Clinical Pharmacokinetics

, Volume 30, Issue 2, pp 141–179 | Cite as

Clinically Significant Drug Interactions with Cyclosporin An Update

  • Carlo Campana
  • Mario B. Regazzi
  • Isabella Buggia
  • Mariadelfina Molinaro
Review Article Drug Interactions


Since its approval in 1983 for immunosuppressive therapy in patients undergoing organ and bone marrow transplants, cyclosporin has had a major impact on organ transplantation. It has significantly improved 1-year and 2-year graft survival rates, and decreased morbidity in kidney, liver, heart, heart-lung and pancreas transplantation. Several studies have supported the efficacy of cyclosporin in preventing graft-versus-host disease in bone marrow transplantation. Cyclosporin is also possibly effective in treating diseases of autoimmune origin and as an antineoplastic agent.

The introduction of therapeutic drug monitoring of cyclosporin was extremely useful because of the wide inter- and intraindividual variability in the pharmacokinetics of cyclosporin after oral or intravenous administration. Optimal long term use of cyclosporin requires careful monitoring of the blood (or plasma) concentrations.

Sustained and clinically significant drug-drug interactions can occur during long term therapy with cyclosporin. The coadministration of multiple drugs with cyclosporin could result in graft rejection, renal dysfunction or other undesirable effects. Any interaction that leads to modified cyclosporin concentrations is of potential clinical importance.

Cyclosporin itself may have significant effects on the pharmacokinetics and/or pharmacodynamics of coadministered drugs, such as digoxin, HMG-CoA reductase inhibitors and antineoplastic drugs affected by multidrug resistance.

Many drugs have been shown to affect the pharmacokinetics and/or pharmacodynamics of cyclosporin. Interactions between cyclosporin and danazol, diltiazem, erythromycin, fluconazole, itraconazole, ketoconazole, metoclopramide, nicardipine, verapamil, carbamazepine, phenobarbital (phenobarbitone), phenytoin, rifampicin (rifampin) and cotrimoxazole (trimethoprim/sulfamethoxazole) are well documented in a large number of patients. Other interactions (such as those with aciclovir, estradiol and imipenem) are documented only in isolated case studies.


Cyclosporin Transplant Recipient Ketoconazole Transplant Proc Probucol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borel JF, Feurer C, Gubler HU, Stahelin H. Biological effects of cyclosporin A: a new antilymphocytic agent. Agents Actions 1976; 6: 468–75PubMedGoogle Scholar
  2. 2.
    Kahan BD, Grevel J. Optimization of cyclosporine therapy in renal transplantation by a pharmacokinetic strategy. Transplantation 1988; 43: 631–44Google Scholar
  3. 3.
    Kennedy MS, Yee GC, McGuire TR, et al. Correlation of serum cyclosporine concentration with renal dysfunction in marrow transplant recipients. Transplantation 1985; 40: 249–53PubMedGoogle Scholar
  4. 4.
    Ptachcinski RJ, Venkataramanan R, Rosenthal JT, et al. Clinical pharmacokinetics of cyclosporin. Clin Pharmacokinet 1986; 11: 107–32PubMedGoogle Scholar
  5. 5.
    Rodighiero V. Therapeutic drug monitoring of cyclosporin: practical applications and limitations. Clin Pharmacokinet 1989; 16: 27–37PubMedGoogle Scholar
  6. 6.
    Yee GC, Kennedy MS. Cyclosporine. In: Evans WE, Schentag JJ, Jusko WJ, eds. Applied pharmacokinetics: principle of therapeutic drug monitoring. Washington, DC: Applied Therapeutics, 1986Google Scholar
  7. 7.
    Yee GC, McGuire TR. Pharmacokinetic drug interactions with cyclosporin (part 1). Clin Pharmacokinet 1990; 19: 319–32PubMedGoogle Scholar
  8. 8.
    Yee GC, McGuire TR. Pharmacokinetic drug interactions with cyclosporin (part 2). Clin Pharmacokinet 1990; 19: 400–15PubMedGoogle Scholar
  9. 9.
    Klintmalm GBC, Iwatsuki I, Starzl TE. Nephrotoxicity of cyclosporin A in liver and kidney transplant patients. Lancet 1981; i: 470–1Google Scholar
  10. 10.
    Puschett JB, Greenberg A, Holley J, et al. The spectrum of cyclosporine nephrotoxicity. Am J Nephrol 1990; 10(4): 296–309PubMedGoogle Scholar
  11. 11.
    McCauley J, Van Thiel DH, Starzl TE, et al. Acute and chronic renal failure in liver transplantation. Nephron 1990; 55: 121–8PubMedGoogle Scholar
  12. 12.
    Atkinson K, Biggs J, Darveniza P, et al. Cyclosporine-associated central nervous system toxicity after allogeneic bone marrow transplantation. Transplantation 1984; 38: 34–7PubMedGoogle Scholar
  13. 13.
    DeGroen PC, Aksamit AJ, Rakela J, et al. Central nervous system toxicity after liver transplantation. The role of cyclosporine and cholesterol. New Engl J Med 1987; 317(14): 861–6Google Scholar
  14. 14.
    Grant D, Wall W, Duff J, et al. Adverse effect of cyclosporine therapy following liver transplantation. Transplant Proc 1987; 19(4): 3463–5PubMedGoogle Scholar
  15. 15.
    Kahan BD. Cyclosporine. New Engl J Med 1989; 321: 1725–38PubMedGoogle Scholar
  16. 16.
    Wood AJ, Maurer G, Niederberger W, et al. Cyclosporine: pharmacokinetics, metabolism and drug interactions. Transplant Proc 1983; 15 Suppl. 1: 2409–12Google Scholar
  17. 17.
    Lindholm A. Factors influencing the pharmacokinetics of cyclosporine in man. Ther Drug Monit 1991; 13: 465–77PubMedGoogle Scholar
  18. 18.
    Drewe J, Beglinger C, Kissel T. The absorption site of cyclosporin in the human gastrointestinal tract. Br J Clin Pharmacol 1992; 33(1): 39–43PubMedGoogle Scholar
  19. 19.
    Kahan BD, Ried M, Newburger J. Pharmacokinetics of cyclosporine in human renal transplantation. Transplant Proc 1983; 15: 446–53Google Scholar
  20. 20.
    Ptachcinski RJ, Venkataramanan R, Rosenthal JT, et al. Cyclosporine kinetics in renal transplantation. Clin Pharmacol Ther 1985; 38(3): 296–300PubMedGoogle Scholar
  21. 21.
    Burckart GJ, Venkataramanan R, Ptachcinski RJ, et al. Cyclosporine absorption following orthotopic liver transplantation. J Clin Pharmacol 1986; 26: 647–51PubMedGoogle Scholar
  22. 22.
    Kahan BD, Kramer WG, Wideman C, et al. Demographic factors affecting the pharmacokinetics of cyclosporine estimated by radioimmunoassay. Transplantation 1986; 41: 459–64PubMedGoogle Scholar
  23. 23.
    Andrews W, Iwatsuki S, Shaw BW, et al. Cyclosporine monitoring in liver transplant patients [letter]. Transplantation 1985; 39: 338PubMedGoogle Scholar
  24. 24.
    Venkataramanan R, Burckart GJ, Ptachcinski RJ. Pharmacokinetics and monitoring of cyclosporine following orthotopic liver transplantation. Semin Liver Dis 1985; 5: 357–68PubMedGoogle Scholar
  25. 25.
    Mehta MU, Venkataramanan R, Burckart GJ, et al. Effect of bile on cyclosporin absorption in liver transplant patients. Br J Clin Pharmacol 1988; 25: 579–84PubMedGoogle Scholar
  26. 26.
    Burckart GJ, Venkataramanan R, Ptachcinski RJ, et al. Cyclosporine pharmacokinetic profiles in liver, heart and kidney transplant patients as determined by high-performance liquid chromatography. Transplant Proc 1986; 18 (6 Suppl. 5): 129–36PubMedGoogle Scholar
  27. 27.
    Kahan BD, Dunn J, Fitts C, et al. The Neoral formulation: improved correlation between cyclosporine trough levels and exposure in stable renal transplant recipients. Transplant Proc 1994; 26(5): 2940–2PubMedGoogle Scholar
  28. 28.
    Atkinson K, Biggs JC, Britton K, et al. Oral administration of cyclosporin A for recipients of allogeneic marrow transplants: implications of clinical gut dysfunction. Br J Haematol 1984; 56: 223–31PubMedGoogle Scholar
  29. 29.
    Burckart G, Starzl T, Williams L, et al. Cyclosporin monitoring and pharmacokinetics in pediatric liver transplant patients. Transplant Proc 1985; 17: 1172–5PubMedGoogle Scholar
  30. 30.
    Kovarik JM, Mueller EA, van Bree JB, et al. Reduced inter- and intraindividual variability in cyclosporine pharmacokinetics from a microemulsion formulation. J Pharm Sci 1994; 83: 444–6PubMedGoogle Scholar
  31. 31.
    Trull AK, Tan KKC, Uttridge J, et al. Cyclosporine absorption from microemulsion formulation in liver transplant recipients. Lancet 1993; 341: 433PubMedGoogle Scholar
  32. 32.
    Levy G, Grant D. Potential for CsA-Neoral in organ transplantation. Transplant Proc 1994; 26(5): 2932–4PubMedGoogle Scholar
  33. 33.
    Wadhwa NK, Schroeder TJ, O’Flaherty E, et al. The effect of oral metoclopramide on the absorption of cyclosporine. Transplant Proc 1987; 19 (1 Pt 2): 1730–3Google Scholar
  34. 34.
    Finet L, Westeel PF, Hary L, et al. Effects of cisapride on the intestinal absorption of cyclosporine in renal transplant patients [abstract]. Gastroenterology 1991; 100: A209Google Scholar
  35. 35.
    Gupta SK, Bakran A, Johnson RWG, et al. Erythromycin enhances the absorption of cyclosporin. Br J Clin Pharmacol 1988; 25: 401–2PubMedGoogle Scholar
  36. 36.
    Rowland M, Gupta SK. Cyclosporin-phenytoin interaction: re-evaluation using metabolite data. Br J Clin Pharmacol 1987; 24: 329–34PubMedGoogle Scholar
  37. 37.
    Freeman DJ, Laupacis A, Keown PA, et al. Evaluation of cyclosporin-phenytoin interaction with observations on cyclosporine metabolites. Br J Clin Pharmacol 1984; 18: 887–93PubMedGoogle Scholar
  38. 38.
    Riegelman S, Rowland M, Epstein WL. Griseofulvin-pheno-barbital interaction in man. JAMA 1970; 213: 426–31PubMedGoogle Scholar
  39. 39.
    Putcha L, Nandiwada P, Feldman S, et al. Effect of heptabarbital on bioavailability of bishydroxycoumarin in the rat. Res Commun Chem Pathol Pharmacol 1978; 19: 67–74PubMedGoogle Scholar
  40. 40.
    Crow JW, Gibaldi M, Levy G. Comparative pharmacokinetics of coumarin anticoagulants, XLII: effect of phenobarbital on systemic availability of orally administered dicumarol in rats with ligated bile ducts. J Pharm Sci 1979; 68: 1309–12PubMedGoogle Scholar
  41. 41.
    Landgraf F, Landgraf-Leurs MMC, Nusser J, et al. Effect of somatostatine analogue (SMS201-995) on cyclosporine levels. Transplantation 1987; 44: 724–5PubMedGoogle Scholar
  42. 42.
    Rosenberg L, Dafoe DC, Schwartz R. Administration of somatostatin analog in the treatment of a fistula occurring after pancreas transplantation. Transplantation 1987; 43: 764–6PubMedGoogle Scholar
  43. 43.
    Santa T, Nishihara K, Horie S, et al. Decreased cyclosporine absorption after treatment with GoLytely lavage solution in a kidney transplant patient. Ann Pharmacother 1994; 28(7–8): 963–4PubMedGoogle Scholar
  44. 44.
    Reichenspurner H, Meiser BM, Muschiol F, et al. Changes of resorption and metabolism of cyclosporine after heart transplantation by the influence of gastrointestinal agents. Transplant Proc 1994; 26(5): 2800–1PubMedGoogle Scholar
  45. 45.
    Babany G, Morris RE, Babany I, et al. Evaluation of the in vivo dose-response relationship of immunosuppressive drugs using a mouse heart transplant model: application to cyclosporine. J Pharmacol Exp Ther 1988; 244: 259–62PubMedGoogle Scholar
  46. 46.
    Ried M, Gibbons S, Kwok D, et al. Cyclosporine levels in human tissues of patients treated for one week to one year. Transplant Proc 1983; 15 Suppl. 1/2: 2434–7Google Scholar
  47. 47.
    Lensmeyer GL, Wiebe DA, Carlson IH, et al. Concentration of cyclosporin A and its metabolite in human tissues postmortem. J Anal Toxicol 1991; 15: 110–5PubMedGoogle Scholar
  48. 48.
    Lemaire M, Tillement JP. Role of lipoproteins and erythrocytes in the in vitro binding and distribution of cyclosporin A in the blood. J Pharm Pharmacol 1982; 34: 715–8PubMedGoogle Scholar
  49. 49.
    Atkinson K, Britton K, Biggs J. Distribution and concentration of cyclosporin in human blood. J Clin Pathol 1984; 37: 1167–71PubMedGoogle Scholar
  50. 50.
    Mraz W, Kemkes BM, Knedel M. The role of lipoproteins in exchange and transfer of cyclosporine-results from in vitro investigations. Transplant Proc 1986; 18: 1281–4Google Scholar
  51. 51.
    Niederberger W, Lemaire M, Maurer G, et al. Distribution and binding of cyclosporine in blood and tissues. Transplant Proc 1983; 15 (4 Suppl. 1/2): 2419–21Google Scholar
  52. 52.
    Mraz W, Zink RA, Graf A, et al. Distribution and transfer of cyclosporine among the various human lipoprotein classes. Transplant Proc 1983; 15 Suppl. 1/2: 2426–9Google Scholar
  53. 53.
    Sgoutas D, MacMahon W, Love A, et al. Interaction of cyclosporin A with human lipoproteins. J Pharm Pharmacol 1986; 38: 583–8PubMedGoogle Scholar
  54. 54.
    De Groen PC. Cyclosporine, low density lipoprotein and cholesterol. Majo Clin Proc 1988; 63: 1012–21Google Scholar
  55. 55.
    Superko HR, Haskeil WL, Di-Ricco CD. Lipoprotein and hepatic lipase activity and high-density lipoprotein subclasses after cardiac transplantation. Am J Cardiol 1990; 66: 1131–4PubMedGoogle Scholar
  56. 56.
    Harris KPG, Rüssel GI, Parvin SD, et al. Alterations in lipid and carbohydrate metabolism attributable to cyclosporin A in renal transplant recipients. BMJ 1986; 292: 16PubMedGoogle Scholar
  57. 57.
    McEvoy GK, editor. American Hospital Formulary Service (AHFS) Drug Information 92. Bethesda (MD): American Society of Hospital Pharmacists, 1992; 964Google Scholar
  58. 58.
    Sundararajan V, Cooper DKC, Muchmore J, et al. Interaction of cyclosporine and probucol in heart transplant patients. Transplant Proc 1991; 23: 2028–32PubMedGoogle Scholar
  59. 59.
    Gallego C, Sanchez P, Planells C, et al. Interaction between probucol and cyclosporine in renal transplant patients. Ann Pharmacother 1994; 28(7–8): 940–3PubMedGoogle Scholar
  60. 60.
    Blum CB, Levy RI. Current therapy for hypercholesterolaemia. JAMA 1989; 261: 3582–7PubMedGoogle Scholar
  61. 61.
    Anderson JL, Schroeder JS. Effect of probucol on hyperlipidemic patients with cardiac allograft. J Cardiovasc Pharmacol 1979; 1: 353–65PubMedGoogle Scholar
  62. 62.
    Tobert JA. Rhabdomyolysis in patients receiving lovastatin after cardiac transplantation. New Engl J Med 1988; 318: 47–8Google Scholar
  63. 63.
    Keogh A, Day R, Critchley L, et al. The effect of food and cholestyramine on the absorption of cyclosporine in cardiac transplant recipients. Transplant Proc 1988; 20: 27–30PubMedGoogle Scholar
  64. 64.
    Bertault-Peres P, Bonfils C, Fabre G, et al. Metabolism of cyclo-sporin A. Implication of the macrolide antibiotic inducible cytochrome P-450 3c from rabbit liver microsomes. Drug Metab Dispos 1987; 15(3): 391–8PubMedGoogle Scholar
  65. 65.
    Fabre I, Fabre G, Maurel P, et al. Metabolism of cyclosporine A. III: Interaction of the macrolide antibiotic erythromycin, using rabbit hepatocytes and microsome fractions. Drug Metab Dispos 1988; 16: 296–301PubMedGoogle Scholar
  66. 66.
    Aoyama T, Yamano S, Waxman DJ, et al. Cytochrome P-450 hPCN3, a novel cytochrome P-450IIIA gene product that is differentially expressed in adult human liver. CDNA and deduced amino acid sequence and distinct specificity on cDNA-expressed hPCN1 and hPCN3 for metabolism of steroid hormones and cyclosporine. J Biol Chem 1989; 264(18): 10388–95PubMedGoogle Scholar
  67. 67.
    Combalbert J, Fabre I, Fabre G, et al. Metabolism of cyclosporine A. IV: Purification and identification of the rifampicin-in-ducible human liver cytochrome P-450 (cyclosporine A oxidase) as a product of P450IIIA gene subfamily. Drug Metab Dispos 1989; 17(2): 197–207PubMedGoogle Scholar
  68. 68.
    Kronbach T, Fischer V, Meyer UA. Cyclosporine metabolism in human liver: identification of a cytochrome P-450III gene family as the major cyclosporine-metabolizing enzyme explains interactions of cyclosporine with other drugs. Clin Pharmacol Ther 1988; 43(6): 630–5PubMedGoogle Scholar
  69. 69.
    Nebert DW, Nelson DR, Adesnik M, et al. The P-450 superfamily: updated listing of all genes and recommended nomenclature for the chromosomal loci. DNA 1989; 8: 1–13PubMedGoogle Scholar
  70. 70.
    Fahr A. Cyclosporin clinical pharmacokinetics. Clin Pharmacokinet 1993; 24(6): 472–95PubMedGoogle Scholar
  71. 71.
    Copeland KR, Thliveris JA, Yatscoff RW. Toxicity of cyclosporine metabolites. Ther Drug Monit 1990; 12: 525–32PubMedGoogle Scholar
  72. 72.
    Lokiec F, Poirer O, Gluckman E, et al. Pharmacokinetic study of cyclosporine A. In: Touraine J, Gluckman E, Griscelli G, editors. Bone marrow transplantation in Europe, II. Amsterdam: Excerpta Medica, 1981; 160–4Google Scholar
  73. 73.
    Ferguson RM, Sutherland DER, Simmons RL, et al. Ketoconazole, cyclosporin metabolism, and renal transplantation [letter]. Lancet 1982; ii: 882–3Google Scholar
  74. 74.
    Daneshmend TK. Ketoconazole-cyclosporine intercation [letter]. Lancet 1982; ii: 1342–3Google Scholar
  75. 75.
    Dieperink H, Kemp E, Leyssac PP, et al. Ketoconzole and cyclosporin A: combined effects on rat renal function and on serum and tissue cyclosporin A concentration. Clin Nephrol 1986; 25 Suppl. 1: S137–43PubMedGoogle Scholar
  76. 76.
    Morgenstern GR, Powles R, Robinson B, et al. Cyclosporin interaction with ketoconazole and melphalan [letter]. Lancet 1982; ii: 1342Google Scholar
  77. 77.
    Smith J, Hows J, Donnelly P, et al. Interaction of cyclosporine A and ketoconazole. Exp Hematol 11 1983; Suppl. 13: 176–8Google Scholar
  78. 78.
    White DJ, Blatchford NR, Cauwenbergh G. Cyclosporine and ketoconazole. Transplantation 1984; 37: 214–5PubMedGoogle Scholar
  79. 79.
    Gumbleton M, Brown JE, Hawksworth G, et al. The possible relationship between hepatic drug metabolism and ketoconazole enhancement of cyclosporine nephrotoxicity. Transplantation 1985; 40(4): 454–5PubMedGoogle Scholar
  80. 80.
    Shepard JH, Canafax DM, Simmons RL, et al. Cyclosporine-ketoconazole: a potentially dangerous drug-drug intercation [letter]. Clin Pharm 1986; 5: 468PubMedGoogle Scholar
  81. 81.
    Ryffel B, Müller AM, Mihatsch MJ. Experimental cyclosporine nephrotoxicity: risks of concomitant chemotherapy. Clin Nephrol 1986; 25 Suppl. 1: S121–5PubMedGoogle Scholar
  82. 82.
    Schroeder TJ, Melvin DB, Clardy CW, et al. Use of cyclosporine and ketoconazole without nephrotoxicity in two heart transplant recipients. J Heart Transplant 1987; 6: 84–9PubMedGoogle Scholar
  83. 83.
    Charles BG, Ravenscroft PJ, Rigby RJ. The ketoconazole-cyclosporine interaction in an elderly renal transplant patient. Aust NZ J Med 1989; 19: 292–3Google Scholar
  84. 84.
    Veraldi S, Menni S. Severe gingival hyperplasia following cyclosporin and ketoconazole therapy [letter]. Intern J Dermatol 1988; 27: 730Google Scholar
  85. 85.
    Girardet RE, Melo JC, Fox MS, et al. Concomitant administration of cyclosporine and ketoconazole for three and a half years in one heart transplant recipient. Transplantation 1989; 48: 887–90PubMedGoogle Scholar
  86. 86.
    Kiss D, Thiel G. Glucose-intolerance and prolonged renaltransplant insufficiency due to ketoconazole-cyclosporin A interaction [letter]. Clin Nephrol 1990; 33: 207–8PubMedGoogle Scholar
  87. 87.
    First MR, Schroeder TJ, Weiskittel P, et al. Concomitant administration of cyclosporin and ketoconazole in renal transplant recipients. Lancet 1989; ii: 1198–201Google Scholar
  88. 88.
    First MR, Schroeder TJ, Alexander JW, et al. Cyclosporine dose reduction by ketoconazole administration in renal transplant recipients. Transplantation 1991; 51: 365–70PubMedGoogle Scholar
  89. 89.
    Dieperink H, M011er J. Ketoconazole and cyclosporin [letter]. Lancet 1982; ii: 1217Google Scholar
  90. 90.
    Sugar AM, Saunders C, Idelson BA, et al. Interaction of fluconazole and cyclosporine [letter]. Ann Intern Med 1989; 110: 884Google Scholar
  91. 91.
    Collignon P, Hurley B, Mitchell D. Interaction of fluconazole with cyclosporin. Lancet 1989; i: 1262Google Scholar
  92. 92.
    Canafax DM, Graves NM, Hilligoss DM, et al. Interaction between cyclosporine and fluconazole in renal allograft recipients. Transplantation 1991; 51(5): 1014–8PubMedGoogle Scholar
  93. 93.
    Kwan JT, Foxall PJ, Davidson DG, et al. Interaction of cyclosporin and itraconazole. Lancet 1987; ii: 282Google Scholar
  94. 94.
    Trenk D, Brett W, Jahnchen E, et al. Time course of cyclosporin/itraconazole interaction. Lancet 1987; ii: 1335–6Google Scholar
  95. 95.
    Novakova I, Donnelly P, de Witte TD, et al. Itraconazole and cyclosporine nephrotoxicity. Lancet 1987; ii: 920–1Google Scholar
  96. 96.
    Horton CM, Freeman CD, Nolan PE, et al. Cyclosporine interactions with miconazole and other azole-antimycotics: a case report and review of the literature. J Heart Lung Transplant 1992; 11(6): 1127–32PubMedGoogle Scholar
  97. 97.
    Butman SM, Wild JC, Nolan PE, et al. Prospective study of the safety and financial benefit of ketoconazole as adjunctive therapy to cyclosporine after heart transplantation. J Heart Lung Transplant 1991; 10: 351–8PubMedGoogle Scholar
  98. 98.
    Gueco IP, Tan-Torres T, Baniga U, et al. Ketoconazole in posttransplant triple therapy: comparison of costs and outcomes. Transplant Proc 1992; 24(5): 1709–14PubMedGoogle Scholar
  99. 99.
    Albengres E, Tillement JP. Cyclosporin and ketoconazole, drug interaction or therapeutic association? Int J Clin Pharmacol Ther Toxicol 1992; 30(12): 555–70PubMedGoogle Scholar
  100. 100.
    Gandhi BV, Kale S, Bhowmik DM, et al. Concomitant administration of cyclosporine and ketoconazole in renal transplant patients. Transplant Proc 1992; 24(5): 1715PubMedGoogle Scholar
  101. 101.
    First MR, Schroeder TJ, Michael A, et al. Cyclosporine-ketoconazole interaction. Long term follow up and preliminary results of a randomized trial. Transplantation 1993; 55(5): 1000–4PubMedGoogle Scholar
  102. 102.
    Patton PR, Brunson ME, Pfaff WW, et al. Preliminary report of diltiazem and ketoconazole. Transplantation 1994; 57: 889–92PubMedGoogle Scholar
  103. 103.
    Back DJ, Tjia JF. Comparative effects of the antimycotic drugs, ketoconazole, fluconazole, itraconazole and terbinafine on the metabolism of cyclosporine by human liver microsomes. Br J Clin Pharmacol 1991; 32: 624–6PubMedGoogle Scholar
  104. 104.
    Grant SM, Clissold SP. Itraconazole: a review of its pharmaco-dynamic and pharmacokinetic properties, and therapeutic use in superficial and systemic mycoses. Drugs 1989; 37: 310–44PubMedGoogle Scholar
  105. 105.
    Grant SM, Clissold SP. Fluconazole: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in superficial and systemic mycoses. Drugs 1990; 39: 877–916PubMedGoogle Scholar
  106. 106.
    Kramer MR, Marshall SE, Denning DW, et al. Cyclosporine and itraconazole interaction in heart and lung transplant recipients. Ann Intern Med 1990; 113: 327–9PubMedGoogle Scholar
  107. 107.
    Zylber-Katz E. Multiple drug interactions with cyclosporine in a heart transplant patient. Ann Pharmacother 1995; 9: 127–31Google Scholar
  108. 108.
    Ptachcinski RJ, Carpenter BJ, Burckart G, et al. Effect of erythromycin on cyclosporine levels. New Engl J Med 1985; 313(22): 1416–7PubMedGoogle Scholar
  109. 109.
    Hourmant M, Le Bigot JF, Vernillet L, et al. Coadministration of erythromycin results in an increase of blood cyclosporine to toxic levels. Transplant Proc 1985; 17(6): 2723–7Google Scholar
  110. 110.
    Gonwa TA, Nghiem DM, Schulak JA, et al. Erythromycin and cyclosporine. Transplantation 1986; 41: 797–9PubMedGoogle Scholar
  111. 111.
    Jensen CWB, Flechner SM, Van Buren CT, et al. Exacerbation of cyclosporine toxicity by concomitant administration of erythromycin. Transplantation 1987; 43: 263–70PubMedGoogle Scholar
  112. 112.
    Murray BM, Edwards L, Morse GD, et al. Clinically important interaction of cyclosporine and erythromycin. Transplantation 1987; 43: 602–4PubMedGoogle Scholar
  113. 113.
    Lysz K, Rosemberg JC, Kaplan MP, et al. Interaction of erythromycin with cyclosporine. Transplant Proc 1988; 20: 543–8PubMedGoogle Scholar
  114. 114.
    Griño JM, Sabate J, Castelao AM, et al. Erythromycin and cyclosporine [letter]. Ann Intern Med 1986; 105: 467–8PubMedGoogle Scholar
  115. 115.
    Wadhwa NK, Schroeder TJ, O’Flaherty E, et al. Interaction between erythromycin and cyclosporine in a kidney and pancreas allograft recipient. Ther Drug Monit 1987; 9: 123–5PubMedGoogle Scholar
  116. 116.
    Martell R, Heinrichs D, Stiller CR, et al. The effect of erythromycin in patients treated with cyclosporine. Ann Intern Med 1986; 104: 660–1PubMedGoogle Scholar
  117. 117.
    Kohan DE. Possible interaction between cyclosporine and erythromycin [letter]. New Engl J Med 1986; 314: 448PubMedGoogle Scholar
  118. 118.
    Kessler M, Louis J, Renoult E, et al. Interaction between cyclo-sporin and erythromycin in a kidney transplant patient. Eur J Clin Pharmacol 1986; 30: 633–4PubMedGoogle Scholar
  119. 119.
    Ben-Ari J, Eisenstein B, Davidovits M, et al. Effect of erythromycin on blood cyclosporine concentrations in kidney transplant patients. J Pediatr 1988; 112: 992–3PubMedGoogle Scholar
  120. 120.
    Harnett JD, Parfrey PS, Paul MD, et al. Erythromycin-cyclosporine interaction in renal transplant recipients. Transplantation 1987; 43: 316–8PubMedGoogle Scholar
  121. 121.
    Aoki FY, Yatscoff R, Jeffery J, et al. Effects of erythromycin on cyclosporine A kinetics in renal transplant patients [abstract]. Clin Pharmacol Ther 1987; 41: 221 (Abstract PIIID-4)Google Scholar
  122. 122.
    Freeman DJ, Martell R, Carruthers SG, et al. Cyclosporin-erythromycin interaction in normal subjects. Br J Clin Pharmacol 1987; 23: 776–8PubMedGoogle Scholar
  123. 123.
    Danan G, Descatoire V, Pessayre D. Self-induction by erythromycin of its own transformation into a metabolic forming an inactive complex with reduced cytochrome P-450. J Pharmacol Exp Ther 1981; 218: 509–14PubMedGoogle Scholar
  124. 124.
    Larrey D, Funck-Brentano C, Breil P, et al. Effects of erythromycin on hepatic drug-metabolizing enzymes in humans. Biochem Pharmacol 1983; 32: 1063–8PubMedGoogle Scholar
  125. 125.
    Henriccson S, Lindholm A. Inhibition of cyclosporine metabolism by other drugs in vitro. Transplant Proc 1988; 20 Suppl. 2: 569–71Google Scholar
  126. 126.
    Wahlstrom E, Zamora JU, Teichman S. Improvement in cyclosporine-associated gingival hyperplasia with azithromycin therapy. New Engl J Med 1995; 332: 753–4PubMedGoogle Scholar
  127. 127.
    Gersema LM, Porter CB, Russel EH. Suspected drug interaction between cyclosporine and clarithromycin. J Heart Lung Transplant 1994; 13(2): 343–5PubMedGoogle Scholar
  128. 128.
    Ferrari SL, Goffin E, Mourad M, et al. The interaction between clarithromycin and cyclosporine in kidney transplant recipients. Transplantation 1994; 58: 725–7PubMedGoogle Scholar
  129. 129.
    Kreft-Jais C, Billaud EM, Gaudry C, et al. Effect of josamycin on plasma cyclosporine levels. Eur J Clin Pharmacol 1987; 32: 327–8PubMedGoogle Scholar
  130. 130.
    Azanza J, Catalan M, Alvarez P, et al. Possible interactions between cyclosporine and josamycin. J Heart Transplant 1990; 9: 265–6PubMedGoogle Scholar
  131. 131.
    Couet W, Istin B, Seniuta P, et al. Effect of ponsinomycin on cyclosporin pharmacokinetics. Eur J Clin Pharmacol 1990; 39: 165–7PubMedGoogle Scholar
  132. 132.
    Herbrecht R, Liu KL, Bergerat JP. Interaction of cyclosporine with antimicrobial agents [letter]. Rev Infect Dis 1990; 12: 371PubMedGoogle Scholar
  133. 133.
    Billaud EM, Guillemain R, Fortineau N, et al. Interaction between roxithromycin and cyclosporin in heart transplant patients. Clin Pharmacokinet 1990; 19: 499–502PubMedGoogle Scholar
  134. 134.
    Pessayre D, Larrey D, Vitaux J, et al. Formation of an inactive cytochrome P-450 Fe(II)-metabolite complex after administration of troleanomycin in humans. Biochem Pharmacol 1982; 31: 1699–704PubMedGoogle Scholar
  135. 135.
    Chan GL, Sinnott JT, Emmanuel PJ, et al. Drug interaction with cyclosporin: focus on antimicrobial agents. Clin Transplant 1992; 6: 141–53Google Scholar
  136. 136.
    Burke MD, Maclntyre F, Cameron D, et al. Cyclosporine A metabolism and drug interactions. In: Thomson AW. Sandimmun®: mode of action and clinical applications. Dondrech, The Netherlands: Kluwer Academic, 1989; 267Google Scholar
  137. 137.
    Tinel M, Descatoire V, Larrey D, et al. Effects of clarithromycin on cytochrome P-450: comparison with other macrolides. J Pharmacol Exp Ther 1989; 250: 746–51PubMedGoogle Scholar
  138. 138.
    Bolt HM, Kappus H, Bolt M. Effect of rifampicin treatment on the metabolism of oestradiol and 17-alpha-ethinyloestradiol by human liver microsomes. Eur J Clin Pharmacol 1975; 8: 301–7PubMedGoogle Scholar
  139. 139.
    Jezequel AM, Orlandi F, Tenconi LT. Changes of the smooth endoplasmic reticulum induced by rifampicin in human and guinea-pig hepatocytes. Gut 1971; 12: 984–7PubMedGoogle Scholar
  140. 140.
    Hopps V, Galione A, Biondi F, et al. Rifampicin reduces neph-rotoxicity of cyclosporine A in rats: studies of renal enzyme excretion. Transplant Proc 1988; 20 Suppl. 2: 557–60Google Scholar
  141. 141.
    Cockburn ITR, Krupp P. An appraisal of drug interactions with Sandimmun. Transplant Proc 1989; 21: 3845–50PubMedGoogle Scholar
  142. 142.
    Muakkassah SE, Bidlock WR, Yang WC. Mechanism of the inhibitory action of isoniazid on microsomal drug metabolism. Biochem Pharmacol 1984; 30: 1651–8Google Scholar
  143. 143.
    Jarewicz WA, Gunson BK, Ismail T, et al. Cyclosporin and antituberculous therapy. Lancet 1985; i: 1342–3Google Scholar
  144. 144.
    Daniels NJ, Dover JS, Schachter RK. Interaction between cyclosporin and rifampicin. Lancet 1984; ii: 639Google Scholar
  145. 145.
    Allen RD, Hunnisett AG, Morris PJ. Cyclosporin and rifampicin in renal transplantation. Lancet 1985; i: 980Google Scholar
  146. 146.
    Van Buren D, Wideman CA, Ried M, et al. The antagonistic effect of rifampin upon cyclosporine bioavailability. Transplant Proc 1984; 16: 1642–5PubMedGoogle Scholar
  147. 147.
    Langhoff E, Madsen S. Rapid metabolism of cyclosporin and prednisone in kidney transplant patients receiving tuberculostatic treatment. Lancet 1983; ii: 1031Google Scholar
  148. 148.
    Modry DL, Stinson EB, Oyer PE, et al. Acute rejection and massive cyclosporine requirements in heart transplant recipients treated with rifampin. Transplantation 1985; 39: 313–4PubMedGoogle Scholar
  149. 149.
    Al-Sulaiman MH, Dhar JM, AL-Khader AA. Successful use of rifampicin in the treatment of tubecolosis in renal transplant patients immunossuppressed with cyclosporine. Transplantation 1990; 50: 597–8PubMedGoogle Scholar
  150. 150.
    Renoult E, Hubert J, Trechot P, et al. Effect of topical rifamycin SV treatment on cyclosproin A blood levels in renal transplant recipient. Eur J Clin Pharmacol 1991; 40: 433–4PubMedGoogle Scholar
  151. 151.
    Arora SK. Correlation of structure and activity in ansamycins. Molecular structure of sodium rifamycin SV. Molec Pharmacol 1983; 23: 133–40Google Scholar
  152. 152.
    Bonazzi P, Novelli G, Galeazzi R. The interaction of rifamycin SV with the hepatic transport and sulfation of taurolithocolic acid in rats. Pharmacol Res Commun 1986; 18: 675–85PubMedGoogle Scholar
  153. 153.
    Vandevelde C, Chang A, Andrews D, et al. Rifampicin and ansamycin interactions with cyclosporine after renal transplantation. Pharmacotherapy 1987; 11(1): 88–9Google Scholar
  154. 154.
    Veremis SA, Maddux MS, Pollak R, et al. Subtherapeutic cyclosporine concentrations during nafcillin therapy. Transplantation 1987; 43: 913–5PubMedGoogle Scholar
  155. 155.
    Zazgornik J, Schein W, Heimberger K, et al. Potentiation of neurotoxic side effects by coadministration of imipenem to cyclosporine therapy in a kidney transplant recipients-synergism of side-effects or drug-interaction? Clin Nephrol 1986; 26: 265–6PubMedGoogle Scholar
  156. 156.
    Jahansouz FJ, Kriett JM, Smith CM, et al. Potentiation of cyclosporine nephrotoxicity by nafcillin in lung transplant recipients. Transplantation 1993; 55(5): 1045–8PubMedGoogle Scholar
  157. 157.
    Lake KD. Management of drug interactions with cyclosporine. Pharmacotherapy 1991; 11 Suppl.: 110S–118SPubMedGoogle Scholar
  158. 158.
    Linton AL, Clark WF, Driedger A A, et al. Acute interstitial nephritis due to drugs: review of literature with a report of nine cases. Ann Inter Med 1980; 93: 735–41Google Scholar
  159. 159.
    Neilson EG. Pathogenesis and therapy of interstistial nephritis. Kidney Int 1989; 35: 1257–70PubMedGoogle Scholar
  160. 160.
    Mraz W, Sido B, Knedel M, et al. Concomitant immunosuppressive and antibiotic therapy-reduction of cyclospoine A blood levels due to treatment with imipenem/cilastatin. Transplant Proc 1987; 19: 4017–20PubMedGoogle Scholar
  161. 161.
    Sido B, Hammer C, Mraz W, et al. Nephroprotective effect of imipenem/cilastatin in reducing cyclosporine toxicity. Transplant Proc 1987; 19(1 Pt 2): 1755–8PubMedGoogle Scholar
  162. 162.
    Thompson JF, Chalmers DHK, Hunnisett AGW, et al. Nephrotoxicity of trimethoprim and cotrimoxazole in renal allograft recipients treated with cyclosporine. Transplantation 1983; 36: 204–6PubMedGoogle Scholar
  163. 163.
    Jones DK, Hakim M, Wall work J, et al. Serious interaction between cyclosporine A and sulphadimidine. BMJ 1986; 292: 728–9PubMedGoogle Scholar
  164. 164.
    Wallwork J, McGregor CGA, Wells FC, et al. Cyclosporin and intravenous sulphadimidine and trimethoprim therapy [letter]. Lancet 1983; i: 366–7Google Scholar
  165. 165.
    Freeman DJ, Laupacis A, Keown P, et al. The effects of agents that alter drug metabolizing enzyme activity on the pharma-cokinetics of cyclosporine [abstract]. Ann R Coll Phys Surg Can 1984; 17: 301Google Scholar
  166. 166.
    D’Souza MJ, Pollack SH, Solomon HM. Cyclosporine-phenytoin interaction. Drug Metab Dispos 1988; 16: 256–8PubMedGoogle Scholar
  167. 167.
    Park BK, Breckenridge AM. Clinical implications of enzyme induction and enzyme inhibition. Clin Pharmacokinet 1981; 6: 1–24PubMedGoogle Scholar
  168. 168.
    Keown PA, Stiller CR, Laupacis AL, et al. The effects and side effects of cyclosporine: relationship to drug pharmacokinetics. Transplant Proc 1982; 14: 659–61PubMedGoogle Scholar
  169. 169.
    Keown PA, Laupacis A, Carruthers G, et al. Interaction between phenytoin and cyclosporine following organ transplantation. Transplantation 1984; 38: 304–6PubMedGoogle Scholar
  170. 170.
    Hoyer PF, Offner G, Wonigeit K, et al. Dosage of cyclosporin A in children with renal transplants. Clin Nephrol 1984; 22: 68–71PubMedGoogle Scholar
  171. 171.
    Wideman CA. Pharmacokinetic monitoring of cyclosporine. Transplant Proc 1983; 15 Suppl. 1: 3168–75Google Scholar
  172. 172.
    Carstensen H, Jacobsen N, Dieperink H. Interaction between cyclosporin A and phenobarbitone [letter]. Br J Clin Pharmacol 1986; 21: 550–1PubMedGoogle Scholar
  173. 173.
    Burckart GJ, Venkataramanan R, Starzl T, et al. Cyclosporine clerance in children following organ transplantation [abstract]. J Clin Pharmacol 1984; 24: 412Google Scholar
  174. 174.
    Klintmalm G, Säwe J, Ringdén O, et al. Cyclosporine plasma levels in renal transplant patients. Association with renal toxicity and allograft rejection. Transplantation 1985; 39: 132–7PubMedGoogle Scholar
  175. 175.
    Lele P, Peterson P, Yang S, et al. Cyclosporine and tegretol: another drug interaction [abstract]. Kidney Int 1985; 27: 344Google Scholar
  176. 176.
    Hillebrand G, Castro LA, Van Scheidt W, et al. Valproate for epilepsy in renal transplant recipients receiving cyclosporine. Transplantation 1987; 43: 915–6PubMedGoogle Scholar
  177. 177.
    Fischman MA, Hull D, Bartus SA, et al. Valproate for epilepsy in renal transplant recipients receiving cyclosporine. Transplantation 1989; 48: 542PubMedGoogle Scholar
  178. 178.
    Powell-Jackson PR, Tredger JM, Williams R. Hepatotoxicity to sodium valproate: a review. Gut 1984; 25: 673–81PubMedGoogle Scholar
  179. 179.
    Dreifuss FE, Santilli N, Langer DH, et al. Valproic acid hepatic fatalities: a retrospective review. Neurology 1987; 37: 379–85PubMedGoogle Scholar
  180. 180.
    Zimmerman HJ, Ishak KG. Valproate-induced hepatic injury: analyses of 23 fatal cases. Hepatology 1982; 2: 591–7PubMedGoogle Scholar
  181. 181.
    MacDonald P, Hackworthy R, Keogh A, et al. Atrial overdrive pacing for reversion of atrial flutter after cardiac transplantation [abstract]. J Heart Transplant 1990; 9: 68Google Scholar
  182. 182.
    Mamprin F, Mullins P, Graham T, et al. Amiodarone-cyclosporine interaction in cardiac transplantation [letter]. Am Heart J 1992; 123: 1725–6PubMedGoogle Scholar
  183. 183.
    Nicolau DP, Uber WE, Crumbley AJ III, et al. Amiodarone-cyclosporine interaction in a heart transplant patient. J Heart Lung Transplant 1992; 11(31): 564–8PubMedGoogle Scholar
  184. 184.
    Chitwood KK, Abdul-Haqq AJ, Heim-Duthoy KL. Cyclosporine-amiodarone interaction. Ann Pharmacother 1993; 27: 569–71PubMedGoogle Scholar
  185. 185.
    Rower RJ, Moncada S, Vane JR. Analgesic: antipyretics and anti-inflammatory agents: drugs employed in the treatment of gout. In: Gilman AG, Goodman LS, oilman A, editors. The pharmacological basis of therapeutics. 6th ed. New York: Macmillan, 1980: 682–723Google Scholar
  186. 186.
    Stevens SL, Goldman MH. Cyclosporine toxicity associated with allopurinol. South Med J 1992; 85(12): 1265–6PubMedGoogle Scholar
  187. 187.
    Gorrie M, Beaman M, Nicholls A, et al. Allopurinol interaction with cyclosporin. BMJ 1994; 308: 113PubMedGoogle Scholar
  188. 188.
    Dawidson I, Rooth P, Fry WR, et al. Prevention of acute cyclosporine-induced renal blood flow inhibition and improved immuno-suppression with verapamil. Transplantation 1989; 48: 575–9PubMedGoogle Scholar
  189. 189.
    Corteza Q, Shen R, Revie D, et al. Effects of calcium channel blockers on in vivo cellular immunity in mice. Transplantation 1989; 47: 339–42PubMedGoogle Scholar
  190. 190.
    Weir MR, Peppier R, Gomolka D, et al. Additive inhibitory effect on cyclosporine and verapamil may occur through different mechanisms that may be dependent or independent of the slow calcium channel. Transplant Proc 1989; 21: 866–70PubMedGoogle Scholar
  191. 191.
    Colombani PM, Bright EC, Wells M, et al. Drug-drug interaction between cyclosporine and agents affecting calcium-dependent lymphocyte proliferation. Transplant Proc 1989; 21: 840–1PubMedGoogle Scholar
  192. 192.
    Dawidson I, Rooth P, Fisher D, et al. Verapamil ameliorates acute cyclosporine A (CsA) nephrotoxicity and improves im-munosuppression after cadaver renal transplantation. Transplant Proc 1989; 21: 1511–3PubMedGoogle Scholar
  193. 193.
    Kirk AJB, Omar I, Bateman DN, et al. Cyclosporine-associated hypertension in cardiopulmonary transplantation. The beneficial effect of nifedipine on renal function. Transplantation 1989; 48: 428–30PubMedGoogle Scholar
  194. 194.
    Gardner P. Calcium and T lymphocyte activation. Cell 1989; 59: 15–20PubMedGoogle Scholar
  195. 195.
    Birx DL, Berger M, Fleisher TA. The interference of T-cell activation by calcium channel blocking agents. J Immunol 1984; 133: 2904–9PubMedGoogle Scholar
  196. 196.
    McMillen MA, Lewis T, Jaffee BM, et al. Verapamil inhibition of lymphocyte proliferation and function in vitro. J Surg Res 1985; 39: 76–80PubMedGoogle Scholar
  197. 197.
    Wagner K, Henkel M, Heinemeyer G, et al. Interactions of calcium blockers and cyclosporine. Transplant Proc 1988; 20 Suppl. 2: 561–8PubMedGoogle Scholar
  198. 198.
    Lindholm A, Henricsson S. Verapamil inhibits cyclosporin metabolism [letter]. Lancet 1987; i: 1262–3Google Scholar
  199. 199.
    Maggio TG, Bartels DW. Increased cyclosporine blood concentrations due to verapamil interaction. Drug Intell Clin Pharm 1988; 22: 705–7PubMedGoogle Scholar
  200. 200.
    Robson RA, Fraenkel M, Barratt LJ, et al. Cyclosporine-verapamil interaction. Br J Clin Pharmacol 1988; 25: 402–3PubMedGoogle Scholar
  201. 201.
    Sabatè I, Griño J, Castelao AM, et al. Evaluation of cyclosporine-verapamil interaction, with observations on parent cyclosporin and metabolites. Clin Chem 1988; 34: 2151–2PubMedGoogle Scholar
  202. 202.
    Cantarovich M, Hiesse C, Lockiec F, et al. Confirmation of the interaction between cyclosporine and the calcium channel blocker nicardipine in renal transplant patients. Clin Nephrol 1987; 28: 190–3PubMedGoogle Scholar
  203. 203.
    Kessler M, Netter P, Renoult E, et al. Influence of nicardipine on renal function and plasma cyclosporin in renal transplant patients. Eur J Clin Pharmacol 1989; 36: 637–8PubMedGoogle Scholar
  204. 204.
    Deray G, Aupetit B, Martinez F, et al. Cyclosporin-nicardipine interaction [letter]. Am J Nephrol 1989; 9: 349PubMedGoogle Scholar
  205. 205.
    Sabatè I, Grino JM, Castelao AM, et al. Cyclosporin-diltiazem interaction: comparison of cyclosporin levels measured with two monoclonal antibodies. Transplant Proc 1989; 21: 1460–1PubMedGoogle Scholar
  206. 206.
    Griño JM, Sabatè I, Castelao AM, et al. Influence of diltiazem on cyclosporine clearance. Lancet 1986; i: 1387Google Scholar
  207. 207.
    Kohlhaw K, Wonigeit K, Frei U, et al. Effect of the calcium channel blocker diltiazem on cyclosporine A blood levels and dose requirements. Transplant Proc 1988; 20 Suppl. 2: 572–4Google Scholar
  208. 208.
    Copur MS, Tasdemir I, Turgan C, et al. Effects of nitrendipine on blood pressure and blood cyclosporine A level in patients with post transplant hypertension. Nephron 1989; 52: 227–30PubMedGoogle Scholar
  209. 209.
    Neumayer HH, Wagner K. Diltiazem and economic use of cyclosporin [letter]. Lancet 1986; ii: 523Google Scholar
  210. 210.
    Bourbigot B, Guiserix J, Airiau J, et al. Nicardipine increases cyclosporin blood levels [letter]. Lancet 1986; i: 1447Google Scholar
  211. 211.
    Maddux MS, Veremis SA, Bauma WD, et al. Significant drug interactions with cyclosporine. Hosp Ther 1987; 12: 55–70Google Scholar
  212. 212.
    Pochet JM, Pirson Y. Cyclosporin-diltiazem interaction [letter]. Lancet 1986; i: 979Google Scholar
  213. 213.
    Wagner J, Neumayer HH. Prevention of delayed graft function in cadaver kidney transplants by diltiazem [letter]. Lancet 1985; ii: 1355–6Google Scholar
  214. 214.
    Wagner K, Philipp T, Heinemeyer G, et al. Interaction of cyclosporin and calcium antagonists. Transplant Proc 1989; 21(1): 1453–6PubMedGoogle Scholar
  215. 215.
    Kunzendorf U, Walz G, Brockmoeller J, et al. Effects of diltiazem upon metabolism and immunosuppressive action of cyclosporine in kidney graft recipients. Transplantation 1991; 52(2): 280–4PubMedGoogle Scholar
  216. 216.
    Zeevi A, Venkataramanan R, Burckart G, et al. Sensitivity of activated human limphocytes to cyclosporine and its metabolites. Hum Immunol 1988; 21: 143–53PubMedGoogle Scholar
  217. 217.
    Freed BM, Rosano TG, Lempert N. In vitro immunosuppressive properties of cyclosporine matabolites. Transplantation 1986; 43: 123–7Google Scholar
  218. 218.
    Sketris IS, Methot ME, Nicol D, et al. Effect of calcium channel blockers on cyclosporine clearance and use in renal transplant patients. Ann Pharmacother 1994; 28: 1227–31PubMedGoogle Scholar
  219. 219.
    McCauley J, Ptachcinski RJ, Shapiro R. The cyclosporine-sparing effects of diltiazem in renal transplantation. Transplant Proc 1989; 21: 3955–7PubMedGoogle Scholar
  220. 220.
    Campistol JM, Oppenheimer F, Vilardell J, et al. Interaction between cyclosporin and diltiazem in renal transplant patients. Nephron 1991; 57: 241–2PubMedGoogle Scholar
  221. 221.
    Chrysostomou A, Walker RG, Russ GR, et al. Diltiazem in renal allograft recipients receiving cyclosporine. Transplantation 1993; 55: 300–4PubMedGoogle Scholar
  222. 222.
    Tortorice KL, Heim-Duthoy KL, Awni WM, et al. The effects of calcium channel blockers on cyclosporine and its metabolites in renal transplant recipients. Ther Drug Monit 1990; 12: 321–8PubMedGoogle Scholar
  223. 223.
    Dy GR, Raja RM, Mendez MM. The clinical and biochemical effect of calcium channel blockers in organ transplant recipients on cyclosporine. Transplant Proc 1991; 23(1) 1258–9PubMedGoogle Scholar
  224. 224.
    Webber IR, Peters WHM, Back DJ. Cyclosporin metabolism by human gastrointestinal mucosal microsomes. Br J Clin Pharmacol 1992; 33: 661–4PubMedGoogle Scholar
  225. 225.
    Sawchuk RJ, Awni WM. Absorption of cyclosporine from rabbit small intestine in situ. J Pharm Sci 1986; 75: 1151–6PubMedGoogle Scholar
  226. 226.
    Hamer AWF, Tanasescu DE, Marks JW, et al. Failure of episodic high-dose oral verapamil therapy to convert supraventricular tachycardia: a study of plasma verapamil levels and gastric motility. Am Heart J 1987; 114: 334–42PubMedGoogle Scholar
  227. 227.
    Shah I, Whiting PH, Omar G, et al. FK506 metabolism and drug interaction. Effects of FK506 on human hepatic microsomal cytochrome P450-dependent drug metabolism in vitro. Transplant Proc 1991; 23: 2783–5Google Scholar
  228. 228.
    Burke MD, Omar G, Thomson AW, et al. Inhibition of the metabolism of cyclosporine by human liver microsomes by FK506. Transplantation 1990; 50: 901–2PubMedGoogle Scholar
  229. 229.
    Christians U, Guengerich FP, Schimdt G, et al. In vitro metabolism of FK506, cytochrome P450 and drug interactions [abstract]. Ther Drug Monit 1993; 15: 145Google Scholar
  230. 230.
    Pichard L, Fabre I, Domergue J, et al. Effect of the FK506 on human hepatic cytochrome P-450: interaction with CyA. Transplant Proc 1991; 23: 2791–3PubMedGoogle Scholar
  231. 231.
    Omar G, Shah IA, Thomson AW, et al. FK506 inhibition of cyclosporine metabolism by human liver microsomes. Transplant Proc 1991; 23(1)934–5PubMedGoogle Scholar
  232. 232.
    Starzl TE, Todo S, Fung J, et al. FK506 for liver, kidney and pancreas transplantation. Lancet 1989; ii: 1000–4Google Scholar
  233. 233.
    Jain AB, Venkataramanan R, Fung J, et al. Pharmacokinetics of cyclosporine and nephrotoxicity in orthotopic liver transplant patients rescued with FK506. Transplant Proc 1991; 23: 2777–9PubMedGoogle Scholar
  234. 234.
    Zeevi A, Duquesnoy R, Eiras G, et al. Immunosuppressive effect of FK506 on in vitro lymphocyte alloactivation: synergism with cyclosporine A. Transplant Proc 1987; 19 Suppl. 6: 40–4Google Scholar
  235. 235.
    McCauley J, Takaya S, Fung J, et al. The question of FK 506 nephrotoxicity after liver transplantation. Transplant Proc 1991d; 23(1): 1444–7PubMedGoogle Scholar
  236. 236.
    Ost L, Klintmalm G, Ringden O. Mutual interaction between prednisolone and cyclosporine in renal transplant patients. Transplant Proc 1985; 17: 1252–5Google Scholar
  237. 237.
    Klintmalm G, Sawe J. High dose methylprednisolone increases plasma cyclosporin levels in renal transplant recipients. Lancet 1984; i: 731Google Scholar
  238. 238.
    Ptachcinski RJ, Venkataramanan R, Burckart GJ, et al. Cyclo-sporine-high dose steroid interaction in renal transplant recipients: assessment by HPLC. Transplant Proc 1987; 19: 1728–9PubMedGoogle Scholar
  239. 239.
    Durrant S, Chipping PM, Palmer S, et al. Cyclosporine A, methylprednisolone and convulsions. Lancet 1982; i: 216–7Google Scholar
  240. 240.
    Hricik DE, Mortiz C, Mayes JT, et al. Association of the absence of steroid therapy with increased cyclosporine blood levels in renal transplant recipients. Transplant 1990; 49: 221–3Google Scholar
  241. 241.
    Brayman KL, Nakamura J, Naji A, et al. The effect of phenobarbital and methylprednisolone on the biotransformation of cyclosporine in the rat. Transplant Proc 1988; 20 Suppl. 2: 553–6Google Scholar
  242. 242.
    Ross WB, Roberts D, Griffin PJA, et al. Cyclosporin interaction with danazol and norethisterone. Lancet 1986; i: 330Google Scholar
  243. 243.
    Koneru B, Hartner C, Iwatsuki S, et al. Effects of danazol on cyclosporine pharmacokinetics. Transplantation 45:1988; 1001PubMedGoogle Scholar
  244. 244.
    Leimenstoll G, Jessen P, Zabel P, et al. Arzneimittelschädigung der Laber bei Kombination von Cyclosporin A und einem Antikonzeptivum. Dtsch Med Wochenschr 1984; 109: 1989–90PubMedGoogle Scholar
  245. 245.
    Møller BB, Ekelund B. Toxicity of cyclosporine during treatment with androgens. New Engl J Med 1985; 313: 1416–7PubMedGoogle Scholar
  246. 246.
    Maurer G. Metabolism of cyclosporine. Transplant Proc 1985; 17 Suppl. 1: 19–26Google Scholar
  247. 247.
    Orme ML’E, Back DJ, Breckenridge AM. Clinical pharmacokinetics of oral contraceptive steroids. Clin Pharmacokinet 1983; 8: 95–136PubMedGoogle Scholar
  248. 248.
    Michaels RM, Rogers KD. A sex difference in immunologic responsiveness. Pediatrics 1971; 47: 120–3PubMedGoogle Scholar
  249. 249.
    Terasaki PI, Mickey MR, Cecka M, et al. Clinical kidney transplants, 1988. Immunol Lett 1988; 21: 33–8Google Scholar
  250. 250.
    Castro JE, Hamilton DNH. Adrenalectomy and orchidectomy as immunopotentiating procedures. Transplantation 1972; 13: 615–6PubMedGoogle Scholar
  251. 251.
    Hirasawa K, Enosawa S. Effects of sex steroids hormones on sex-associated differences in the survival time of allogeneic skin graft in rats. Transplantation 1990; 50: 637–41PubMedGoogle Scholar
  252. 252.
    Hirasawa K, Kamada N. Female sex hormone, estradiol, antagonizes the immunosuppressive activity of cyclosporine in rat organ transplantation. Transplant Proc 1992; 24: 408–9PubMedGoogle Scholar
  253. 253.
    Cheng LP, Kuwahara M, Jacobsson J, et al. Inhibition of myointimal hyperplasia and macrophage infiltration by estradiol in aorta allografts. Transplantation 1991; 52: 967–72PubMedGoogle Scholar
  254. 254.
    Childester PD, Connito DJ. Interaction between glipizide and cyclosporine: report of two cases. Transplant Proc 1993; 25(2): 2136–7Google Scholar
  255. 255.
    Prendergast BD. Glyburide and glipizide, second generation of sulfoniylurea hypoglycemic agents. Clin Pharm 1984; 3: 473–85PubMedGoogle Scholar
  256. 256.
    Brogden RN, Heel RC, Pakes GE, et al. Glipizide: a review of its pharmacological properties and therapeutic use. Drugs 1979; 18: 329–53PubMedGoogle Scholar
  257. 257.
    Yoshimura N, Nakai I, Ohmori Y, et al. Effect of cyclosporine on the endocrine and exocrine pancreas in kidney transplant recipients. Am J Kidney Dis 1988; 12: 11–7PubMedGoogle Scholar
  258. 258.
    Harris KP, Jenkins D, Walls J. Nonsteroidal antinflammatory drugs and cyclosporine: a potentially serious adverse interaction. Transplantation 1988; 46: 598–9PubMedGoogle Scholar
  259. 259.
    Dieterle A, Abeywickrama K, Graffenried B. Nephrotoxicity and hypertension in patients with rheumatoid arthritis treated with cyclosporine. Transplant Proc 1988; 20 Suppl. 4: 349–55Google Scholar
  260. 260.
    Ludwin D, Bennett KJ, Grace EM, et al. Nephrotoxicity in patients with reumathoid arthritis treated with cyclosporine. Transplant Proc 1988; 20 Suppl. 4: 367–70Google Scholar
  261. 261.
    Berg KJ, Forre O, Bjerkhoel F, et al. Side effects of cyclosporin A treatment in patients with reumathoid arthritis. Kidney Int 1986; 29: 1180–7PubMedGoogle Scholar
  262. 262.
    Kovarik JM, Mueller EA, Gaber M, et al. Pharmacokinetics of cyclosporine and steady-state aspirin during coadministration. J Clin Pharmacol 1993; 33: 513–21PubMedGoogle Scholar
  263. 263.
    Dunn MJ. Nonsteroidal anti-inflammatory drugs and renal function. Annu Rev Med 1984; 35: 411–28PubMedGoogle Scholar
  264. 264.
    Billingham ME. Cardiac transplant atherosclerosis. Transplant Proc 1987; 19 Suppl. 5: 19–25Google Scholar
  265. 265.
    De Lorgeril M, Dureau G, Boissonnat P, et al. Platelet function and composition in heart transplant recipients compared with nontransplanted coronary patients. Arterioscler Thromb 1992; 12: 222–30PubMedGoogle Scholar
  266. 266.
    De Lorgeril M, Dureau G, Boissonnat P, et al. Increased platelet aggregation after heart transplantion: influence of aspirin. J Heart Lung Transplant 1991; 10: 600–3PubMedGoogle Scholar
  267. 267.
    Hass WK, Easton JD, Adams HP, et al. A randomized trial comparing ticlopidine hydrochloride with aspirin for the prevention of stroke in high-risk patients. New Engl J Med 1989; 321: 501–7PubMedGoogle Scholar
  268. 268.
    De Lorgeril M, Boissonnat P, Dureau G, et al. Evaluation of ticlopidine, a novel inhibitor of platelet aggregation, in heart transplant recipients. Transplantation 1993; 55: 1195–6PubMedGoogle Scholar
  269. 269.
    Birmele B, Lebranchu Y, Bagros P, et al. Interaction of cyclosporine and ticlopidine. Nephrol Dial Transplant 1991; 6(2): 150–1PubMedGoogle Scholar
  270. 270.
    Smeesters C, Chaland P, Giroux L, et al. Prevention of acute cyclosporine A nephrotoxicity by a thromboxane synthetase inhibitor. Transplant Proc 1988; 20 (3 Suppl. 3): 658–64PubMedGoogle Scholar
  271. 271.
    Foegh ML, Lim K, Douglas F, et al. Differential effect of CGS-13080, a thromboxane synthase inhibitor, in suppressing serum and urine immunoreactive thromboxane B2 in kidney transplant patients. Transplant Proc 1988; 20 Suppl. 1: 424–7Google Scholar
  272. 272.
    Ahonen J, Isoniemi H, Eklund B, et al. Thromboxane-receptor antagonist in renal transplantation. Transplant Proc 1990; 22(4): 1370PubMedGoogle Scholar
  273. 273.
    Violi F, Ghiselli A, Iuliano L, et al. Inhibition of picotamide of thromboxane production in vitro and ex vivo. Eur J Clin Pharmacol 1988; 33: 599–602PubMedGoogle Scholar
  274. 274.
    Gresele P, Deckmyn H, Arnoult J, et al. Characterization of N,N’-bis(3 picolyl)-4-methoxy-isophtalamide (picotamide) as a dual thromboxane synthase inhibitor/thromboxane A-2 receptor antagonist in human platelets. Thromb Haemost 1989; 61(3): 479–84PubMedGoogle Scholar
  275. 275.
    Quarto Di Palo F, Elli A, Rivolta R, et al. Prevention of chronic cyclosporine nephrotoxicity in renal transplantation by picotamide. Transplant Proc 1991; 23(1 Pt 2): 969–71Google Scholar
  276. 276.
    Moran M, Mozes MF, Maddux MS, et al. Prevention of acute graft rejection by the prostaglandin E-1 analogue misoprostol in renal-transplant recipients treated with cyclosporine and prednisone. New Engl J Med 1990; 322(17): 1183–8PubMedGoogle Scholar
  277. 277.
    Bailey DG, Arnold JM, Spence JD. Grapefruit juice and drugs: how significant is this interaction? Clin Pharmacokinet 1994; 26: 91–8PubMedGoogle Scholar
  278. 278.
    Yee GC, Stanley DL, Pessa LJ, et al. Effect of grapefruit juice on blood cyclosporine concentration. Lancet 1995; 345: 955–6PubMedGoogle Scholar
  279. 279.
    Ducharme MP, Provenzano R, Dehoorne-Smith M, et al. Trough concentrations of cyclosporine in blood following administration with grapefruit juice. Br J Clin Pharmacol 1993; 36: 457–9PubMedGoogle Scholar
  280. 280.
    Herlitz H, Edgar B, Hedner T, et al. Grapefruit juice: a possible source of variability in blood concentration of cyclosporine A. Nephrol Dial Transplant 1993; 8: 375PubMedGoogle Scholar
  281. 281.
    Bennett WM. Comparison of cyclosporine nephrotoxicity with aminoglycoside nephrotoxicity. Clin Nephrol 1986; 25 Suppl. l: S126–9PubMedGoogle Scholar
  282. 282.
    Kahan BD. Cyclosporine. New Engl J Med 1989; 321: 1725–38PubMedGoogle Scholar
  283. 283.
    Holt DW, Marsden JT, Johnston A, et al. Blood cyclosporine concentrations and renal allograft dysfunction. BMJ 1986; 293: 1057–9PubMedGoogle Scholar
  284. 284.
    Termeer A, Hoitsma AJ, Koene RAP. Severe nephrotoxicity caused by the combined use of gentamicin and cyclosporine in renal allograft recipients. Transplantation 1986; 42: 220–1PubMedGoogle Scholar
  285. 285.
    Hows JM, Chipping PM, Fairhead S, et al. Nephrotoxicity in bone marrow transplant recipients treated with cyclosporine A. Br J Haematol 1983; 54: 69–78PubMedGoogle Scholar
  286. 286.
    Morales JM, Andres A, Prieto C, et al. Reversible acute renal toxicity by toxic sinergic effect between gentamicin and cyclosporine [letter]. Clin Nephrol 1988; 29: 272PubMedGoogle Scholar
  287. 287.
    Curtis JJ, Luke RG, Dubovsky E, et al. Cyclosporine in therapeutic doses increases renal allograft vascular resistance. Lancet 1986; ii: 477–9Google Scholar
  288. 288.
    Teraoka S, Takahashi K, Tanabe K, et al. Improvement in renal blood flow and kidney function by modulation of prostaglandin metabolism in cyclosporine-treated animals. TransplantProc 1989; 21: 937–40Google Scholar
  289. 289.
    Elston RA, Taylor J. Possible interaction of ciprofloxacin with cyclosporin A. J Antimicrob Chemother 1988; 21: 679–89PubMedGoogle Scholar
  290. 290.
    Avent CK, Krinsky D, Kirklin JK, et al. Synergistic nephrotoxicity due to ciprofloxacin and cyclosporine. Am J Med 1988; 85: 452–3PubMedGoogle Scholar
  291. 291.
    Rosado LJ, Siskind MS, Copeland JG. Acute interstitial nephritis in a cardiac transplant recipient receiving ciprofloxacin. J Thorac Cardiovasc Surg 1994; 107: 1364–6PubMedGoogle Scholar
  292. 292.
    Hootkins R, Fenves AZ, Stephens MK. Acute renal failure secondary to oral ciprofloxacin therapy: a presentation of three cases and a review of the literature. Clin Nephrol 1989; 32: 75–8PubMedGoogle Scholar
  293. 293.
    Castelao AM, Sabate I, Grino JM, et al. Cyclosporine-drug interactions. Transplant Proc 1988; 20 Suppl. 6: 66–9Google Scholar
  294. 294.
    Nasir M, Rotellar C, Hand C, et al. Interaction between cyclosporin and ciprofloxacin. Nephron 1991; 57: 245–6PubMedGoogle Scholar
  295. 295.
    Edwards DJ, Bowles SK, Svensson CK, et al. Inhibition of drug metabolism by quinolone antibiotics. Clin Pharmacokinet 1988; 15: 194–204PubMedGoogle Scholar
  296. 296.
    Wolfson JS, Hooper DC. Comparative pharmacokinetics of ofloxacin and ciprofloxacin. Am J Med 1989; 87(6C): 31S–36SPubMedGoogle Scholar
  297. 297.
    Van Buren DH, Koestner J, Adedoyin A, et al. Effect of ciprofloxacin on cyclosporine pharmacokinetics. Transplantation 1990; 50: 888–9PubMedGoogle Scholar
  298. 298.
    Lang J, De Villaine JF, Garraffo R, et al. Cyclosporine (cyclosporin A) pharmacokinetics in renal transplant patients receiving cyclosporine. Am J Med 1989; 87 Suppl. 5A: 82S–85SPubMedGoogle Scholar
  299. 299.
    Kruger HU, Schuler U, Proksch B, et al. Investigation of potential interaction of ciprofloxacin with cylosporine in bone marrow transplant recipients. Antimicrob Agents Chemother 1990; 34: 1048–52PubMedGoogle Scholar
  300. 300.
    Hooper TL, Gould FK, Swinburn CR, et al. Ciprofloxacin: a preferred treatment for legionella infections in patients receiving cyclosporine A [letter]. J Antimicrob Chemother 1988; 22: 952–3PubMedGoogle Scholar
  301. 301.
    Robinson JA, Venezio FR, Costanzo-Nordin MR, et al. Patients receiving quinolones and cyclosporine after heart transplantation. J Heart Transplant 1990; 9: 30–1PubMedGoogle Scholar
  302. 302.
    Tan KKC, Trull AK, Shawket S. Co-administration of ciprofloxacin and cyclosporin: lack of evidence for a pharma-cokinetic interaction. Br J Clin Pharmacol 1989; 28: 185–7PubMedGoogle Scholar
  303. 303.
    Thomson DJ, Menkis AH, McKenzie FN. Norfloxacincyclosporine interaction. Transplantation 1988; 46: 312–3PubMedGoogle Scholar
  304. 304.
    Jadoul M, Pirson Y, Van Ypersele De Strihou C. Norfloxacin and cyclosporine, a safe combination [letter]. Transplantation 1989; 47: 747–8PubMedGoogle Scholar
  305. 305.
    Vogt P, Schorn T, Frei U. Ofloxacin in the treatment of urinary tract infection in renal transplant recipients. Infection 1988; 16: 175–8PubMedGoogle Scholar
  306. 306.
    Hoey LL, Lake KD. Does ciprofloxacin interact with cyclosporine? Ann Pharmacother 1994; 28(1): 93–6PubMedGoogle Scholar
  307. 307.
    Ringden O, Myrenfors P, Klintmalm G, et al. Nephrotoxicity by co-trimoxazole and cyclosporine in transplanted patients [letter]. Lancet 1984; i: 1016–7Google Scholar
  308. 308.
    Fox BC, Sollinger HW, Beizer FO, et al. A prospective, randomized, double-blind study of trimethoprim-sulphamet-oxazole for prophylaxis of infection in renal transplantation: clinical efficacy, absorption of trimethoprim-sulphametoxazole, effects on the microflora and the cost-benefit of prophylaxis. Am J Med 1990; 89: 255–74PubMedGoogle Scholar
  309. 309.
    Albrechtsen D, Bendtal O, Berg KJ, et al. Infections in cyclosporine-treated kidney graft recipients: beneficial effect of cotrimoxazole prophylaxis. Transplant Proc 1990; 22: 245PubMedGoogle Scholar
  310. 310.
    Higgins RM, Bloom SL, Hopkin JM, et al. The risks and beneficts of low-dose cotrimoxazole prophylaxis for pneumocystis pneumonia in renal transplantation. Transplantation 1989; 47: 558–60PubMedGoogle Scholar
  311. 311.
    Berglund F, Killander J, Pompeius R. Effect of trimethoprim-sulphametoxazole on the renal excretion of creatinine in man. J Urol 1975; 114: 802–8PubMedGoogle Scholar
  312. 312.
    Berg KJ, Nordby G, Rootwelt K, et al. Effects on renal function of combined treatment with trimethoprim and cyclosporine A in kidney transplant patients. Transplant Proc 1988; 20: 413–5PubMedGoogle Scholar
  313. 313.
    Coffman TM, Carr DR, Yarger WE, et al. Evidence that renal prostaglandin and thromboxane production is stimulated in chronic cyclosporine nephrotoxicity. Transplantation 1987; 43: 282–5PubMedGoogle Scholar
  314. 314.
    Chia JK, Pollack M. Amphotericin B induces tumor necrosis factor production by murine macrophages. J Infect Dis 1989; 159: 113–6PubMedGoogle Scholar
  315. 315.
    Kennedy MS, Deeg HJ, Siegel M, et al. Acute renal toxicity with combined use of amphotericin B and cyclosporine after marrow transplantation. Transplantation 1983; 35: 211–5PubMedGoogle Scholar
  316. 316.
    Tutschka PJ, Beschorner WE, Hess AD, et al. Cyclosporin-A to prevent graft-versus-host disease: a pilot study in 22 patients receiving allogeneic marrow transplants. Blood 1983; 61: 318–25PubMedGoogle Scholar
  317. 317.
    Branch RA. Prevention of amphotericin B-induced renal impairment. Arch Intern Med 1988; 148: 2389–94PubMedGoogle Scholar
  318. 318.
    Bianco JA, Almgren J, Kern DL, et al. Evidence that oral pentoxifylline reverses acute renal dysfunction in bone marrow transplant recipients receiving amphotericin B and cyclosporine: results of a pilot study. Transplantation 1991; 51(4): 925–7PubMedGoogle Scholar
  319. 319.
    Matzky R, Darius H, Schaor K. The release of prostacyclin (PGI2) by pentoxifylline from human vascular tissue. Arzneimittel Forsch 1982; 32: 1315–8Google Scholar
  320. 320.
    Poggesi L, Boddi M, Scarti L, et al. Pentoxifylline and prosta-glandins [in Italian]. Ric Clin Lab 1988; 18 Suppl. 2: 37–46Google Scholar
  321. 321.
    Strieter RM, Remick DG, Ward PA, et al. Cellular and molecular regulation of tumor necrosis factor-alpha production by pentoxifylline. Biochem Biophys Res Commun 1988; 155: 1230–6PubMedGoogle Scholar
  322. 322.
    Lopez-Berestein G, Bodey GP, Fainstein V, et al. Treatment of systemic fungal infections with liposomal amphotericin B. Arch Intern Med 1989; 149: 2533–6PubMedGoogle Scholar
  323. 323.
    Tollemar J, Duraj F, Ericzon BG. Liposomal amphotericin B treatment in a 9-month old liver recipient. Mycoses 1990; 3: 251–2Google Scholar
  324. 324.
    Katz NM, Pierce PF, Anzeck RA, et al. Liposomal amphotericin B for treatment of pulmonary aspergillosis in a heart transplant patient. J Heart Transplant 1990; 9: 14–7PubMedGoogle Scholar
  325. 325.
    Bean B, Braun C, Balfour Jr HR. Acyclovir therapy for acute herpes zoster. Lancet 1982; ii: 118–21Google Scholar
  326. 326.
    Brigden D, Rosling AE, Woods NC. Renal function after acyclovir intravenous injection. Am J Med 1982; 73(1A): 182–5PubMedGoogle Scholar
  327. 327.
    Shepp DH, Dandliker PS, Meyers JD. Treatment of varicellazoster virus infection in severely immunocompromised patients. A randomized comparison of acyclovir and vidarabine. New Engl J Med 1986; 314: 208–12PubMedGoogle Scholar
  328. 328.
    Stoffel M, Squifflet JP, Pirson Y, et al. Transplant Proc 1987; 19: 2190–3PubMedGoogle Scholar
  329. 329.
    Dorsky DI, Crumpacker CS. Drugs five years later: acyclovir. Ann Intern Med 1987; 107: 859–74PubMedGoogle Scholar
  330. 330.
    Balfour HH, Chace BA, Stapleton JT, et al. A randomized-placebo controlled trial or oral acyclovir for the prevention of cytomegalovirus disease in recipients of renal allografts. New Engl J Med 1989; 320: 1381–7PubMedGoogle Scholar
  331. 331.
    Hayes K, Shakuntala V, Pingle A, et al. Safe use of acyclovir (Zovirax) in renal transplant patients on cyclosporine A therapy: case reports. Transplant Proc 1992; 24: 1926PubMedGoogle Scholar
  332. 332.
    Johnson PC, Kumor K, Welsh MS, et al. Effect of coadministration of cyclosporine and acyclovir on renal function of renal allograft recipients. Transplantation 1987; 44: 329–31PubMedGoogle Scholar
  333. 333.
    Rieger EH, Halasz NA, Wahlstrom HE. Colchicine neuromyopathy after renal transplantation. Transplantation 1990; 49: 1196–8PubMedGoogle Scholar
  334. 334.
    Menta R, Rossi E, Guariglia A, et al. Reversible acute cyclo-sporin nephrotoxicity induced by colchicine administration [letter]. Nephrol Dial Transplant 1987; 2: 380–1PubMedGoogle Scholar
  335. 335.
    Yussim A, Bar-Nathan N, Lustig S, et al. Gastrointestinal, hepatorenal and neuromuscular toxicity caused by cyclosporine-colchicine interaction in renal transplantation. Transplant Proc 1994; 26: 2825–6PubMedGoogle Scholar
  336. 336.
    Murray BM, Venuto RC, Kohli R, et al. Enalapril-associated acute renal failure in renal transplants: possible role of cyclosporine. Am J Kidney Dis 1990; 16: 66–9PubMedGoogle Scholar
  337. 337.
    Curtis JJ, Luke RG, Whelchel JD, et al. Inhibition of angiotensin-converting enzyme in renal-transplant recipients with hypertension. New Engl J Med 1983; 308: 377–81PubMedGoogle Scholar
  338. 338.
    Hricik DE, Browning PJ, Kopelman R, et al. Captopril-induced functional renal insufficiency in patients with bilateral renal artery stenosys in a solitary kidney. New Engl J Med 1983; 308: 373–6PubMedGoogle Scholar
  339. 339.
    van der Woude FJ, van Son WJ, Tegzess AM, et al. Effect of captopril on blood pressure and renal function in patients with transplant renal artery stenosis. Nephron 1985; 39: 184–8PubMedGoogle Scholar
  340. 340.
    Lumley HS, Powels R, Morgenstern GR, et al. Pseudosyngeneic transplantation as a treatment for recurrent leukaemia following allogeneic bone marrow transplantation. In: Touraine J, Gluckman E, Griscelli C, editors. Bone marrow transplantation in Europe, II. Amsterdam: Excerpta Medica, 1981: 24–8Google Scholar
  341. 341.
    Leahey Jr EB, Reiffei JA, Drusin RE, et al. Interaction between quinidine and digoxin. JAMA 1978; 240: 533–6PubMedGoogle Scholar
  342. 342.
    Moysey JO, Jaggarao NSU, Grundy EN, et al. Amiodarone increases plasma digoxin concentration. BMJ 1981; 282: 272PubMedGoogle Scholar
  343. 343.
    Pedersen KE, Dorph-Pedersen A, Hvidt S, et al. Digoxin-verapamil interaction. Clin Pharmacol Ther 1981; 30: 311–6PubMedGoogle Scholar
  344. 344.
    Zalzstein E, Bryson SM, Koren G. Interaction between digoxin propafenazone in children. J Pediatrics 1990; 116: 310–2Google Scholar
  345. 345.
    Dorian P, Strauss M, Cardella C, et al. Digoxin-cyclosporine interaction: severe digitalis toxicity after cyclosporine treatment. Clin Invest Med 1988; 11: 108–12PubMedGoogle Scholar
  346. 346.
    Dorian P, Strauss MH, Cardella C, et al. Digoxin-cyclosporine interaction: severe digitalis toxicity after cyclosporin treatment. Clin Invest Med 1988; 11: 108–112PubMedGoogle Scholar
  347. 347.
    Robieux I, Dorian P, Klein J, et al. The effects of cardiac transplantation and cyclosporine therapy on digoxin pharmacokinetics. J Clin Pharmacol 1992; 32: 338–43PubMedGoogle Scholar
  348. 348.
    Regazzi MB, Iacona I, Campana C, et al. Altered disposition of pravastatin following concomitant drug therapy with cyclosporin A in transplant recipients. Transplant Proc 1993; 25: 2732–4PubMedGoogle Scholar
  349. 349.
    Regazzi MB, Iacona I, Campana C, et al. Clinical efficacy and pharmacokinetics of HMG-CoA reductase inhibitors in heart transplant patients treated with cyclosporin A. Transplant Proc 1994; 26: 2644–5PubMedGoogle Scholar
  350. 350.
    Campana C, Iacona I, Regazzi MB, et al. Efficacy and pharmacokinetics of simvastatin in heart transplant recipients. Annals of Pharmacother 1995; 29: 235–9Google Scholar
  351. 351.
    Smith PF, Eydelloth RS, Grossman SJ, et al. HMG-CoA reductase inhibitors-induced miopathy in the rat: cyclosporine A interaction and mechanism studies. J Pharmacol Exp Ther 1991; 257: 1225–35PubMedGoogle Scholar
  352. 352.
    Norman DJ, Illingworth DR, Munson J, et al. Myolisis and acute renal failure in a heart transplant recipient receiving lovastatin [letter]. New Engl J Med 1988; 318: 46–7PubMedGoogle Scholar
  353. 353.
    Arellano F, Krupp P. Muscular disorders associated with cyclosporin [letter]. Lancet 1991; 337: 915PubMedGoogle Scholar
  354. 354.
    Barbir M, Rose M, Kushwaha S, et al. Low dose simvastatin for the treatment of hypercholesterolaemia in recipients of cardiac transplantation. Int J Cardiol 1991; 33: 241–6PubMedGoogle Scholar
  355. 355.
    Vanhaecke J, Van Cleemput J, Van Lierde J, et al. Safety and efficacy of low dose simvastatin in cardiac transplant recipients treated with cyclosporine. Transplantation 1994; 58: 42–5PubMedGoogle Scholar
  356. 356.
    Ballantyne CM, Podet EJ, Patsch WP, et al. Effects of cyclosporine therapy on plasma lipoprotein levels. JAMA 1989; 262: 53–6PubMedGoogle Scholar
  357. 357.
    De Groen PC. Cyclosporine, low-density lipoprotein, and cholesterol. Mayo Clin Proc 1988; 63: 1012–21PubMedGoogle Scholar
  358. 358.
    List A, Spier C, Greer J, et al. Biochemical modulation of anthracycline resistance in acute leukemia with cyclosporin A. Proc Am Soc Clin Oncol 1992; 11: 264Google Scholar
  359. 359.
    Rushing DA, Raber SR, Rodvold KA, et al. The effects of cyclosporine on the pharmacokinetics of doxorubicin in patients with small cell lung cancer. Cancer 1994; 74: 834–41PubMedGoogle Scholar
  360. 360.
    Erlichman C, Moore M, Thiessen JJ, et al. Phase I pharmacokinetic studies of cyclosporin A combined with doxorubicin. Cancer Res 1993; 53: 4837–42PubMedGoogle Scholar
  361. 361.
    Lum BL, Kaubisch S, Yahanda AM, et al. Alteration of etoposide pharmacokinetics and pharmacodynamics by cyclosporine in a phase I trial to modulate multidrug resistance. J Clin Oncol 1992; 10: 1635–42PubMedGoogle Scholar
  362. 362.
    Lum BL, Fisher GA, Brophy NA, et al. Clinical trials of modulation of multidrug resistance. Pharmacokinetic and pharmacodynamic consideration. Cancer 1993; 72 Suppl. 11: 3502–14Google Scholar
  363. 363.
    Marie J-P, Bastrie JN, Coloma F, et al. A phase I-II trial of cyclosporine with etoposide and mitoxantrone in advanced acute leukemia. Proc Am Soc Clin Oncol 1992; 11: 275Google Scholar
  364. 364.
    Samuels B, Ratain M, Mick R, et al. Phase I trial of multidrug resistance modulation with cyclosporin A. Proc Am Assoc Cancer Res 1991; 32: 195Google Scholar
  365. 365.
    Lum BL, Gosland MP, Kaubisch S, et al. Molecular targets in oncology: implications of the multidrug resistance gene. Pharmacotherapy 1993; 13(2): 88–109PubMedGoogle Scholar
  366. 366.
    Pastan I, Gottesman MM. Multidrug resistance. Annu Rev Med 1991; 42: 277–86PubMedGoogle Scholar
  367. 367.
    Speth PAJ, van Hoesel QG, Haanen C. Clinical pharmacokinetics of doxorubicin. Clin Pharmacokinet 1988; 15: 15–31PubMedGoogle Scholar

Copyright information

© Adis International Limited 1996

Authors and Affiliations

  • Carlo Campana
    • 1
  • Mario B. Regazzi
    • 2
  • Isabella Buggia
    • 2
  • Mariadelfina Molinaro
    • 2
  1. 1.Division of CardiologyIRCCS Policlinico S. MatteoPaviaItaly
  2. 2.Department of PharmacologyIRCCS Policlinico S. MatteoPaviaItaly

Personalised recommendations