Clinical Pharmacokinetics

, Volume 31, Issue 4, pp 309–324 | Cite as

Pharmacokinetic Interactions of the New Antiepileptic Drugs

  • Bernhard Rambeck
  • Ulrich Specht
  • Peter Wolf
Review Article Drug Interactions

Summary

Therapy with traditional antiepileptic drugs is associated with a wide range of pharmacokinetic drug-drug interactions. In particular, enzyme induction, enzyme inhibition and displacement from protein binding may result in important changes in serum concentrations of antiepileptics. Relevant interactions have also been described for some new antiepileptics.

Felbamate increases serum concentrations of phenytoin, phenobarbital and valproic acid (sodium valproate). On the other hand, it reduces concentrations of carbamazepine and increases concentrations of its metabolite carbamazepine-10,11-epoxide. Concentrations of felbamate itself are reduced by phenytoin and carbamazepine. Concentrations of lamotrigine are considerably increased by valproic acid and decreased by phenytoin, carbamazepine and phenobarbital (phenobarbitone). Vigabatrin reduces serum concentrations of phenytoin by approximately 20%.

On the other hand, some new antiepileptics have the important advantage of not interfering with the metabolism of other antiepileptics; this is the case for gabapentin, lamotrigine and oxcarbazepine. Furthermore, the pharmacokinetics of gabapentin, oxcarbazepine and vigabatrin are independent of concomitant drugs. These aspects are especially important as, until now, new antiepileptics have been most often utilised as add-on therapy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Patsalos PN, Duncan JS. Antiepileptic drugs: a review of clinically significant drug interactions. Drug Saf 1993; 9: 156–84PubMedGoogle Scholar
  2. 2.
    Theodore WH, Jensen PK, Kwan RMR. Felbamate: clinical use. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. New York: Raven Press, 1995: 817–22Google Scholar
  3. 3.
    Leppik IE. Felbamate. Epilepsia 1995; 36 Suppl. 2: 66–72Google Scholar
  4. 4.
    Perucca E. The clinical pharmacology of the new antiepileptic drugs. Pharmacol Res 1993; 28: 89–106PubMedGoogle Scholar
  5. 5.
    Wilensky AJ, Friel PN, Ojemann LM, et al. Pharmacokinetics of W-554 (ADD 03055) in epileptic patients. Epilepsia 1985; 26: 602–6PubMedGoogle Scholar
  6. 6.
    Fuerst RH, Graves NM, Leppik IE, et al. Felbamate increases phenytoin but decreases carbamazepine concentrations. Epilepsia 1988; 29: 488–91PubMedGoogle Scholar
  7. 7.
    Graves NM, Holmes GB, Fuerst RH, et al. Effect of felbamate on phenytoin and carbamazepine serum concentrations. Epilepsia 1989; 30: 225–9PubMedGoogle Scholar
  8. 8.
    Theodore WH, Raubertas RF, Porter RJ, et al. Felbamate: a clinical trial for complex partial seizures. Epilepsia 1991; 32: 392–7PubMedGoogle Scholar
  9. 9.
    Albani F, Theodore WH, Washington P, et al. Effect of felbamate on plasma levels of carbamazepine and its metabolites. Epilepsia 1991; 32: 130–2PubMedGoogle Scholar
  10. 10.
    Wagner ML, Remmel RP, Graves NM, et al. Effect of felbamate on carbamazepine and its major metabolites. Clin Pharmacol Ther 1993; 53: 536–43PubMedGoogle Scholar
  11. 11.
    Reidenberg P, Glue P, Banfield CR, et al. Effects of felbamate on the pharmacokinetics of phenobarbital. Clin Pharmacol Ther 1995; 58: 279–87PubMedGoogle Scholar
  12. 12.
    Wagner ML, Graves NM, Leppik IE, et al. The effect of felbamate on valproic acid disposition. Clin Pharmacol Ther 1994; 56: 494–502PubMedGoogle Scholar
  13. 13.
    Hooper WD, Franklin ME, Glue P, et al. Effect of felbamate on valproic acid disposition in healthy volunteers: inhibition of β-oxidation. Epilepsia 1996; 37: 91–7PubMedGoogle Scholar
  14. 14.
    Bernus I, Dickinson RG, Hooper WD, et al. Effect of felbamate on the plasma protein binding of valproate. Clin Drug Invest 1995; 10: 288–95Google Scholar
  15. 15.
    Reidenberg P, Glue P, Banfield C, et al. Pharmacokinetic interaction studies between felbamate and vigabatrin. Br J Clin Pharmacol 1995; 40: 157–60PubMedGoogle Scholar
  16. 16.
    Hulsman JARJ, Rentmeester TW, Banfield CR, et al. Effects of felbamate on the pharmacokinetics of the monohydroxy and dihydroxy metabolites of oxcarbazepine. Clin Pharmacol Ther 1995; 58: 383–9PubMedGoogle Scholar
  17. 17.
    Saano V, Glue P, Banfield CR, et al. Effects of felbamate on the pharmacokinetics of low-dose combination oral contraceptive. Clin Pharmacol Ther 1995; 58: 523–31PubMedGoogle Scholar
  18. 18.
    Wagner ML, Graves NM, Marienau K, et al. Discontinuation of phenytoin and carbamazepine in patients receiving felbamate. Epilepsia 1991; 32: 398–406PubMedGoogle Scholar
  19. 19.
    Wagner ML, Leppik IE, Graves NM, et al. Felbamate serum concentrations: effect of valproate, carbamazepine, phenytoin and phenobarbital [abstract]. Epilepsia 1990; 31: 642Google Scholar
  20. 20.
    Brodie MJ. Felbamate: a new antiepileptic drug. Lancet 1993; 341: 1445–6PubMedGoogle Scholar
  21. 21.
    Burdette DE, Sackellares JC. Felbamate pharmacology and use in epilepsy. Clin Neuropharmacol 1994; 17: 389–402PubMedGoogle Scholar
  22. 22.
    Graves NM. Felbamate. Ann Pharmacother 1993; 27: 1073–81PubMedGoogle Scholar
  23. 23.
    Palmer KJ, McTavish D. Felbamate: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in epilepsy. Drugs 1993; 45: 1041–65PubMedGoogle Scholar
  24. 24.
    Goa KL, Sorkin EM. Gabapentin: a review of its pharmacological properties and clinical potential in epilepsy. Drugs 1993; 46: 409–27PubMedGoogle Scholar
  25. 25.
    Hooper WD, Kavanagh MC, Herkes GK, et al. Lack of a pharmacokinetic interaction between phenobarbitone and gabapentin. Br J Clin Pharmacol 1991; 31: 171–4PubMedGoogle Scholar
  26. 26.
    Crawford P, Ghadiali E, Lane R, et al. Gabapentin as an antiepileptic drug in man. J Neurol Neurosurg Psychiatry 1987; 50: 682–6PubMedGoogle Scholar
  27. 27.
    Radulovic LL, Wilder BJ, Leppik IE, et al. Lack of interaction of gabapentin with carbamazepine or valproate. Epilepsia 1994; 35: 155–61PubMedGoogle Scholar
  28. 28.
    US Gabapentin Study Group. The long-term safety and efficacy of gabapentin (Neurontin®) as add-on therapy in drug-resistant partial epilepsy. Epilepsy Res 1994; 18: 67–73Google Scholar
  29. 29.
    Tyndel F. Interaction of gabapentin with other antiepileptics. Lancet 1994; 343: 1363–4PubMedGoogle Scholar
  30. 30.
    Eldon MA, Underwood BA, Randinitis EJ, et al. Lack of effect of gabapentin on the pharmacokinetics of a norethindrone acetate/ethinyl estradiol-containing oral contraceptive [abstract]. Neurology 1993; 43: A307–A8Google Scholar
  31. 31.
    McLean MJ. Clinical pharmacokinetics of gabapentin. Neurology 1994; 44 Suppl. 5: 17–22Google Scholar
  32. 32.
    Ramsay RE. Clinical efficacy and safety of gabapentin. Neurology 1994; 44 Suppl. 5: 23–30Google Scholar
  33. 33.
    Busch JA, Radulovic LL, Bockbrader HN, et al. Effect of maalox TC on single-dose pharmacokinetics of gabapentin capsules in healthy subjects [abstract]. Pharm Res 1992; 9 Suppl. 2: S315Google Scholar
  34. 34.
    Goa KL, Ross SR, Chrisp P. Lamotrigine: a review of its pharmacological properties and clinical efficacy in epilepsy. Drugs 1993; 46: 152–76PubMedGoogle Scholar
  35. 35.
    Timmings PL, Richens A. Lamotrigine in primary generalised epilepsy. Lancet 1992; 339: 1300–1PubMedGoogle Scholar
  36. 36.
    Ferrie CD, Robinson RO, Knott C, et al. Lamotrigine as an add-on drug in typical absence seizures. Acta Neurol Scand 1995; 91: 200–2PubMedGoogle Scholar
  37. 37.
    Jawad S, Yuen WC, Peck AW, et al. Lamotrigine: single-dose pharmacokinetics and initial 1 week experience in refractory epilepsy. Epilepsy Res 1987; 1: 194–201PubMedGoogle Scholar
  38. 38.
    Loiseau P, Yuen AWC, Duche B, et al. A randomised double-blind placebo-controlled crossover add-on trial of lamotrigine in patients with treatment-resistant partial seizures. Epilepsy Res 1990; 7: 136–45PubMedGoogle Scholar
  39. 39.
    Sander JWAS, Patsalos PN, Oxley JR, et al. A randomized double-blind placebo-controlled add-on trial of lamotrigine in patients with severe epilepsy. Epilepsy Res 1990; 6: 221–6PubMedGoogle Scholar
  40. 40.
    Jawad S, Richens A, Goodwin G, et al. Controlled trial of lamotrigine (Lamictal®) for refractory partial seizures. Epilepsia 1989; 30: 356–63PubMedGoogle Scholar
  41. 41.
    Schapel GJ, Beran RG, Vajda FJE, et al. Double-blind, placebo controlled, crossover study of lamotrigine in treatment resistant partial seizures. J Neurol Neurosurg Psychiatry 1993; 56: 448–53PubMedGoogle Scholar
  42. 42.
    Posner J, Webster H, Yuen WC. Investigation on the ability of lamotrigine, a novel antiepileptic drug, to induce mixed function oxygenase enzymes. Br J Clin Pharmacol 1991; 32: 658Google Scholar
  43. 43.
    Warner T, Patsalos PN, Prevett M, et al. Lamotrigine-induced carbamazepine toxicity: an interaction with carbamazepine-10,11-epoxide. Epilepsy Res 1992; 11: 147–50PubMedGoogle Scholar
  44. 44.
    Wolf P. Lamotrigine: preliminary clinical observations on pharmacokinetics and interactions with traditional antiepileptic drugs. J Epilepsy 1992; 5: 73–9Google Scholar
  45. 45.
    Pisani F, Xiao B, Fazio A, et al. Single dose pharmacokinetics of carbamazepine-10,11-epoxide in patients on lamotrigine monotherapy. Epilepsy Res 1994; 19: 245–8PubMedGoogle Scholar
  46. 46.
    Buchanan N. Lamotrigine: clinical experience in 93 patients with epilepsy. Acta Neurol Scand 1995; 92: 28–32PubMedGoogle Scholar
  47. 47.
    Holdich T, Whiteman P, Orme M, et al. Effect of lamotrigine on the pharmacology of the combined oral contraceptive pill [abstract]. Epilepsia 1991; 32 Suppl. 1: 96Google Scholar
  48. 48.
    Binnie CD, van Emde Boas W, Kasteleijn-Nolste-Trenite DGA, et al. Acute effects of lamotrigine (BW430C) in persons with epilepsy. Epilepsia 1986; 27: 248–54PubMedGoogle Scholar
  49. 49.
    Yuen AWC, Land G, Weatherley BC, et al. Sodium valproate acutely inhibits lamotrigine metabolism. Br J Clin Pharmacol 1992; 33: 511–3PubMedGoogle Scholar
  50. 50.
    May TW, Rambeck B, Jürgens U. Serum concentrations of lamotrigine in epileptic patients: the influence of dose and comedication. Ther Drug Monit 1996 Autumn; 18. In pressGoogle Scholar
  51. 51.
    Depot M, Powell JR, Messenheimer JA, et al. Kinetic effects of multiple oral doses of acetaminophen on a single oral dose of lamotrigine. Clin Pharmacol Ther 1990; 48: 346–55PubMedGoogle Scholar
  52. 52.
    Panayiotopoulos CP, Ferrie CD, Knott C, et al. Interaction of lamotrigine with sodium valproate. Lancet 1993; 341: 445PubMedGoogle Scholar
  53. 53.
    Ferrie CD, Panayiotopoulos CP. Therapeutic interaction of lamotrigine and sodium valproate in intractable myoclonic epilepsy. Seizure 1994; 3: 157–9PubMedGoogle Scholar
  54. 54.
    Pisani F, Di Perri R, Perucca E, et al. Interaction of lamotrigine with sodium valproate. Lancet 1993; 341: 1224PubMedGoogle Scholar
  55. 55.
    Pisani F, Oteri G, Russo M, et al. Effects of lamotrigine-valproate comedication on seizure frequency and upper limb tremor: a pharmacodynamic interaction? [abstract]. Epilepsia 1995; 36 Suppl. 3: S264Google Scholar
  56. 56.
    Reutens DC, Duncan JS, Patsalos PN. Disabling tremor after lamotrigine with sodium valproate. Lancet 1993; 342: 185–6PubMedGoogle Scholar
  57. 57.
    Brodie MJ. Lamotrigine. Lancet 1992; 339: 1397–400PubMedGoogle Scholar
  58. 58.
    Rambeck B, Wolf P. Lamotrigine clinical pharmacokinetics. Clin Pharmacokinet 1993; 25: 433–43PubMedGoogle Scholar
  59. 59.
    Messenheimer JA. Lamotrigine. Clin Neuropharmacol 1994; 17: 548–59Google Scholar
  60. 60.
    Messenheimer JA. Lamotrigine. Epilepsia 1995; 36 Suppl. 2: 87–94Google Scholar
  61. 61.
    Burstein AH. Lamotrigine. Pharmacotherapy 1995; 15: 129–43PubMedGoogle Scholar
  62. 62.
    Grant SM, Faulds D. Oxcarbazepine: a review of its pharmacology and therapeutic potential in epilepsy, trigeminal neuralgia and affective disorders. Drugs 1992; 43: 873–88PubMedGoogle Scholar
  63. 63.
    McKee PJW, Blacklaw J, Forrest G, et al. A double-blind, placebo-controlled interaction study between oxcarbazepine and carbamazepine, sodium valproate and phenytoin in epileptic patients. Br J Clin Pharmacol 1994; 37: 27–32PubMedGoogle Scholar
  64. 64.
    Battino D, Croci D, Granata T, et al. Changes in unbound and total valproic acid concentrations after replacement of carbamazepine with oxcarbazepine. Ther Drug Monit 1992; 14: 376–9PubMedGoogle Scholar
  65. 65.
    Houtkooper MA, Lammertsma A, Meyer JWA, et al. Oxcarbazepine (GP 47.680): a possible alternative to carbamazepine? Epilepsia 1987; 28: 693–8PubMedGoogle Scholar
  66. 66.
    Larkin JG, McKee PJW, Forrest G, et al. Lack of enzyme induction with oxcarbazepine (600mg daily) in healthy subjects. Br J Clin Pharmacol 1991; 31: 65–71PubMedGoogle Scholar
  67. 67.
    Krämer G, Tettenborn B, Klosterskov Jensen P, et al. Oxcarbazepine does not affect the anticoagulant activity of warfarin. Epilepsia 1992; 33: 1145–8PubMedGoogle Scholar
  68. 68.
    Lloyd P, Flesch G, Dieterle W. Clinical pharmacology and pharmacokinetics of oxcarbazepine. Epilepsia 1994; 35 Suppl. 3: 10–3Google Scholar
  69. 69.
    Klosterskov Jensen P, Saano V, Haring P, et al. Possible interaction between oxcarbazepine and an oral contraceptive. Epilepsia 1992; 33: 1149–52PubMedGoogle Scholar
  70. 70.
    Zaccara G, Gangemi PF, Bendoni L, et al. Influence of single and repeated doses of oxcarbazepine on the pharmacokinetic profile of felodipine. Ther Drug Monit 1993; 15: 39–42PubMedGoogle Scholar
  71. 71.
    Patsalos PN, Zakrzewska JM, Elyas AA. Dose dependent enzyme induction by oxcarbazepine. Eur J Clin Pharmacol 1990; 39: 187–8PubMedGoogle Scholar
  72. 72.
    Tartara A, Galimberti CA, Manni R, et al. The pharmacokinetics of oxcarbazepine and its active metabolite 10-hydroxy-carbazepine in healthy subjects and in epileptic patients treated with phenobarbitone or valproic acid. Br J Clin Pharmacol 1993; 36; 366–8PubMedGoogle Scholar
  73. 73.
    Arnoldussen W, Hulsman J, Rentmeester T. Interaction between oxcarbazepine and phenytoin [abstract]. Epilepsia 1993; 34 Suppl. 6: 37Google Scholar
  74. 74.
    Kumps A, Wuth C. Oxcarbazepine disposition: preliminary observations in patients. Biopharm Drug Dispos 1990; 11: 365–70PubMedGoogle Scholar
  75. 75.
    Keränen T, Jolkkonen J, Jensen PK, et al. Absence of interaction between oxcarbazepine and erythromycin. Acta Neurol Scand 1992; 86: 120–3PubMedGoogle Scholar
  76. 76.
    Keränen T, Jolkkonen J, Klosterskov-Jensen P, et al. Oxcarbazepine does not interact with cimetidine in healthy volunteers. Acta Neurol Scand 1992; 85: 239–42PubMedGoogle Scholar
  77. 77.
    Mogensen PH, Jorgensen L, Boas J, et al. Effects of dextropropoxyphene on the steady-state kinetics of oxcarbazepine and its metabolites. Acta Neurol Scand 1992; 85: 14–7PubMedGoogle Scholar
  78. 78.
    Pisani F, Fazio A, Oteri G, et al. Effects of the antidepressant drug viloxazine on oxcarbazepine and its hydroxylated metabolites in patients with epilepsy. Acta Neurol Scand 1994; 90: 130–2PubMedGoogle Scholar
  79. 79.
    Krämer G, Tettenborn B, Flesch G. Oxcarbazepine-verapamil drug interaction in healthy volunteers [abstract]. Epilepsia 1991; 32 Suppl. 1: 70–1Google Scholar
  80. 80.
    Faigle JW, Menge GP. Pharmacokinetic and metabolic features of oxcarbazepine and their clinical significance: comparison with carbamazepine. Int Clin Psychopharmacol 1990; 5: 73–82Google Scholar
  81. 81.
    Baruzzi A, Albani F, Riva R. Oxcarbazepine: pharmacokinetic interactions and their clinical relevance. Epilepsia 1994; 35 Suppl. 3: 14–9Google Scholar
  82. 82.
    Grant SM, Heel RC. Vigabatrin: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in epilepsy and disorders of motor control. Drugs 1991; 41: 889–926PubMedGoogle Scholar
  83. 83.
    Rimmer EM, Richens A. Double-blind study of γ-vinyl GABA in patients with refractory epilepsy. Lancet 1984; 1: 189–90PubMedGoogle Scholar
  84. 84.
    Browne TR, Mattson RH, Penry JK, et al. Vigabatrin for refractory complex partial seizures: multicenter single-blind study with long-term follow-up. Neurology 1987; 37: 184–9PubMedGoogle Scholar
  85. 85.
    Browne TR, Mattson RH, Penry JK, et al. A multicentre study of vigabatrin for drug-resistant epilepsy. Br J Clin Pharmacol 1989; 27 Suppl. 1: 95–100Google Scholar
  86. 86.
    Dalla Bernardina B, Fontana E, Vigevano F, et al. Efficacy and tolerability of vigabatrin in children with refractory partial seizures: a single-blind dose-increasing study. Epilepsia 1995; 36: 687–91PubMedGoogle Scholar
  87. 87.
    Rimmer EM, Richens A. Interaction between vigabatrin and phenytoin. Br J Clin Pharmacol 1989; 27: S27–S33Google Scholar
  88. 88.
    Gatti G, Bartoli A, Marchiselli R, et al. Vigabatrin-induced decrease in serum phenytoin concentration does not involve a change in phenytoin bioavailability. Br J Clin Pharmacol 1993; 36: 603–6PubMedGoogle Scholar
  89. 89.
    Armijo JA, Arteaga R, Valdizán EM, et al. Coadministration of vigabatrin and valproate in children with refractory epilepsy. Clin Neuropharmacol 1992; 15: 459–69PubMedGoogle Scholar
  90. 90.
    Gram L, Klosterskov P, Dam M. γ-Vinyl GABA: a double-blind placebo-controlled trial in partial epilepsy. Ann Neurol 1985; 17: 262–6PubMedGoogle Scholar
  91. 91.
    Loiseau P, Hardenberg JP, Pestre M, et al. Double-blind, placebo-controlled study of vigabatrin (Gamma-Vinyl GABA) in drug-resistant epilepsy. Epilepsia 1986; 27: 115–20PubMedGoogle Scholar
  92. 92.
    Luna D, Dulac O, Pajot N, et al. Vigabatrin in the treatment of childhood epilepsies: a single-blind placebo-controlled study. Epilepsia 1989; 30: 430–7PubMedGoogle Scholar
  93. 93.
    Matilainen R, Pitkänen A, Ruutiainen T, et al. Effect of vigabatrin on epilepsy in mentally retarded patients: a 7-month follow-up study. Neurology 1988; 38: 743–7PubMedGoogle Scholar
  94. 94.
    Cocito L, Maffini M, Perfumo P, et al. Vigabatrin in complex partial seizures: a long-term study. Epilepsy Res 1989; 3: 160–6PubMedGoogle Scholar
  95. 95.
    Szylleyko OJ, Hoke JF, Eller MG, et al. A definitive study evaluating the pharmacokinetic of vigabatrin in patients with epilepsy [abstract]. Epilepsia 1993; 34 Suppl. 6: 41–2Google Scholar
  96. 96.
    Ben-Menachem E. Vigabatrin. Epilepsia 1995; 36 Suppl. 2: 95–104Google Scholar
  97. 97.
    Rey E, Pons G, Olive G. Vigabatrin: clinical pharmacokinetics. Clin Pharmacokinet 1992; 23: 267–78PubMedGoogle Scholar
  98. 98.
    Richens A. Pharmacology and clinical pharmacology of vigabatrin. J Child Neurol 1991; 6 Suppl. 2: S7–S10Google Scholar
  99. 99.
    Richens A. Pharmacokinetic and pharmacodynamic drug interactions during treatment with vigabatrin. Acta Neurol Scand 1995; Suppl. 162: 43–6Google Scholar
  100. 100.
    Sabers A, Gram L. Pharmacology of vigabatrin. Pharmacol Toxicol 1992; 70: 237–43PubMedGoogle Scholar
  101. 101.
    Peters DH, Sorkin EM. Zonisamide: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in epilepsy. Drugs 1993; 45: 760–87PubMedGoogle Scholar
  102. 102.
    Sackellares JC, Donofrio PD, Wagner JG, et al. Pilot study of zonisamide (1,2-benzisoxazole-3-methanesulfonamide) in patients with refractory partial seizures. Epilepsia 1985; 26: 206–11PubMedGoogle Scholar
  103. 103.
    Minami T, Ieiri I, Ohtsubo K, et al. Influence of additional therapy with zonisamide (excegran) on protein binding and metabolism of carbamazepine. Epilepsia 1994; 35: 1023–5PubMedGoogle Scholar
  104. 104.
    Browne TR, Szabo GK, Kres J, et al. Drug interactions of zonisamide (DI-912) with phenytoin and carbamazepine [abstract]. J Clin Pharmacol 1986; 26: 555Google Scholar
  105. 105.
    Schmidt D, Jacob R, Loiseau P, et al. Zonisamide for add-on treatment of refractory partial epilepsy: a European double-blind trial. Epilepsy Res 1993; 15: 67–73PubMedGoogle Scholar
  106. 106.
    Tasaki K, Minami T, Ieiri I, et al. Drug interactions of zonisamide with phenytoin and sodium valproate: serum concentrations and protein binding. Brain Dev 1995; 17: 182–5PubMedGoogle Scholar
  107. 107.
    Ojemann LM, Shastri RA, Wilensky AJ, et al. Comparative pharmacokinetics of zonisamide (CI-912) in epileptic patients on carbamazepine or phenytoin monotherapy. Ther Drug Monit 1986; 8: 293–6PubMedGoogle Scholar
  108. 108.
    Kimura M, Tanaka N, Kimura Y, et al. Factors influencing serum concentration of zonisamide in epileptic patients. Chem Pharm Bull 1992; 40: 193–5PubMedGoogle Scholar
  109. 109.
    Stables JP, Bialer M, Johannessen SI, et al. Progress report on new antiepileptic drugs: a summary of the Second Eilat Conference. Epilepsy Res 1995; 22: 235–46PubMedGoogle Scholar
  110. 110.
    Britton JW, So EL. New antiepileptic drugs: prospects for the future. J Epilepsy 1995; 8: 267–81Google Scholar
  111. 111.
    Walker MC, Patsalos PN. Clinical pharmacokinetics of new antiepileptic drugs. Pharmacol Ther 1995; 67: 351–84PubMedGoogle Scholar
  112. 112.
    Gustavson LE, Mengel HB. Pharmacokinetics of tiagabine, a γ-aminobutyric acid-uptake inhibitor, in healthy subjects after single and multiple doses. Epilepsia 1995; 36: 605–11PubMedGoogle Scholar
  113. 113.
    Richens A, Chadwick DW, Duncan JS, et al. Adjunctive treatment of partial seizures with tiagabine: a placebo-controlled trial. Epilepsy Res 1995; 21: 37–42PubMedGoogle Scholar
  114. 114.
    Brodie MJ. Tiagabine pharmacology in profile. Epilepsia 1995; 36 Suppl. 6: S7–S9PubMedGoogle Scholar
  115. 115.
    So EL, Wolff D, Graves NM, et al. Pharmacokinetics of tiagabine as add-on therapy in patients taking enzyme-inducing antiepilepsy drugs. Epilepsy Res 1995; 22: 221–6PubMedGoogle Scholar
  116. 116.
    Patsalos PN, Duncan JS. New antiepileptic drugs: a review of their current status and clinical potential. CNS Drugs 1994; 2: 40–77Google Scholar
  117. 117.
    Bebin M, Bleck TP. New anticonvulsant drugs: focus on flunarizine, fosphenytoin, midazolam and stiripentol. Drugs 1994; 48: 153–71PubMedGoogle Scholar
  118. 118.
    Leach JP, Brodie MJ. New antiepileptic drugs: an explosion of activity. Seizure 1995; 4: 5–17PubMedGoogle Scholar
  119. 119.
    Leppik IE, Dreifuss FE, Pledger GW, et al. Felbamate for partial seizures: results of a controlled clinical trial. Neurology 1991; 41: 1785–9PubMedGoogle Scholar
  120. 120.
    Morris JC, Dodson WE, Hatlelid JM, et al. Phenytoin and carbamazepine, alone and in combination: anticonvulsant and neurotoxic effects. Neurology 1987; 37: 1111–8PubMedGoogle Scholar
  121. 121.
    Porter RJ. How to use antiepileptic drugs. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. New York: Raven Press, 1995: 137–48Google Scholar

Copyright information

© Adis International Limited 1996

Authors and Affiliations

  • Bernhard Rambeck
    • 1
    • 2
  • Ulrich Specht
    • 1
    • 2
  • Peter Wolf
    • 1
    • 2
  1. 1.Department of BiochemistryGesellschaft für EpilepsieforschungBielefeldGermany
  2. 2.Klinik Mara IEpilepsy-Centre BethelBielefeldFederal Republic of Germany

Personalised recommendations