Clinical Pharmacokinetics

, Volume 30, Issue 3, pp 229–249 | Cite as

Diuretic Combinations in Refractory Oedema States

Pharmacokinetic-Pharmacodynamic Relationships
Review Article Pharmacokinetic-Pharmacodynamic Relationships

Summary

Diuretic resistance is encountered in a number of disease states, such as chronic renal failure, nephrotic syndrome, congestive heart failure (CHF) and cirrhosis. Diuretic stratagems which produce sequential nephron segment blockade, and thus a synergistic diuretic response, are frequently necessary and are regularly employed in these conditions. Pharmacokinetic determinants of diuretic response, including dose administered, absolute bioavailability, and tubular transport capacity and transport rate, are reviewed here. Pharmacodynamic factors are perhaps more important to overall response, and often result in modification of the dose-response relationship; these are also reviewed here.

Stratagems used to maximise the diuretic response to loop diuretics include correcting abnormal haemodynamic parameters, utilising larger doses or constant intravenous infusions, and using albumin as a vehicle to deliver the loop diuretic to the site of tubular secretion. If these measures fail, then diuretic combinations are useful. Perhaps the most effective is the combination of metolazone (a thiazidetype diuretic) and a loop diuretic. The rationale for and use of various diuretic combinations, with particular emphasis on the metolazone-loop diuretic combination, is reviewed here and applied to the major disease states associated with diuretic resistance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sica DA, Gehr TWB. Diuretics in congestive heart failure. Cardiol Clin 1989; 7: 87–97PubMedGoogle Scholar
  2. 2.
    Epstein M, Lepp BA, Hoffman DS, et al. Potentiation of furosemide by metolazone in refractory edema. Curr Ther Res 1977; 21: 656–67Google Scholar
  3. 3.
    Gehr TWB, Sica DA. Diuretic resistance. Drug Ther 1990; 1: 95–100Google Scholar
  4. 4.
    Brater DC. Pharmacodynamic considerations in the use of diuretics. Annu Rev Pharmacol Toxicol 1983; 23: 45–62PubMedCrossRefGoogle Scholar
  5. 5.
    Brater DC. Resistance to diuretics: mechanisms and clinical implications. Adv Nephrol 1993; 22: 349–69Google Scholar
  6. 6.
    Odlind B. Relation between renal tubular secretion and effects of five loop diuretics. J Pharmacol Exp Ther 1979; 211: 238–44PubMedGoogle Scholar
  7. 7.
    Burg MB. Tubular chloride transport and the mode of action of some diuretics. Kidney Int 1976; 9: 189–97PubMedCrossRefGoogle Scholar
  8. 8.
    Boles Ponto LL, Schoenwald RD. Furosemide (frusemide): a pharmacokinetic-pharmacodynamic review (Part I). Clin Pharmacokinet 1990; 18: 381–408CrossRefGoogle Scholar
  9. 9.
    Rose HJ, O’Malley K, Pruitt AW. Depression of renal clearance of furosemide in man by azotemia. Clin Pharmacol Ther 1976; 21: 141–6Google Scholar
  10. 10.
    Nomura A, Yasuda H, Minami M, et al. Effect of furosemide in congestive heart failure. Clin Pharmacol Ther 1981; 30: 177–82PubMedCrossRefGoogle Scholar
  11. 11.
    Packer M, Lee WH, Yushak M, et al. Comparison of Captopril and enalapril in patients with severe congestive heart failure. N Engl J Med 1986; 315: 847–53PubMedCrossRefGoogle Scholar
  12. 12.
    Ring-Larsen H, Hendriksen JH, Wilken C, et al. Diuretic treatment in decompensated cirrhosis and congestive heart failure: effect of posture. BMJ 1986; 292: 1351–3PubMedCrossRefGoogle Scholar
  13. 13.
    Redfield MM, Edwards BS, Heublein DM, et al. Restoration of renal response to atrial natriuretic peptide in experimental low-output heart failure. Am J Physiol 1989; 257: R917–23PubMedGoogle Scholar
  14. 14.
    Kaojarern S, Day B, Brater DC. The time course of delivery of furosemide into urine: an independent determinant of overall response. Kidney Int 1982; 22: 69–74PubMedCrossRefGoogle Scholar
  15. 15.
    Sica DA, Ilson B, Brater DC, et al. Metolazone — its time course of delivery as a determinant of action [abstract]. Clin Res 1984; 32: 248AGoogle Scholar
  16. 16.
    Rane A, Villeneuve JP, Stone WJ, et al. Plasma binding and disposition of furosemide in the nephrotic syndrome and uremia. Clin Pharmacol Ther 1978; 24: 199–207PubMedGoogle Scholar
  17. 17.
    Sica DA, Brater DC, Centor R, et al. Metolazone-probenecid interaction in man [abstract]. Clin Res 1987; 35: 381AGoogle Scholar
  18. 18.
    Chennavasin P, Seiwell R, Brater DC, et al. Pharmacodynamic analysis of the furosemide-probenecid interaction in man. Kidney Int 1979; 16: 187–95PubMedCrossRefGoogle Scholar
  19. 19.
    Brater DC, Weiwell R, Anderson S, et al. Absorption and disposition of furosemide in congestive heart failure. Kidney Int 1982; 22: 171–6PubMedCrossRefGoogle Scholar
  20. 20.
    Wilcox CS, Mitch WE, Kelly RA, et al. Response of the kidney to furosemide. I: Effects of salt intake and renal compensation. J Lab Clin Med 1983; 102: 450–8PubMedGoogle Scholar
  21. 21.
    Ellison DH. The physiologic basis of diuretic synergism: its role in treating diuretic resistance. Ann Intern Med 1991; 114: 886–94PubMedGoogle Scholar
  22. 22.
    Walter SJ, Shirley DG. The effect of chronic hydrochlorothiazide administration on renal function in the rat. Clin Sci 1986; 70: 379–87PubMedGoogle Scholar
  23. 23.
    Kelly RA, Wilcox CS, Mitch WE, et al. Response of the kidney to furosemide. II: Effect of Captopril on sodium balance. Kidney Int 1983; 24: 233–39PubMedCrossRefGoogle Scholar
  24. 24.
    Wilcox CS, Guzman NJ, Mitch WE, et al. Na+, K+, and BP homeostasis in man during furosemide: effects of prazosin and Captopril. Kidney Int 1987; 31: 135–41PubMedCrossRefGoogle Scholar
  25. 25.
    Ajlstrom NG, Capraro FE, Wilcox CS. Post-diuretic salt retention in man: dissociation from volume depletion [abstract]. Kidney Int 1990; 37: 270Google Scholar
  26. 26.
    Ellison DH, Velasquez H, Wright FS. Adaptation of the distal convoluted tubule of the rat: structural and functional effects of dietary salt intake and chronic diuretic infusion. J Clin Invest 1989; 83: 113–26PubMedCrossRefGoogle Scholar
  27. 27.
    Kaisling B, Stanton BA. Adaptation of distal tubule and collecting duct to increased sodium delivery: I. Ultrastructure. Am J Physiol 1988; 255: F1256–68Google Scholar
  28. 28.
    Stanton BA, Kaisling B. Adaptation of distal tubule and collecting duct to increased sodium delivery: I. Na+ and K+ transport. Am J Physiol 1988; 255: F1269–75PubMedGoogle Scholar
  29. 29.
    Kaissling B, Bachmann S, Kriz W. Structural adaptation of the distal convoluted tubule to prolonged furosemide treatment. Am J Physiol 1985; 248: F374–81PubMedGoogle Scholar
  30. 30.
    Morsing P, Velazquez H, Wright FS, et al. Adaptation of distal convoluted tubule of rats: II. Effects of chronic thiazide infusion. Am J Physiol 1991; 261: F137–43PubMedGoogle Scholar
  31. 31.
    Brater DC, Day B, Burdette A, et al. Bumetanide and furosemide in heart failure. Kidney Int 1984: 26: 183–9PubMedCrossRefGoogle Scholar
  32. 32.
    Fredrick MJ, Pound DC, Hall SD, et al. Furosemide absorption in patients with cirrhosis. Clin Pharmacol Ther 1991; 49: 241–7PubMedCrossRefGoogle Scholar
  33. 33.
    Vasko MR, Brown-Cartwright D, Knochel JP, et al. Furosemide absorption altered in decompensated congestive heart failure. Ann Intern Med 1985; 102: 314–8PubMedGoogle Scholar
  34. 34.
    Vargo DL, Kramer WG, Black PK, et al. Bioavailability, pharmacokinetics, and pharmacodynamics of torsemide and furosemide in patients with congestive heart failure. J Clin Pharmacol Ther 1995; 57: 601–9CrossRefGoogle Scholar
  35. 35.
    Francis GS, Goldsmith SR, Levine TB, et al. The neurohumoral axis in congestive heart failure. Ann Intern Med 1985; 103: 1–6PubMedGoogle Scholar
  36. 36.
    Smith DE, Hyneck ML, Berardi RR, et al. Urinary protein binding, kinetics, and dynamics of furosemide in nephrotic patients. J Pharm Sci 1985; 74: 603–7PubMedCrossRefGoogle Scholar
  37. 37.
    Keller E, Hoppe-Seyler G, Schollmeyer P. Disposition and diuretic effect of furosemide in nephrotic syndrome. Clin Pharmacol Ther 1982; 32: 442–9PubMedCrossRefGoogle Scholar
  38. 38.
    Keller E, Hoppe-Seyler G, Schollmeyer P. Disposition and diuretic effects of furosemide in the nephrotic syndrome. Clin Pharmacol Ther 1982; 32: 442–9PubMedCrossRefGoogle Scholar
  39. 39.
    Green TP, Mirkin BL. Resistance of proteinuric rats to furosemide: urinary drug protein binding as a determinant of drug effect. Life Sci 1980; 26: 623–30PubMedCrossRefGoogle Scholar
  40. 40.
    Kirchner KA, Voelker JR, Brater DC. Intratubular albumin blunts the response to furosemide — a mechanism for diuretic resistance in the nephrotic syndrome. J Pharmacol Exp Ther 1990; 252: 1097–101PubMedGoogle Scholar
  41. 41.
    Kirchner KA, Voelker JR, Brater DC. Binding inhibitors restore furosemide potency in tubule fluid containing albumin. Kidney Int 1991; 40: 418–24PubMedCrossRefGoogle Scholar
  42. 42.
    Inoue M, Okajima K, Itoh K, et al. Mechanism of furosemide resistance in analbuminemic rats and hypoalbuminemic patients. Kidney Int 1987; 32: 198–203PubMedCrossRefGoogle Scholar
  43. 43.
    Nakahama H, Orita Y, Yamazaki M, et al. Pharmacokinetic and pharmacodynamic interactions between furosemide and hydrochlorothiazide in nephrotic patients. Nephron 1988; 49: 223–7PubMedCrossRefGoogle Scholar
  44. 44.
    Garin EH, Richard GA. Edema resistant to furosemide therapy in nephrotic syndrome: treatment with furosemide and metolazone. Inter J Ped Nephrol 1981; 2: 181–4Google Scholar
  45. 45.
    Kuchar DL, O’Rourke MF. High dose furosemide in refractory cardiac failure. Eur Heart J 1985; 6: 954–8PubMedGoogle Scholar
  46. 46.
    Gerlag PGG, van Meijel JJM. High dose furosemide in the treatment of refractory congestive heart failure. Arch Intern Med 1988; 148: 286–91PubMedCrossRefGoogle Scholar
  47. 47.
    Rybak LP. Pathophysiology of furosemide ototoxicity. J Otolaryngol 1982; 11: 127–33PubMedGoogle Scholar
  48. 48.
    Quick CA, Hoppe W. Permanent deafness associated with furosemide administration. Ann Otol 1975; 84: 94–101Google Scholar
  49. 49.
    Copeland JG, Campbell DW, Plachetka JR, et al. Diuresis with continuous infusion of furosemide after cardiac surgery. Am J Surg 1983; 146: 796–9PubMedCrossRefGoogle Scholar
  50. 50.
    Lawson DH, Gray JMB, Henry DA, et al. Continuous infusion of furosemide in refractory edema. BMJ 1978; 2: 476PubMedCrossRefGoogle Scholar
  51. 51.
    Rudy DW, Sica DA, Nunley J, et al. Furosemide infusions in diuretic resistant individuals [abstract]. Clin Pharmacol Ther 1990; 47: 144Google Scholar
  52. 52.
    Rudy DW, Voelker JR, Greene PK, et al. Loop diuretics for chronic renal insufficiency: a continuous infusion is more efficacious than bolus therapy. Ann Intern Med 1991; 115: 360–6PubMedGoogle Scholar
  53. 53.
    Gehr T, Sica DA, Brater DC, et al. Furosemide pharmacokinetics and pharmacodynamics in renal transplantation. Clin Pharmacol Ther 1988; 43: 547–53PubMedCrossRefGoogle Scholar
  54. 54.
    Dettli L, Spring P. Therapy with combinations of diuretic agents: comparative studies. Ann NY Acad Sci 1966; 139: 471–80PubMedCrossRefGoogle Scholar
  55. 55.
    Leiter L. Combinations of diuretics in the treatment of edema. Am Heart J 1978; 80: 422–6CrossRefGoogle Scholar
  56. 56.
    Seller RH, Fuchs M, Swartz C, et al. Treatment of edema by the combined use of chemically different diuretic agents. Am J Cardiol 1963; 12: 828–33PubMedCrossRefGoogle Scholar
  57. 57.
    Knauf H, Mutschier E. Low-dose segmental blockade of the nephron rather than high-dose diuretic monotherapy. Eur J Clin Pharmacol 1991; 44 Supp. 1: S63–8Google Scholar
  58. 58.
    Fliser D, Schroter M, Neubeck M, et al. Coadministration of thiazides increases the efficacy of loop diuretics even in patients with advanced renal failure. Kidney Int 1994; 46: 482–8PubMedCrossRefGoogle Scholar
  59. 59.
    Olesen KH, Sigurd B. The supra-additive natriuretic effect addition of quinethazone or bendroflumethiazide during long-term treatment with furosemide and spironolactone. Acta Med Scand 1971; 190: 233–40PubMedCrossRefGoogle Scholar
  60. 60.
    Domenet J, Evans G, Brenner O. Value of mercaptomerin and aminophylline in cardiac edema resistant to other diuretics. BMJ 1961 Apr; 22(1): 1130–9CrossRefGoogle Scholar
  61. 61.
    Knauf H, Wenk E, Scholmerich J, et al. Prediction of diuretic mobilization of cirrhotic ascites by pretreatment fractional sodium excretion. Klin Wochenschr 1990; 68: 545–51PubMedCrossRefGoogle Scholar
  62. 62.
    Sigurd B, Olesen KH. Comparative natriuretic and diuretic efficacy of theophylline ethylenediamine and of bendroflumethiazide during long-term treatment with the potent diuretic bumetanide. Acta Med Scand 1978; 203: 113–9PubMedCrossRefGoogle Scholar
  63. 63.
    Maren TH. The additive renal effect of oral aminophylline and trichlormethiazide in man [abstract]. Clin Res 1961; 9: 57Google Scholar
  64. 64.
    Brater DC, Kaojerern S, Chennavasin P. Pharmacodynamics of the diuretic effects of aminophylline and acetazolamide alone and combined with furosemide in normal subjects. J Pharmacol Exp Ther 1983; 227: 92–7PubMedGoogle Scholar
  65. 65.
    Korzets A, Gafter K, Floru S, et al. Deteriorating renal function with acetazolamide in a renal transplant patient with pseudotumor cerebri. Am J Kidney Dis 1993; 21: 322–4PubMedGoogle Scholar
  66. 66.
    Khan MI. Treatment of refractory congestive heart failure and normokalemic hypochloremic alkalosis with acetazolamide and spironolactone. Can Med Assoc J 1980; 123: 883–7PubMedGoogle Scholar
  67. 67.
    Olesen KH. The natriuretic effect addition of quinethazone and furosemide in congestive heart failure. Acta Med Scand 1971; 190: 229–32PubMedCrossRefGoogle Scholar
  68. 68.
    Olesen KH, Dupont B, Flensted-Jensen E. The combined diuretic action of quinethazone and furosemide in congestive heart failure: a permutation trial test. Acta Med Scand 1970; 187: 33–40PubMedCrossRefGoogle Scholar
  69. 69.
    Sigurd B, Olesen KH, Wennevold A. The supra-additive natriuretic effect addition of bendroflumethiazide and bumetanide in congestive heart failure. Am Heart J 1975; 89: 163–70PubMedCrossRefGoogle Scholar
  70. 70.
    Orita Y, Nakahama H, Fukuhara Y, et al. Combination diuretic therapy — furosemide with hydrochlorothiazide. In: Puschett JB, editor. Diuretics. Ill: Chemistry, pharmacology, and clinical applications. Amsterdam: Elsevier, 1990: 3–11Google Scholar
  71. 71.
    Wollam GL, Tarazi RC, Bravo EL, et al. Diuretic potency of combined hydrochlorothiazide and furosemide therapy in patients with azotemia. Am J Med 1982; 72: 929–38PubMedCrossRefGoogle Scholar
  72. 72.
    Garin EH. A comparison of combinations of diuretics in nephrotic edema. Am J Dis Child 1987; 141: 769–71PubMedGoogle Scholar
  73. 73.
    Oimomi M, Shigeki T, Susumu S. Combination diuretic therapy for severe refractory nephrotic syndrome. Lancet 1990; 336: 1004–5PubMedCrossRefGoogle Scholar
  74. 74.
    Channer KS, McLean KA, Lawson-Matthew P, et al. Combination diuretic treatment in severe heart failure: a randomized clinical trial. Br Heart J 1994; 71: 146–50PubMedCrossRefGoogle Scholar
  75. 75.
    Steinmuller SR, Puschett JB. Effects of metolazone in man: comparison with chlorothiazide. Kidney Int 1972; 1: 169–81PubMedCrossRefGoogle Scholar
  76. 76.
    Dormans TPJ, Gerlag PGG. Combination of high-dose furosemide and hydrochlorothiazide in the treatment of refractory congestive heart failure. In: Puschett JB, editor. Diuretics. IV: Chemistry, pharmacology and clinical applications. Amsterdam: Elsevier, 1993; 45–8Google Scholar
  77. 77.
    Fernandez PC, Puschett JB. Proximal tubular actions of metolazone and chlorothiazide. Am J Physiol 1973; 225:954–61PubMedGoogle Scholar
  78. 78.
    Cassin S, Vogh BP. Effect of hydrochlorothiazide on renal blood flow and clearance of para-aminohippurate and creatinine. Proc Soc Exp Biol Med 1966; 122: 970–3PubMedGoogle Scholar
  79. 79.
    Suki WN, Dawoud F, Eknoyan G, et al. Effects of metolazone on renal function in normal man. J Pharmacol Exp Ther 1972; 180: 6–12PubMedGoogle Scholar
  80. 80.
    Michelis MF, DeRubertis F, Beck NP, et al. Standard oral water load to determine the site of action of diuretics in man. Clin Pharmacol Ther 1970; 11: 821–8PubMedGoogle Scholar
  81. 81.
    Friedman PA. Biochemistry and pharmacology of diuretics. Semin Nephrol 1988; 8: 198–212PubMedGoogle Scholar
  82. 82.
    Boer W, Koomas H, Dorhout Mees E. Effect of thiazides with and without carbonic anhydrase inhibiting activity on free water and lithium clearance. In: Puschett JB, editor. Diuretics. Ill: Chemistry, pharmacology and clinical applications. Amsterdam: Elsevier, 1990: 31–3Google Scholar
  83. 83.
    Allen JM, Hind CRK, McMichael HB. Synergistic action of metolazone with ‘loop’ diuretics [letter]. BMJ 1981; 282: 1873PubMedCrossRefGoogle Scholar
  84. 84.
    Arnold WC. Efficacy of metolazone and furosemide in children with furosemide-resistant edema. Pediatrics 1984; 74: 872–5PubMedGoogle Scholar
  85. 85.
    Asscher AW. Treatment of frusemide resistant oedema with metolazone. Clin Trials J 1974; 11: 134–9Google Scholar
  86. 86.
    Bamford JM. Synergistic action of metolazone with ‘loop’ diuretics [letter]. BMJ 1981; 283: 618PubMedCrossRefGoogle Scholar
  87. 87.
    Black WD, Shiner PT, Roman J. Severe electrolyte disturbances associated with metolazone and furosemide. South Med J 1978; 71: 380–2PubMedCrossRefGoogle Scholar
  88. 88.
    Brater DC, Pressley RH, Anderson SA. Mechanisms of the synergistic combination of metolazone and bumetanide. J Pharmacol Exp Ther 1985; 233: 70–4PubMedGoogle Scholar
  89. 89.
    Brown E, MacGregor G. Synergistic action of metolazone and frusemide [letter]. BMJ 1981; 283: 1611PubMedCrossRefGoogle Scholar
  90. 90.
    Craswell PW, Ezzat E, Kopstein J, et al. Use of metolazone, a new diuretic, in patients with renal disease. Nephron 1973; 12: 63–73CrossRefGoogle Scholar
  91. 91.
    Furniss L, Elenbaas J. Metolazone-furosemide synergism. Drug Intel Clin Pharm 1980; 14: 842–3Google Scholar
  92. 92.
    Furrer J, Hess OM, Kuhlmann U, et al. Furosemide and metolazone: a highly effective diuretic combination. Schweiz Med Wschr 1980; 110: 1825–9PubMedGoogle Scholar
  93. 93.
    Gage JS, Mancini DM, Gumbardo W, et al. Efficacy of combined diuretic therapy with metolazone and furosemide in patients with refractory congestive heart failure. Cardiovasc Rev Rep 1986; 7: 814–7Google Scholar
  94. 94.
    Ghose RR, Gupta SK. Synergistic action of metolazone with ‘loop’ diuretics. BMJ 1981; 282: 1432–3PubMedCrossRefGoogle Scholar
  95. 95.
    Grosskopf I, Rabinovitz M, Rosenfeld JB. Combination of furosemide and metolazone in the treatment of severe congestive heart failure. Isr J Med Sci 1986; 22: 787–90PubMedGoogle Scholar
  96. 96.
    Gunstone RF, Wing AJ, Shani HGP, et al. Clinical experience with metolazone in fifty-two African patients: synergy with frusemide. Postgrad Med J 1971; 47: 789–93PubMedCrossRefGoogle Scholar
  97. 97.
    Kshinsagar NA, Gupta KC, Paul T, et al. Effect of metolazone addition on furosemide resistant cases of edema. J Assoc Phys India 1978; 26: 915–23Google Scholar
  98. 98.
    Hropot M, Sorgel F, Mutshler E. Pharmacodynamics and pharmacokinetics of furosemide combinations with potassium-retaining and thiazide-like diuretics: clearance and micropuncture studies. Arch Pharmacol 1986; 333: 457–61CrossRefGoogle Scholar
  99. 99.
    Morachiello P, Landini S, Fracasso A, et al. Metolazone plus furosemide: evaluation of proximal Na+ reabsorption by lithium clearance in nephrotic patients. In: Puschett JB, editor. Diuretics. III: Chemistry, pharmacology and clinical applications. Amsterdam: Elsevier, 1990; 38–40Google Scholar
  100. 100.
    Marone C, Muggli CMF, Lahn W, et al. Pharmacokinetic and pharmacodynamic interaction between furosemide and metolazone in man. Eur J Clin Invest 1985; 15: 253–7PubMedCrossRefGoogle Scholar
  101. 101.
    Oster JR, Epstein M, Smoller S. Combined therapy with thiazide-type and loop diuretic agents for resistant sodium retention. Ann Intern Med 1983; 99: 405–6PubMedGoogle Scholar
  102. 102.
    Ram CVS, Reichgott MJ. Treatment of loop-diuretic resistant edema by the addition of metolazone. Curr Ther Res 1977; 22: 686–91Google Scholar
  103. 103.
    Kiyingi A, Field MJ, Pawsey CC, et al. Metolazone in treatment of severe refractory congestive cardiac failure. Lancet 1990; 335: 29–31PubMedCrossRefGoogle Scholar
  104. 104.
    Segar JL, Robillard JE, Johnson KJ, et al. Addition of metolazone to overcome tolerance to furosemide in infants with bronchopulmonary dysplasia. J Pediatr 1992; 120: 966–73PubMedCrossRefGoogle Scholar
  105. 105.
    Cachero SD, Lofland G, Springate JE, et al. Combination of metolazone and furosemide in the treatment of edema in the first month of life. Child Nephrol Urol 1990; 10: 161–3PubMedGoogle Scholar
  106. 106.
    Garin EH, Richard GA. Metolazone and furosemide for edema. Pediatrics 1986; 77: 130–1PubMedGoogle Scholar
  107. 107.
    Aravot DJ, Banner NR, Musumeci F, et al. Oral metolazone plus frusemide for home therapy in patients with refractory heart failure. Lancet 1989; 333: 727–8CrossRefGoogle Scholar
  108. 108.
    Farthing D, Sica DA, Fakhry I, et al. A novel HPLC method using solid phase on-line elution for determination of metolazone in plasma and whole blood. J Chromatogr Biomed Appl 1994; 653: 171–6CrossRefGoogle Scholar
  109. 109.
    Sica DA, Gehr TWB. Diuretic use in end-stage renal disease. Semin Dial 1995; 8: 305–10Google Scholar
  110. 110.
    Egel J, Pfansteil J, Puschett J. Diuretic effects on renal brush border membrane transport and metabolism. Life Sci 1985; 37: 1675–81PubMedCrossRefGoogle Scholar
  111. 111.
    Kempson SA, Kowalski JC, Puschett J. Direct effect of metolazone on sodium-dependent transport across the renal brush border membrane. J Lab Clin Med 1983; 101: 308–16PubMedGoogle Scholar
  112. 112.
    Belair EJ, Cohen AL, Yelnosky J. Renal excretion of metolazone, a new diuretic. Br J Pharmacol 1972; 45: 476–9PubMedCrossRefGoogle Scholar
  113. 113.
    Tilstone WJ, Dargie H, Dargie EN, et al. Pharmacokinetics of metolazone in normal subjects and in patients with cardiac or renal failure. Clin Pharmacol Ther 1974; 16: 322–9PubMedGoogle Scholar
  114. 114.
    Cohen, AI, Hartman AD, Hinsvark ON, et al. Physiological disposition of a new diuretic, 14C-metolazone, in dogs. J Pharm Sci 1973; 62: 931–6PubMedCrossRefGoogle Scholar
  115. 115.
    Cohen AI, Hinsvark O. Comparative binding of su14C-Zaroxylyn™, a new diuretic, to blood fractions and the pattern of metabolites in man and other species [abstract]. Proc Can Fed Biol Sci 1970; 13: 155Google Scholar
  116. 116.
    Hinsvark ON, Cohen AI. The study of metolazone, a new diuretic, in human body fluids using thin layer separation, liquid chromatographic measurements and 14C-counting techniques [abstract]. Fed Proc 1970; 29: 276Google Scholar
  117. 117.
    Curry CL, Janda SM, Harris R, et al. Clinical studies of a new, low-dose formulation of metolazone for the treatment of hypertension. Clin Ther 1986; 9: 47–62PubMedGoogle Scholar
  118. 118.
    Dargie HJ, Allison MEM, Kennedy AC, et al. Efficacy of metolazone in patients with renal edema. Clin Nephrol 1974; 2: 157–60PubMedGoogle Scholar
  119. 119.
    Paton RR, Kane RE. Long-term diuretic therapy with metolazone of renal failure and the nephrotic syndrome. J Clin Pharmacol 1977; 17: 243–51PubMedCrossRefGoogle Scholar
  120. 120.
    Schonees R, Mostert JW, Moore RH. Evaluation of metolazone, new diuretic in chronic renal disease. NY State J Med 1971; 71: 566–9Google Scholar
  121. 121.
    Reubi FC, Cottier PT. Effect of reduced glomerular filtration rate on responsiveness to chlorothiazide and mercurial diuretics. Circulation 1961; 23: 200–10PubMedCrossRefGoogle Scholar
  122. 122.
    Lowenthal DT, Shear L. Use of a new diuretic agent (metolazone) in patients with edema and ascites. Arch Intern Med 1973; 132: 38–41PubMedCrossRefGoogle Scholar
  123. 123.
    Hillenbrand P, Sherlock S. Use of metolazone in the treatment of ascites due to liver disease. BMJ 1971; 4: 266–70PubMedCrossRefGoogle Scholar
  124. 124.
    Lang GR, Westenfelder C, Nascimento L. Metolazone and spironolactone in cirrhosis and the nephrotic syndrome. Clin Pharmacol Ther 1977; 21: 234–43PubMedGoogle Scholar
  125. 125.
    Bennett WM, Porter GA. Efficacy and safety of metolazone in renal failure and the nephrotic syndrome. J Clin Pharmacol 1973; 13: 357–64PubMedGoogle Scholar
  126. 126.
    Chemtob S, Kaplan BS, Sherbotie JR, et al. Pharmacology of diuretics in the newborn. Pediatr Clin North Am 1989; 36: 1231–50PubMedGoogle Scholar
  127. 127.
    Mirochnick MH, Micelli JJ, Kramer PA, et al. Furosemide pharmacokinetics in very low birth weight infants. J Pediatr 1988; 112: 653–7PubMedCrossRefGoogle Scholar
  128. 128.
    Peterson RG, Simmons MA, Rumack BH, et al. Pharmacology of furosemide in the premature newborn infant. J Pediatr 1980; 97: 139–43PubMedCrossRefGoogle Scholar
  129. 129.
    Vert P, Broquaire M, Legagneur M, et al. Pharmacokinetics of furosemide in neonates. Eur J Clin Pharmacol 1982; 22: 39–45PubMedCrossRefGoogle Scholar
  130. 130.
    Chemtob S, Papageorgiou A, du Sonich P, et al. Cumulative increase in serum furosemide concentration following repeated doses in the newborn. Am J Perinatol 1987; 4: 203–5PubMedCrossRefGoogle Scholar
  131. 131.
    Aranda JV, Turmen T, Sasyniuk BI. Pharmacokinetics of diuretics and methylxanthines in the neonate. Eur J Clin Pharmacol 1980; 18: 55–63PubMedCrossRefGoogle Scholar
  132. 132.
    Whang R, Whang DD, Ryan MP. Refractory potassium depletion: a consequence of magnesium deficiency. Arch Int Med 1992; 152: 40–5CrossRefGoogle Scholar

Copyright information

© Adis International Limited 1996

Authors and Affiliations

  1. 1.Department of Medicine, Division of Clinical Pharmacology and Hypertension and Nephrology, Medical College of VirginiaVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations