Clinical Pharmacokinetics

, Volume 30, Issue 6, pp 403–415

Clinical Pharmacokinetics of Newer Antiepileptic Drugs

Lamotrigine, Vigabatrin, Gabapentin and Oxcarbazepine
  • Robert D. Cary Elwes
  • Colin D. Binnie
Review Article Drug Disposition


The clinical pharmacokinetics of the 4 antiepileptic drugs lamotrigine, vigabatrin, gabapentin and oxcarbazepine have been reviewed in this paper. All the drugs have linear kinetics and reliable absorption, although the saturation of transport across the gut may occur at high doses with gabapentin. All the drugs can be conveniently given as a twice daily dosage apart from gabapentin, which has a short half-life and a midday dose is needed.

Unlike may of the older drugs, lamotrigine, vigabatrin and gabapentin have a predominantly renal excretion and are not metabolised through the cytochrome P450 system. They do not induce their own metabolism or that of other commonly used anticonvulsants. Similarly, clinically important interactions with other major classes of drugs metabolised this way, such as anticoagulants or steroid hormones, do not occur. Oxcarbazepine, however, can cause oral contraceptive pill failure. Oxcarbazepine is immediately metabolised to a hydroxy metabolite and could be considered a prodrug. It appears to have fewer pharmacokinetic interactions than carbamazepine. Valproic acid (sodium valproate) inhibits the glucuronidation of lamotrigine and increases its half-life; when used together, dosage modification of lamotrigine is needed to avoid toxicity.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Elwes RDC, Johnson AL, Shorvon SD, et al. The prognosis for seizure control in newly diagnosed epilepsy. N Engl J Med 1984; 311: 944–7PubMedCrossRefGoogle Scholar
  2. 2.
    Xie X, Lancaster B, Peakman T, et al. Interaction of the antiepileptic drug lamotrigine with recombinant rat brain type IIA Na channels and with native Na channels in rat hippocampal neurones. Pflugers Arch 1995; 430: 437–46PubMedCrossRefGoogle Scholar
  3. 3.
    Yuen WC, Peck AW. Lamotrigine pharmacokinetics: oral and i.v. infusion in man. Epilepsia 1987; 28: 528CrossRefGoogle Scholar
  4. 4.
    Miller AA, Wheatley PL, Sawer DA, et al. Pharmacological studies on lamotrigine, a novel potential antiepileptic drug: I. Anticonvulsant profile in mice and rats. Epilepsia 1986; 27: 483–9PubMedCrossRefGoogle Scholar
  5. 5.
    Doig MW, Clare RA. Use of thermospray liquid chromatography-mass spectrometry to aid identification of urinary metabolites of a novel antiepileptic drug, lamotrigine. J Chromatogr 1991; 554: 181–9PubMedCrossRefGoogle Scholar
  6. 6.
    Magdalou J, Herber R, Bidault R, et al. In vitro N-glucuronidation of a novel antiepileptic drug, lamotrigine, by human liver microsomes. J Pharmacol Exp Ther 1992; 260: 1166–73PubMedGoogle Scholar
  7. 7.
    Cohen AF, Land GS, Breimer DD, et al. Lamotrigine: a new anticonvulsant. Pharmacokinetics in normal humans. Clin Pharmacol Ther 1987; 42: 535–41PubMedCrossRefGoogle Scholar
  8. 8.
    Jawad S, Yuen WC, Peck AW, et al. Lamotrigine: single-dose pharmacokinetics and initial 1 week experience in refractory epilepsy. Epilepsy Res 1987; 1: 194–201PubMedCrossRefGoogle Scholar
  9. 9.
    Ramsay ER, Pellock JM, Garnett WR, et al. Pharmacokinetics and safety of lamotrigine (lamictal) in patients with epilepsy. Epilepsy Res 1991; 10: 191–200PubMedCrossRefGoogle Scholar
  10. 10.
    Posner J, Holdich T, Orme M, et al. Comparison of lamotrigine pharmacokinetics in young and elderly healthy volunteers. J Pharm Med 1991; 1: 121–8Google Scholar
  11. 11.
    Richens A. Pharmacokinetics of lamotrigine. In: Richens A, editor. Clinical update on lamotrigine: a novel antiepileptic Agent. Tunbridge Wells: Wells Medical, 1992: 21–7Google Scholar
  12. 12.
    Yau MK, Wargin W. A single dose and steady state pharmakokinetic study of lamictal in healthy male volunteers. London: Wellcome Foundation, 1990: Internal Report No.: THRS/90/0024Google Scholar
  13. 13.
    Binnie CD, van Emde Boas W, Kasteleijn-Nolst Trenité DGA, et al. Acute effects of lamotrigine (BW430C) in persons with epilepsy. Epilepsia 1986; 27: 248–54PubMedCrossRefGoogle Scholar
  14. 14.
    Yau MK. Effect of valproate on the pharmacokinetics of lamotrigine at steady state. Epilepsia 1992; 33: S82Google Scholar
  15. 15.
    Rey E, Vauzelle F, Pons G, et al. Pharmacokinetics of lamotrigine in young epileptic children. 5th World Conference of Clinical Pharmacology and Therapy. 1992; YokohamaGoogle Scholar
  16. 16.
    Wallace SJ. Add-on open trial of lamotrigine in resistant child-seizures. Brain Dev 1990; 12: 734Google Scholar
  17. 17.
    Parsons DN, Miles DW. Metabolic studies with BW430C, a novel anticonvulsant. Epilepsia 1984; 25: 656Google Scholar
  18. 18.
    Holditch T, Whiteman P, Orme M, et al. Effect of lamotrigine on the pharmacology of the combined oral contraceptive. Epilepsia 1991; 96 Suppl. 1: S96Google Scholar
  19. 19.
    Warner T, Patsalos PN, Prevett M, et al. Lamotrigine induced carbamazepine toxicity: an interaction with carbamazepine 10,11 epoxide. Epilepsy Res 1992; 11: 147–50PubMedCrossRefGoogle Scholar
  20. 20.
    Binnie CD, Beintema DJ, Debets RMC, et al. Seven day administration of lamotrigine in epilepsy: add-on trial. Epilepsy Res 1987; 1: 202–8PubMedCrossRefGoogle Scholar
  21. 21.
    Schapel G, Beran R, Wajdafje-Berkovic S, et al. Doubleblind placebo-controlled, crossover study of lamotrigine in treatment-resistant partial seizures. Epilepsia 1991; 32 Suppl. 1: 58Google Scholar
  22. 22.
    Depot M, Powell JR, Messenheimer JA, et al. Kinetic effects of multiple oral doses of acetaminophen on a single oral dose of lamotrigine. Clin Pharmacol Ther 1990; 48: 346–55PubMedCrossRefGoogle Scholar
  23. 23.
    Lippert B, Metcalf BW, Jung MJ, et al. 4-Amino-hex-5-enoic acid, a selective catalytic inhibitor of 4-aminobutyric acid aminotransferase in mammalian brain. Eur J Biochem 1977 Apr; 74(3): 441–5PubMedCrossRefGoogle Scholar
  24. 24.
    Schechter PJ. Vigabatrin. In: Meldrum BS, Porter R, editors. New anticonvulsant drugs. London: John Libbey, 1986: 265–75Google Scholar
  25. 25.
    Saletu B, Grunberger J, Linzmayer L, et al. Psychophysiological and psychometric studies after manipulating the gaba system by vigabatrin, a GABA-transaminase inhibitor. Int J Psychophysiol 1986; 4: 63–80PubMedCrossRefGoogle Scholar
  26. 26.
    Besser R, Krämer G, Thümler R. Vigabatrin bei therapie-resistenten Epilepsien. Aktualle Neurol 1989; 16: 89–92CrossRefGoogle Scholar
  27. 27.
    Cocito L, Maffini M, Perfumo P, et al. Vigabatrin in complex partial seizures: a long-term study. Epilepsy Res 1989; 3: 160–6PubMedCrossRefGoogle Scholar
  28. 28.
    Smithers JA, Lang JF, Okerholm RA. Quantitative analysis of vigabatrin in plasma and urine by reversed-phase high-performance liquid chromatography. J Chromatogr 1985; 341: 232–8PubMedCrossRefGoogle Scholar
  29. 29.
    Haegele KD, Schechter PJ. Kinetics of the enantiomers of vigabatrin after an oral dose of the racemate or the active S-enantiomer. Clin Pharmacol Ther 1986; 40: 581–6PubMedCrossRefGoogle Scholar
  30. 30.
    Frisk-Holmberg M, Kerth P, Meyer P. Effect of food on the absorption of vigabatrin. Br J Clin Pharmacol 1989; 27: 23S–25SPubMedCrossRefGoogle Scholar
  31. 31.
    Hoke JF, Chi EM, Antony KK, et al. Bioeqivalence and relative bioavailability of vigabatrin. Epilepsia 1991; 32 Suppl. 3: 7Google Scholar
  32. 32.
    Rey E, Pons G, Richard MO, et al. Pharmokinetics of the individual enantiomers of vigabatrin (γ-vinyl GABA) in epileptic children. Br J Clin Pharmacol 1990; 30: 253–7PubMedCrossRefGoogle Scholar
  33. 33.
    Schechter PJ. Clinical pharmacology of vigabatrin. Br J Clin Pharmacol 1989; 27: 19S–22SPubMedCrossRefGoogle Scholar
  34. 34.
    Mumford JR A profile of vigabatrin. Br J Clin Pract 1988; 42 Suppl. 61: 7–9Google Scholar
  35. 35.
    Ben Menachem E, Persson LI, Schechter PJ, et al. Effects of single doses of vigabatrin on CSF concentrations of GABA, homocarnosine, homovanillic acid and 5-hydroxyindole-acetic acid in patients with complex partial epilepsy. Epilepsy Res 1988; 2: 96–101CrossRefGoogle Scholar
  36. 36.
    Riekkinen PJ, Ylinen A, Halonen T, et al. Cerebrospinal fluid GABA and seizure control with vigabatrin. Br J Clin Pharmacol 1989; 27: 87S–94SPubMedCrossRefGoogle Scholar
  37. 37.
    Rimmer EM, Kongola G, Richens A. Inhibition of the enzyme GABA-aminotransferase in human platelets by vigabatrin. Br J Clin Pharmacol 1988; 25: 251–9PubMedCrossRefGoogle Scholar
  38. 38.
    Haegele KD, Huebert ND, Ebel M, et al. Pharmacokinetics of vigabatrin: implications of creatinine clearance. Clin Pharmacol Ther 1988; 44: 558–65PubMedCrossRefGoogle Scholar
  39. 39.
    Browne TR, Mattson RH, Penry JK, et al. Vigabatrin for refractory complex partial seizures: multicentre single-blind study with long-term follow-up. Neurology 1987; 37: 184–9PubMedCrossRefGoogle Scholar
  40. 40.
    Gram L, Klosterkov P, Dam M. γ-vinyl GABA: a single-blind trial in patients with epilepsy. Acta Neurol Scand 1983; 68: 34–9PubMedCrossRefGoogle Scholar
  41. 41.
    Loiseau P, Hardenburg JP, Pestre M, et al. Double-blind placebo controlled trial of vigabatrin (gamma-vinyl GABA) in drug resistant epilepsy. Epilepsia 1986; 27: 115–20PubMedCrossRefGoogle Scholar
  42. 42.
    Luna D, Dulac O, Pajot N, et al. Vigabatrin in the treatment of childhood epilepsies: a single blind placebo-controlled study. Epilepsia 1989; 30: 430–7PubMedCrossRefGoogle Scholar
  43. 43.
    Matilainen R, Pitkänen, Ruutiainen T, et al. Effect of vigabatrin on epilepsy in mentally retarded patients. Neurology 1988; 38: 743–7PubMedCrossRefGoogle Scholar
  44. 44.
    Pedersen SA, Klosterkov P, Gram L, et al. Long-term study of gamma-vinyl GABA in the treatment of epilepsy. Acta Neurol Scand 1985; 72: 295–8PubMedCrossRefGoogle Scholar
  45. 45.
    Rimmer EM, Richens A. Double-blind study of γ-vinyl GABA in patients with refractory epilepsy. Lancet 1984; 28: 189–90CrossRefGoogle Scholar
  46. 46.
    Browne TR, Mattson RH, Penry JK, et al. A multicentre study of vigabatrin for drug resistant epilepsy. Br J Clin Pharmacol 1989; 27: 95S–100SPubMedCrossRefGoogle Scholar
  47. 47.
    Rimmer EM, Richens A. Interaction between vigabatrin and phenytoin. Br J Clin Pharmacol 1989; 27: 27S–33SPubMedCrossRefGoogle Scholar
  48. 48.
    Tonini M, Gatti G, Manzo L, et al. Vigabatrin does not affect the intestinal absorption of phenytoin in rat duodeno-jejunal loops in situ. Pharmacol Res 1992; 26: 201–5PubMedCrossRefGoogle Scholar
  49. 49.
    Gatti G, Bartoli A, Marchielli R, et al. Vigabatrin-induced decrease in phenytoin concentration does not involve change in phenytoin bioavailability. Br J Clin Pharmacol 1993; 36: 603–6PubMedCrossRefGoogle Scholar
  50. 50.
    Sivenius J, Ylinen A, Murros K, et al. Double-blind dose reduction study of vigabatrin in complex partial epilepsy. Epilepsia 1987; 28: 688–92PubMedCrossRefGoogle Scholar
  51. 51.
    Ben Menachem E, Persson LI, Schechter PJ, et al. The effect of different vigabatrin treatment regimens on CSF biochemistry and seizure control in epileptic patients. Br J Clin Pharmacol 1989; 27: 79S–85SCrossRefGoogle Scholar
  52. 52.
    Arteaga R, Herranz JL, Valdizan EM, et al. Gamma-vinyl GABA (vigabatrin): relationship between dosage, plasma concentrations, platelet GABA-transaminase inhibition, and seizure reduction in epileptic children. Epilepsia 1992; 33: 923–31PubMedCrossRefGoogle Scholar
  53. 53.
    Loscher W, Fassbender CP, Gram L, et al. Determination of GABA and vigabatrin in human plasma by a rapid and simple HPLC method: correlation between clinical response to vigabatrin and increase in plasma GABA. Epilepsy Res 1993; 14: 245–55PubMedCrossRefGoogle Scholar
  54. 54.
    Taylor CP. Emerging perspectives on the mechanism of action of gabapentin. Neurology 1994; 44 Suppl. 5: S10–S16PubMedGoogle Scholar
  55. 55.
    Stewart BH, Kugler AR, Thompson PR, et al. A saturable transport mechanism in the intestinal absorption of gabapentin is the underlying cause of a lack of proportionality between increasing dose and drug levels in plasma. Pharmacol Res 1993; 10: 276–81CrossRefGoogle Scholar
  56. 56.
    Welty DF, Schielke GP, Vartanian MG, et al. Gabapentin anticonvulsant action in rats: disequilibrium with peak drug concentrations in plasma and brain microdialysate. Epilepsy Res 1993; 16: 175–81PubMedCrossRefGoogle Scholar
  57. 57.
    Taylor CP. Mechanism of action of new anti-epileptic drugs. In: Chadwick D, editor. New trends in epilepsy management: the role of gabapentin. London: Royal Society of Medicine Services Limited, 1993: 13–40Google Scholar
  58. 58.
    UK Gabapentin Study Group. Gabapentin in partial epilepsy. Lancet 1990; 335: 1114–7CrossRefGoogle Scholar
  59. 59.
    US Gabapentin Study Group No. 5. Gabapentin as add-on therapy in refractory partial epilepsy: a double blind, placebo controlled, parallel-group study. Neurology 1993; 43: 2292–8CrossRefGoogle Scholar
  60. 60.
    Ramsay ER. Clinical efficacy and safety of gabapentin. Neurology 1994; 44 Suppl. 5: S23–S30PubMedGoogle Scholar
  61. 61.
    Vollmer KO, Anhut H, Thommann P, et al. Parmacokinetic model and absolute bioavailability of the new anticonvulsant gabapentin. In: Manelis J, Bental E, Loeber JN, et al., editors. Advances in epileptology. New York: Raven Press, 1989: 209–11Google Scholar
  62. 62.
    Richens A. Clinical pharmacokinetics of gabapentin. In: Chadwick D, editor. New trends in epilepsy management: the role of gabapentin. London: Royal Society of Medicine Services, 1993: 41–6Google Scholar
  63. 63.
    McLean MJ. Clinical pharmacokinetics of gabapentin. Neurology 1994; 44 Suppl. 5: S17–S22PubMedGoogle Scholar
  64. 64.
    Ben Menachem E, Persson LI, Hedner T. Selected CSF biochemistry and gabapentin concentrations in the CSF and plasma in patients with partial seizures after a single oral dose of gabapentin. Epilepsy Res 1992; 11: 45–9CrossRefGoogle Scholar
  65. 65.
    Ojemann LM, Friel PN, Ojemann GA. Gabapentin concentration in human brain. Epilepsia 1988; 29: 694Google Scholar
  66. 66.
    Türck D, Vollmer KO, Bockbrader HN, et al. Dose-linearity of the new anticonvulsant gabapentin after multiple oral doses [abstract]. Eur J Clin Pharmacol 1989; 36: 310Google Scholar
  67. 67.
    Comstock TJ, Sica DA, Blockbrader HN, et al. Gabapentin pharmacokinetics in subjects with various degrees of renal function. J Clin Pharmacol 1990; 30: 862Google Scholar
  68. 68.
    Eldon MA, Underwood BA, Randinitis EJ, et al. Lack of effect of gabapentin on the pharmacokinetics of a norethidrone acetate/etinyl oestradiol containing oral contraceptive. Neurology 1993; 43 Suppl. 4: A307–A308Google Scholar
  69. 69.
    Graves NM, Holmes GB, Leppick IE, et al. Pharmacokinetics of gabapentin in patients treated with phenytoin. Pharmacotherapy 1989; 9: 196Google Scholar
  70. 70.
    Basim M, Uthman EJ, Hammond EJ, et al. Absence of gabapentin and valproate interaction: an evoked potential and pharmacokinetic study. Epilepsia 1990; 31: 645Google Scholar
  71. 71.
    Graves NM, Leppik IE, Wagner ML, et al. Effect of gagapentin on carbamazepine levels. Epilepsia 1990; 31: 644–5Google Scholar
  72. 72.
    Crawford P, Ghadiali E, Lane R, et al. Gabapentin as an anti-epileptic drug in man. J Neurol Neurosurg Psychiatry 1987; 50: 682–6PubMedCrossRefGoogle Scholar
  73. 73.
    Sivenius J, Kälviäinen R, Ylinen A, et al. Double-blind study of gabapentin in the treatment of partial seizures. Epilepsia 1991; 32: 539–42PubMedCrossRefGoogle Scholar
  74. 74.
    Busch JA, Radulovic LL, Bockbrader HN, et al. Effect of Maalox TC on single-dose pharmacokinetics of gabapentin capsules in healthy adults. Pharmacol Res 1992; 9 Suppl. 10: S315Google Scholar
  75. 75.
    Baltzer V, Schmutz H. Experimental anticonvulsant properties of GP 47680 and of GP 47779, its main human metabolite; compounds related to carbamazepine. In: Meinardi H, Rowan AJ, editors. Advances in epileptology. Amsterdam-Lisse: Swets and Zeitlinger, 1977: 295–9Google Scholar
  76. 76.
    McLean MJ, Schmutz M, Wamil AW, et al. Oxcarbazepine: mechanisms of action. Epilepsia 1994; 35 Suppl. 3: S5–S9PubMedCrossRefGoogle Scholar
  77. 77.
    Houtkooper MA, Lammertsma A, Meyer JWA, et al. Oxcarbabazepine (GP 47.680): a possible alternative to carbamazepine? Epilepsia 1987; 28: 693–8PubMedCrossRefGoogle Scholar
  78. 78.
    Reinikainen KJ, Keränen T, Halonen T, et al. Comparison of oxcarbazepine and carbamazepine: a double-blind study. Epilepsy Res 1987; 1: 284–9PubMedCrossRefGoogle Scholar
  79. 79.
    Dam M, Ekberg R, Loyning Y, et al. A double-blind study comparing oxcarbazepine and carbamazepine in patients with newly diagnosed, previously untreated epilepsy. Epilepsy Res 1989; 3: 70–6PubMedCrossRefGoogle Scholar
  80. 80.
    Gram L. Clinical experience with oxcarbazepine. Epilepsia 1994; 35 Suppl. 3: S21–2PubMedCrossRefGoogle Scholar
  81. 81.
    Friis ML, Kristensen O, Boas J, et al. Therapeutic experiences with 947 epileptic out-patients in oxcarbazepine treatment. Acta Neurol Scand 1993; 87: 224–7PubMedCrossRefGoogle Scholar
  82. 82.
    van Parys JAP, Meinardi H. Survey of 260 epileptic patients treated with oxcarbazepine (Trileptal R) on a named-patient basis. Epilepsy Res 1994; 19: 79–85PubMedCrossRefGoogle Scholar
  83. 83.
    Schwabe S. Clinical development outlook of oxcarbazepine. Epilepsia 1994; 35 Suppl. 3: S2–4PubMedCrossRefGoogle Scholar
  84. 84.
    Theisohn M, Heimann G. Disposition of the antiepileptic oxcarbazepine and it’s metabolites in healthy volunteers. Eur J Clin Pharmacol 1982; 22: 541–51CrossRefGoogle Scholar
  85. 85.
    Dickinson RG, Hooper WD, Dunstan PR, et al. First dose and steady-state pharmacokinetics of oxcarbazepine and it’s 10-hydroxy metabolite. Eur J Clin Pharmacol 1989; 37: 69–74PubMedGoogle Scholar
  86. 86.
    Degen PH, Flesch G, Cardot J, et al. The influence of food on the disposition of the antiepileptic oxcarbazepine and its major metabolites in healthy volunteers. Biopharm Drug Dispos 1994; 15: 519–26PubMedCrossRefGoogle Scholar
  87. 87.
    Lloyd P, Flesch G, Dieterle W. Clinical pharmacology and pharmacokinetics of oxcarbazepine. Epilepsia 1994; 35 Suppl. 3: S10–S13PubMedCrossRefGoogle Scholar
  88. 88.
    Feldmann KF, Dorhofer JW, Faigle JW, et al. Pharmacokinetics and metabolism of GP 47779, the main human metabolite of oxcarbazepine (GP 47680) in animals and healthy volunteers. In: Dam M, Gram L, Penry JK, editors. Advances in epileptology: XII Epilepsy International Symposium; 1980 Sep 6–10; Copenhagen. New York: Raven Press, 1981: 89–96Google Scholar
  89. 89.
    van Heiningen PNM, Eve MD, Oosterhuis B, et al. The influence of age on the pharmacokinetics of the antiepileptic agent oxcarbazepine. Clin Pharmacol Ther 1991; 50: 410–9PubMedCrossRefGoogle Scholar
  90. 90.
    Larkin JG, Mckee PJW, Forrest G, et al. Lack of enzyme induction with oxcarbazepine (600mg daily) in healthy subjects. Br J Clin Pharmacol 1991; 31: 65–71PubMedCrossRefGoogle Scholar
  91. 91.
    Patsalos PN, Zakrzewska JM, Elyas AA. Dose dependant enzyme induction by oxcarbazepine? Eur J Clin Pharmacol 1990; 39: 187–8PubMedCrossRefGoogle Scholar
  92. 92.
    Mckee PJW, Blacklaw J, Forrest G, et al. A double-blind,placebo-controlled interaction study between oxcarbazepine and carbamazepine, sodium valproate and phenytoin in epileptic patients. Br J Clin Pharmacol 1994; 37: 27–32PubMedCrossRefGoogle Scholar
  93. 93.
    Tartara A, Galimberti CA, Manni R, et al. The pharmacokinetics of oxcarbazepine and its active metabolite 10-hydroxy-carbezepine in healthy subjects and in epileptic patients treated with phenobarbitone or valproic acid. Br J Clin Pharmacol 1993; 36: 366–8PubMedCrossRefGoogle Scholar
  94. 94.
    Arnoldussen W, Hulsman J, Rentmeester T. Oxcarbazepine interactive with valproate? A clinical and pharmacokinetic study in several patient groups. Epilepsia 1992; 33 Suppl. 3: 111Google Scholar
  95. 95.
    Rambeck B, May T. Influence of valproate on serum concentrations of 10-hydroxy-carbezepine, the relevant metabolite oxcarbazepine, and their fluctuations during the day in epileptic patients. Epilepsia 1993; 34 Suppl. 2: 161Google Scholar
  96. 96.
    Kraemer G, Tattenborn B, Flesch G. Oxcarbazepine-verapamil drug interaction in healthy volunteers. Epilepsia 1991; 32 Suppl. 1: 70–1Google Scholar
  97. 97.
    Keraenen T, Jolkkonen J, Jensen PK. Oxcarbazepine does not react with cimetidine in healthy volunteers. Acta Neurol Scand 1992; 85: 239–42CrossRefGoogle Scholar
  98. 98.
    Mogensen PH, Jorgensen L, Boas J, et al. Effects of dextro-propropoxyphene on the steady state kinetics of oxcarbazepine and its metabolites. Acta Neurol Scand 1992; 85: 14–7PubMedCrossRefGoogle Scholar
  99. 99.
    Kramer G, Tettenborn B, Jensen PK, et al. Oxcarbazepine does not affect the anticoagulant activity of warfarin. Epilepsia 1992; 33: 65–71CrossRefGoogle Scholar
  100. 100.
    Jensen PK, Saano V, Haring P, et al. Possible interaction between oxcarbazepine and an oral contraceptive. Epilepsia 1992; 33: 1149–52CrossRefGoogle Scholar

Copyright information

© Adis International Limited 1996

Authors and Affiliations

  • Robert D. Cary Elwes
    • 1
  • Colin D. Binnie
    • 1
  1. 1.Institute of EpileptologyKing’s College HospitalLondonEngland
  2. 2.Department of Clinical NeurophysiologyMaudsley HospitalLondonEngland

Personalised recommendations