Clinical Pharmacokinetics

, Volume 31, Issue 5, pp 331–347 | Cite as

Clinical Pharmacokinetics of Tiaprofenic Acid and its Enantiomers

Review Article Drug Disposition

Summary

Tiaprofenic acid is a chiral nonsteroidal anti-inflammatory drug (NSAID) of the 2-arylpropionic acid (2-APA) class. A common structural feature of 2-APA NSAIDs is a sp3-hybridised tetrahedral chiral carbon heteroatom within the propionic acid side chain moiety, with the S-enantiomer possessing most of the beneficial anti-inflammatory activity. However, all tiaprofenic acid preparations to date are marketed as the racemate. Tiaprofenic acid has been suggested to exhibit limited pharmacokinetic stereoselectivity.

The synovium is the proposed site of action of NSAIDs when used for musculoskeletal disorders, and substantial concentrations of tiaprofenic acid are attained in synovial fluid. Recent data suggest the possibility of stereoselective distribution of tiaprofenic acid into synovium and cartilage. Hence, data generated using non-stereospecific assays may not always be extrapolated to explain the disposition of the individual enantiomers.

Tiaprofenic acid is rapidly and almost completely absorbed when given orally. The area under the plasma concentration-time curve (AUC) of tiaprofenic acid is proportional to the oral dose administered.

A sustained release dosage form is available, which may be beneficial due to the short terminal phase half-life of tiaprofenic acid (3 to 6 hours). The bioavailability is the same as that with conventional rapid release preparations, although the peak plasma drug concentration is reduced and time to peak is prolonged.

Tiaprofenic acid binds extensively to plasma albumin. There is negligible R to S inversion upon oral administration. Tiaprofenic acid is eliminated following extensive biotransformation to glucuronide-conjugated metabolites. Approximately 60% is eliminated as conjugates excreted in urine, and little drug is eliminated unchanged. The rate of excretion of tiaprofenic acid and its conjugates may be related to renal function; accumulation of conjugates occurs in end-stage renal disease, but not in young individuals or elderly patients.

Potentially clinically important drug interactions with tiaprofenic acid have been demonstrated for some anticoagulants and probenecid. Relationships between tiaprofenic acid concentrations in biological matrices and therapeutic or toxic effects have not yet been elucidated for this drug.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deraedt R, Benzoni J, Delevallée F. Pharmacological profile of tiaprofenic acid. In: Huskisson R, Katona G, editors. Rheumatology, an annual review, new trends in osteoarthritis. Basel: Karger, 1982: 78–87Google Scholar
  2. 2.
    Camp AV. Tiaprofenic acid in the treatment of rheumatoid arthritis. Rheumatol Rehabil 1981; 20: 181–3PubMedCrossRefGoogle Scholar
  3. 3.
    Wojtulewski JA, Walter J, Thorton EJ. Tiaprofenic acid (Surgam®) in the treatment of osteoarthritis of the knee and hip. Rheumatol Rehabil 1981; 20: 177–80PubMedCrossRefGoogle Scholar
  4. 4.
    Scarpa R, Oriente P, Longalti S. Efficacy and tolerability of an injectable formulation of tiaprofenic acid in patients with acute back and neck pain. Drugs 1988; 35 Suppl. 1: 81–9PubMedCrossRefGoogle Scholar
  5. 5.
    Pini LA, Bertolotti M, Bergnzini G, et al. Pharmacokinetics of tiaprofenic acid after oral administration in fasting patients during and between migraine attacks. Headache 1990; 30: 672–5PubMedCrossRefGoogle Scholar
  6. 6.
    Vauzelle-Kervroëden F, Reuzani Y, Pons G, et al. Antipyretic efficacy of tiaprofenic acid in febrile children. Fundam Clin Pharmacol 1996; 10(1): 56–9CrossRefGoogle Scholar
  7. 7.
    Allison N, Shantz I. Delirium related to tiaprofenic acid. Can Med Assoc J 1987; 137: 1022–3Google Scholar
  8. 8.
    Diffy BL, Daymond TJ, Fairgreaves H. Phototoxic reactions to piroxicam, naproxen, and tiaprofenic acid. Br J Rheumatol 1983; 22: 239–42CrossRefGoogle Scholar
  9. 9.
    Davies NM. Clinical pharmacokinetics of flurbiprofen and its enantiomers. Clin Pharmacokinet 1995; 28(2): 100–14PubMedCrossRefGoogle Scholar
  10. 10.
    Jamali F, Brocks DR. Clinical pharmacokinetics of ketoprofen and its enantiomers. Clin Pharmacokinet 1990; 19(3): 197–217PubMedCrossRefGoogle Scholar
  11. 11.
    Brocks DR, Jamali F. Etodolac clinical pharmacokinetics. Clin Pharmacokinet 1994; 26(4): 259–74PubMedCrossRefGoogle Scholar
  12. 12.
    Brocks DR, Jamali F. Clinical pharmacokinetics of ketorolac tromethamine. Clin Pharmacokinet 1992; 23(6): 415–27PubMedCrossRefGoogle Scholar
  13. 13.
    Evans AM. Enantioselective pharmacodynamics and pharmacokinetics of chiral non-steroidal anti-inflammatory drugs. Eur J Clin Pharmacol 1992; 42: 237–56PubMedCrossRefGoogle Scholar
  14. 14.
    Singh NN, Jamali F, Pasutto FM, et al. Pharmacokinetics of the enantiomers of tiaprofenic acid in humans. J Pharm Sci 1986; 75: 439–42PubMedCrossRefGoogle Scholar
  15. 15.
    Vakily M, Jamali F. Human pharmacokinetics of tiaprofenic acid after regular and sustained release formulations: lack of chiral inversion and stereoselective release. J Pharm Sci 1994; 83(4): 495–98PubMedCrossRefGoogle Scholar
  16. 16.
    Mehvar R, Jamali F, Pasutto FM. Rapid and sensitive high-performance liquid Chromatographie assay of tiaprofenic acid enantiomers in human plasma and urine. J Chromatogr 1988; 425: 1135–42Google Scholar
  17. 17.
    Muller N, Lapicque F, Drelon E, et al. Direct high-performance liquid Chromatographie resolution of the enantiomers of tiaprofenic acid immobilized human serum albumin. J Chromatogr 1993; 616: 261–70PubMedCrossRefGoogle Scholar
  18. 18.
    Vakily M, Jamali F. Pharmacokinetics of tiaprofenic acid in humans: lack of stereoselectivity in plasma using both direct and precolumn derivatization. J Pharm Sci 1996; 85(6): 638–42PubMedCrossRefGoogle Scholar
  19. 19.
    Jamali F, Mehvar R, Russell AS. Pharmacokinetics of tiaprofenic acid enantiomers in renal dysfunction. Japan-US Congress on Pharmaceutical Science; 1988 Dec 2–7; HonoluluGoogle Scholar
  20. 20.
    Lapicque F, Mainard D, Gillet P, et al. Stereoselective distribution of tiaprofenic acid in synovium and cartilage in human. Eur J Clin Pharmacol 1996; 50(4): 283–7PubMedCrossRefGoogle Scholar
  21. 21.
    Geisslinger G, Menzel S, Brune K. Stereospecific determination of tiaprofenic acid in plasma: problems with drug degradation. J Chromatogr B Biomed Appl 1996; 675(1): 77–81PubMedCrossRefGoogle Scholar
  22. 22.
    Vakily M, Jamali F. Pharmacokinetics of tiaprofenic acid in humans: lack of stereoselectivity regardless of analytical method used for quantification of plasma samples. Pharm Res 1995; 12 (9 Suppl.): S-22Google Scholar
  23. 23.
    Sorkin EM, Brogden RN. Tiaprofenic acid: a review of its pharmacological properties and therapeutic efficacy in rheumatic diseases and pain states. Drugs 1985; 29(3): 208–35PubMedCrossRefGoogle Scholar
  24. 24.
    Plosker GL, Wagstaff AJ. Tiaprofenic acid: a reappraisal of its pharmacological properties and use in the management of rheumatic diseases. Drugs 1995; 50(6): 1050–75PubMedCrossRefGoogle Scholar
  25. 25.
    Mohamed ME, Abdel-Aziz MW, Gad-Kariem ER, et al. Rapid differential pulse polarographic determination of tiaprofenic acid. J Assoc Off Anal Chem 1984; 67(4): 634–8Google Scholar
  26. 26.
    Pottier J, Berlin D, Raynaud JP. Pharmacokinetics of the anti-inflammatory tiaprofenic acid in humans, mice, rats, rabbits, and dogs. J Pharm Sci 1977; 66: 1030–6PubMedCrossRefGoogle Scholar
  27. 27.
    Singh NN, Pasutto FM, Coutts RT, et al. Gas Chromatographie Separation of optically active anti-inflammatory 2-arylpropionic acids using (+) - or (−) - amphetamine as derivatizing reagent. J Chromatogr 1986; 378: 125–35PubMedCrossRefGoogle Scholar
  28. 28.
    Jamali F, Russell AS, Berry BW, et al. High-performance liquid Chromatographie analysis of tiaprofenic acid and its metabolites in plasma and urine by direct injection. J Chromatogr 1984; 310: 327–33PubMedCrossRefGoogle Scholar
  29. 29.
    Ward GT, Stead JA, Freeman M. A rapid and specific method for the determination of tiaprofenic acid in human plasma by high-performance liquid chromatography. J Liq Chromatogr 1982; 5: 165–74CrossRefGoogle Scholar
  30. 30.
    Pirkle WH, Welch CJ. An improved chiral stationary phase for the Chromatographie separation of underivatized naproxen enantiomers. J Liq Chromatogr 1992; 15(11): 1947–55CrossRefGoogle Scholar
  31. 31.
    Okamoto Y, Aburatani R, Kaida Y, et al. Direct Chromatographie separation of 2-arylpropionic acid enantiomers using tri(3,5-dimethylphenylcarbamate)s of cellulose and amylose as chiral stationary phases. Chirality 1989; 1: 239–42CrossRefGoogle Scholar
  32. 32.
    Feretti R, Gallinella B, La Torre F, et al. Direct high-performance liquid chromatography resolution on chiral columns of tiaprofenic acid and related compounds in bulk powder and pharmaceutical formulations. J Chromatogr 1993; 704: 217–23Google Scholar
  33. 33.
    Nilsen OG, Storhaug A, Dale O. Binding of tiaprofenic acid to human sera and isolated serum proteins. Arzneimittel Forschung 1985; 35(1): 984–7PubMedGoogle Scholar
  34. 34.
    Koppel C, Wagemann A, Tenczer J, et al. Tiaprofenic acid overdose. Arzneimittel Forschung 1984; 34(2): 836–7PubMedGoogle Scholar
  35. 35.
    Lücker PW, Penth B, Wetzelsberger K. Pharmacokinetic interaction between tiaprofenic acid and several other compounds for chronic use. In: Huskisson R, Katona G, editors. Rheumatology, an annual review, new trends in osteoarthritis. Basel: Karger, 1982: 99–106Google Scholar
  36. 36.
    Rieck W, Platt D. Determination of 2-(5-benzoyl-2-thienyl)-propionic acid (tiaprofenic acid) in the plasma of elderly patients with multiple diseases using high-performance liquid chromatography. J Chromatogr 1987; 421: 206–10PubMedCrossRefGoogle Scholar
  37. 37.
    Marecek N, Lücker PW, Penth B, et al. On the pharmacokinetics of tiaprofenic acid and its possible interactions with aluminum hydroxide [in German]. Arzneimittel Forschung 1981; 31: 116–20PubMedGoogle Scholar
  38. 38.
    De Bernardi M, Feletti F, Tripodi AS. Pharmacokinetics and bioequivalence of a drug containing tiaprofenic acid in healthy volunteers. Acta Toxciol Ther 1991; 12(4): 361–78Google Scholar
  39. 39.
    Maboundou CW, Paintaud G, Berard M, et al. Separation of fifteen non-steroidal anti-inflammatory drugs using micellar electrokinetic capillary chromatography. J Chromatogr 1994; 657: 173–83CrossRefGoogle Scholar
  40. 40.
    Gasparinni F, Misiti D, Villani C, et al. Direct high-performance liquid Chromatographic resolution of 2-aryl-and 2-hetero-arylpropionic acids on a chiral stationary phase containing the N,N′-dinitrobenzoyl derivative of (1 R, 2 R)-diaminocyclohexane. J Chromatogr 1993; 633: 81–7CrossRefGoogle Scholar
  41. 41.
    Hutt AJ, Hadley MR, Tan SC. Enantiospecific analysis: applications in bioanalysis and metabolism. Eur J Drug Metab Pharmacokinet 1994; 3: 241–51CrossRefGoogle Scholar
  42. 42.
    Hermansson J, Hermansson I. Dynamic modification of the chiral bonding properties of a CHIRAL-AGP column by organic and inorganic additives: separation of enantiomers of anti-inflammatory drugs. J Chromatogr 1994; 666: 181–91CrossRefGoogle Scholar
  43. 43.
    Van Overbeke A, Baeyens W, Van Den Bossche W, et al. Separation of 2-arylpropionic acids on a cellulose based chiral stationary phase by RP-HPLC. J Pharm Biomed Anal 1994; 12: 901–9PubMedCrossRefGoogle Scholar
  44. 44.
    Van Overbeke A, Baeyens W, Van Den Bossche W, et al. Enantiomeric separation of amide derivatives of some 2-arylpropionic acids by HPLC on a cellulose-based chiral stationary phase. J Pharm Biomed Anal 1994; 12: 911–6PubMedCrossRefGoogle Scholar
  45. 45.
    Van Overbeke A, Baeyens W, Dewaele C. Enantiomeric separation of six 2-arylpropionic acids after pre-column derivatization with various amines and alchohols on a cellulose-based chiral stationary phase. Anal Chim Acta 1996; 321: 245–61CrossRefGoogle Scholar
  46. 46.
    Bechet I, Fillet M, Hubert P, et al. Quantitative analysis of non-steroidal anti-inflammatory drugs by capillary zone electrophoresis. J Chromatogr 1995; 13(4–5): 497–503Google Scholar
  47. 47.
    Karger AE, Stoll E, Hänsel W. Direct chiral separation of tiaprofen, carprofen and flurbiprofen by cyclodextrin-modified capillary electrophoresis [in German]. Pharmazie 1994; 49(2–3): 155–9Google Scholar
  48. 48.
    Boscà F, Miranda MA, Vargas F. Photochemistry of tiaprofenic acid, a nonsteroidal anti-inflammatory drug with phototoxic side effects. J Pharm Sci 1992; 81(2): 181–2PubMedCrossRefGoogle Scholar
  49. 49.
    Figueiredo A, Fontes Ribeiro CA, Goncalo M, et al. Experimental studies on the mechanisms of tiaprofenic acid photosensitization. J Photo Chem Photobiol B 1993; 18(2–3): 161–8CrossRefGoogle Scholar
  50. 50.
    Pottier J, Coutsy-Berlin D, Busigny M. Human pharmacokinetics of tiaprofenic acid. In: Huskisson R, Katona G, editors. Rheumatology, an annual review, new trends in osteoarthritis. Basel: Karger, 1982: 70–7Google Scholar
  51. 51.
    Daymond TJ, Herbert R. Simultaneous bioavailability of tiaprofenic acid (Surgam®) in serum and synovial fluid in patients with rheumatoid arthritis. Rheumatology 1982; 7: 188–93Google Scholar
  52. 52.
    Jamali F, Russell AS, Lehmann C, et al. Pharmacokinetics of tiaprofenic acid in healthy and arthritic subjects. J Pharm Sci 1985; 74(9): 953–6PubMedCrossRefGoogle Scholar
  53. 53.
    Nilsen OG, Wessel-Aas T, Walseth F. Single dose pharmacokinetics of tiaprofenic acid: effects of food and severe renal insufficiency. Arzneimittel Forschung 1985; 35(1): 871–5PubMedGoogle Scholar
  54. 54.
    Nilsen OG, Jacobsen G, Walstead RA. Steady state pharmacokinetics of tiaprofenic acid in elderly patients. Arzneimittel Forschung 1985; 35(1): 875–9PubMedGoogle Scholar
  55. 55.
    Hosie J, Hosie GAC. The pharmacokinetics of single and multiple doses of tiaprofenic acid in elderly patients with arthritis. Eur J Clin Pharmacol 1987; 32: 93–5PubMedCrossRefGoogle Scholar
  56. 56.
    Hosie GA, Hosie J. The pharmacokinetics of sustained release tiaprofenic acid in elderly arthritic patients. Br J Clin Pharmacol 1987; 24: 93–5PubMedCrossRefGoogle Scholar
  57. 57.
    Pini LA, Casalgrandi L, Bertolotti M, et al. Pharmacokinetics of tiaprofenic acid in headache attacks: a preliminary report. Pharmacol Res 1989; 21(4): 447–9CrossRefGoogle Scholar
  58. 58.
    De Ponti F, D’angelo L, Paparella F. Therapeutic efficacy and pharmacokinetics of tiaprofenic acid vs. tiaprofenic acid plus β cyclodextrin. Arch Med Intern 1990; 42(3–4): 182–7Google Scholar
  59. 59.
    Platt D, Rieck W, Hilgert D, et al. Pharmacokinetics of tiaprofenic acid in geriatric patients with ischemie heart disease. Arch Gerontol Geriatr 1989; 8: 105–15PubMedCrossRefGoogle Scholar
  60. 60.
    Bertin L, Rey E, Pons G, et al. Pharmacokinetics of tiaprofenic acid in children after a single oral dose. Eur J Clin Pharmacol 1991; 41: 251–3PubMedCrossRefGoogle Scholar
  61. 61.
    Cerretani D, Fiaschi AI, Michell L, et al. Pharmacokinetic study on tiaprofenic acid in elderly. Arch Gerontol Geriatr 1991; 2: 539–44Google Scholar
  62. 62.
    Daymond TJ, Herbert R. Pharmacokinetic studies of tiaprofenic acid in patients suffering from rheumatic arthritis. Ann Rheum Dis 1981; 40: 622Google Scholar
  63. 63.
    Nilsen OG. The pharmacokinetics of tiaprofenic acid (Surgam®). Eular Symposium on Arthrosis; 1984 Sep 5–9; RegensburgGoogle Scholar
  64. 64.
    Daymond TJ, Herbert R. Pharmacokinetic studies of a high dose of tiaprofenic acid in patients suffering from arthritis. Br J Clin Pharmacol 1983; 15: 157–8Google Scholar
  65. 65.
    Verbeeck RK. Pathophysiologic factors affecting the pharmacokinetics of nonsteroidal antiinflammatory drugs. J Rheumatol 1988; 17 Suppl.: 44–57Google Scholar
  66. 66.
    Daymond TJ, Rowell FJ. Reduction of prostaglandin E2 concentrations in synovial fluid of patients suffering from rheumatoid arthritis following tiaprofenic acid or indomethacin treatment. Drugs 1988; 35 Suppl. 1: 4–8PubMedCrossRefGoogle Scholar
  67. 67.
    Meirovich CI, Montrull HL, Strusberg AM, et al. Clinical pharmacodynamics of tiaprofenic acid [in Spanish]. Medicina (B Aires) 1986; 46: 59–63Google Scholar
  68. 68.
    Vignon E, Mathieu P, Couprie N, et al. Effects of tiaprofenic acid on interleukin 1, phospholipase A2 activity, prostaglandins, neutral protease, and collagenase activity in rheumatoid synovial fluid. Semin Arthritis Rheum 1989; 17 (3 Suppl. 1): 11–5CrossRefGoogle Scholar
  69. 69.
    Kurowski M. Transsynovialkinetik der tiaprofensäure. Z Rheumatol 1988; 47: 173–6PubMedGoogle Scholar
  70. 70.
    Strusberg AM, Arroyo SR, Montrull HL, et al. Tiaprofenic acid pharmacokinetics in rheumatoid arthritis and osteoarthritis. Third International Seminar on the Treatment of Rheumatic Diseases; 1983 Nov 13–20; Jerusalem, Israel, 13–20Google Scholar
  71. 71.
    Nichol FE, Samanta A, Rose CM. Synovial fluid kinetics of repeated dose sustained action tiaprofenic acid in patients with rheumatoid arthritis. Drugs 1988; 35 Suppl. 1: 46–51PubMedCrossRefGoogle Scholar
  72. 72.
    Mira E, Benazzo M, Galioto P, et al. Tiaprofenic acid: levels in plasma and upper airway tissues. Acta Otorhinolaryngol Ital 1990; 28: 47–52Google Scholar
  73. 73.
    Kaneto H, Matsui Y. Metabolic fate of tiaprofenic acid (RU-1560)(l) absorption, distribution and excretion following oral administration in the rat and dog. Pharmacometrics 1977; 13: 399–409Google Scholar
  74. 74.
    Clemence F, Le Martret O, Fournex R, et al. Recheche de composes anti-inflammatoires et analgesiques dans la serie du thiophene. Eur J Med Chim Ther 1974; 9: 390Google Scholar
  75. 75.
    Essigman W, Lambert J, Sheldon P, et al. A comparison of a sustained release preparation of tiaprofenic acid with the conventional tablet formulation and a placebo in rheumatoid arthritis. Int J Clin Pharm Res 1987; 4: 251–7Google Scholar
  76. 76.
    Phillips G, Selfridge DI, Hayes G, et al. Comparison of sustained-release with standard tiaprofenic acid in the treatment of rheumatic diseases in general practice. Curr Med Res Opin 1987; 10: 486–93PubMedCrossRefGoogle Scholar
  77. 77.
    Day RO, Furst DE, Dromogoole SH, et al. Relationship between concentration and efficacy in rheumtoid arthritis. Clin Pharmacol Ther 1982; 31(6): 733–40PubMedCrossRefGoogle Scholar
  78. 78.
    Furst DE, Caldwell JR, Klugman MP, et al. Serum concentration and dose-response relationships for carprofen in rheumatoid arthritis. Clin Pharmacol Ther 1988; 44: 186–94PubMedCrossRefGoogle Scholar
  79. 79.
    Laska EM, Sunshine A, Marrero I. The correlation between blood levels of ibuprofen and analgesic response. Clin Pharmacol Ther 1986; 40(1): 1–7PubMedCrossRefGoogle Scholar
  80. 80.
    Fibbi G, Serni U, Pucci M, et al. Plasminogen activators and tiaprofenic acid in inflammation: a preliminary study. Drugs 1988; 35 Suppl. 1: 9–14PubMedCrossRefGoogle Scholar
  81. 81.
    Blackshear JL, Davidman M, Stillman MT. Identification of risk for renal insufficiency from nonsteroidal anti-inflammatory drugs. Arch Intern Med 1983; 143(6): 1130–4PubMedCrossRefGoogle Scholar
  82. 82.
    Ishioka T. Is tiaprofenic acid different from other NSAIDs with regard to effects on renal function in the elderly? Drugs 1988; 35 Suppl. 1: 95–100PubMedCrossRefGoogle Scholar
  83. 83.
    Upton RA, Buskin JN, Williams RL, et al. Negligible excretion of unchanged ketoprofen, naproxen, and probenecid in urine. J Pharm Sci 1980; 69(11): 1254–7PubMedCrossRefGoogle Scholar
  84. 84.
    Volans GN. Migraine and drug absorption. Br J Clin Pharmacol 1975; 2: 57–63PubMedGoogle Scholar
  85. 85.
    Platt D, Eicher H, Rieck W, et al. Pharmacokinetics of tiaprofenic acid in elderly multimorbid patients. Drugs 1988; 35 Suppl. 1: 53–6PubMedCrossRefGoogle Scholar
  86. 86.
    Baeumont VJ, Scott SM, Greef OBW, et al. Tiaprofenic acid: a South African multicentre open evaluation in musculoskeletal disorders. S Afr Med J 1983; Suppl.: 9–13Google Scholar
  87. 87.
    Sinigaglia L, Zeni S, Solazzi F, et al. The effect of tiaprofenic acid on uric acid excretion in man. Drugs 1988; 35 Suppl. 1: 68–71PubMedCrossRefGoogle Scholar
  88. 88.
    Coladangelo R. Liver dysfunction caused by tiaprofenic acid [letter]. Lancet 1986; I(8484): 803CrossRefGoogle Scholar
  89. 89.
    Benarrosh C. Etude multicentrique de l’acide tiaprofénique versus placebo en double insu dans les angines et pharyngites de l’enfant. Arch Fr Pediatr 1989; 46: 541–6PubMedGoogle Scholar
  90. 90.
    Upton RA, Williams RL, Buskin JN, et al. Effects of probenecid on ketoprofen pharmacokinetics. Eur J Clin Pharmacol 1987; 23: 189–93Google Scholar
  91. 91.
    Dürr J, Pfeiffer MH, Penth B, et al. Study on possible interactions between tiaprofenic acid and phenprocoumon [in German]. Arzneimittel Forschung 1981; 31: 2163–7PubMedGoogle Scholar
  92. 92.
    Furst DE. Clinically important interactions of nonsteroidal anti-inflammatory drugs with other medications. J Rheumatol 1988; 17 Suppl.: 58–62Google Scholar
  93. 93.
    Doering VW, Isbary J. Effect of tiaprofenic acid on serum digoxin concentration. Arzneimittel Forschung 1983; 33: 167–8PubMedGoogle Scholar
  94. 94.
    Chiba K, Kikuchi S, Nishimura S, et al. Study of the interactions between sulfamethizole and aclofenac, diclofenac or tiaprofenic acid in rats. Chem Pharm Bull Tokyo 1987; 35(2): 883–6CrossRefGoogle Scholar
  95. 95.
    Meurice J. Interaction of tiaprofenic acid and acenocoumarol. Rheumatology 1982; 7: 111–7Google Scholar
  96. 96.
    Whittakker SJ, Jackson CW, Whorwell PJ. A severe, potentially fatal, interaction between tiaprofenic acid and nicoumalone. Br J Clin Prac 1986; 40(10): 440Google Scholar

Copyright information

© Adis International Limited 1996

Authors and Affiliations

  1. 1.Faculty of Medicine, Department of Pharmacology and TherapeuticsUniversity of CalgaryCalgaryCanada

Personalised recommendations