoring drug use with a sweat patch: an experiment with cocaine. J Anal Toxicol 1995; 19(1): 41–8PubMedGoogle Scholar
  599. 599.
    Tsunoo A, Yoshii M, Narahashi T. Block of calcium channels by enkephalin and somatostatin in neuroblastoma-glioma hybrid NG108-15 cells. Proc Natl Acad Sci USA 1986; 83(24): 9832–6PubMedGoogle Scholar
  600. 600.
    Cook CE, Jeffcoat AR, Perez-Reyes M, et al. Plasma levels of methamphetamine after smoking of methamphetamine hydrochloride. NIDA Res Monogr 1991; 105: 578–9Google Scholar

Copyright information

© Adis International Limited 1997

Authors and Affiliations

  1. 1.St Vincent’s HospitalDarlinghurstAustralia

Personalised recommendations