Clinical Pharmacokinetics

, Volume 27, Issue 4, pp 307–330 | Cite as

Pharmacokinetic Optimisation of Therapy with Newer Antidepressants

  • Paul J. Goodnick
Review Article Pharmacokinetics-Therapeutics

Summary

Since the early 1950s, when imipramine was first introduced, a whole series of antidepressants with differences in structures, neurochemical effects and pharmacokinetics have been developed. Structurally or functionally, they have been classified as tricyclic antidepressants (TCAs), tetracyclic antidepressants, monoamine oxidase inhibitors (MAOIs), or selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitors (SSRIs). In addition, there is a series of antidepressants with unique structures.

Many of the newer TCAs appear to have shorter half-lives than the standard TCAs (e.g. imipramine), allowing for the possibility of a more rapid response, but requiring the drugs to be given in multiple daily doses, which may reduce patient compliance. The short time to peak plasma concentration (tmax) can also lead to rapid onset of adverse effects. The tetracyclic antidepressants have longer elimination half-lives (t½) than the TCAs, but there is only very minimal evidence for a relationship between drug concentrations in the blood and clinical response. The triazolopyridines, like the newer TCAs, show pharmacokinetic evidence for rapid onset of adverse effects and the need for multiple daily doses due to short tmax and t½.

The newer MAOIs are a significant addition to therapy, as the rapid binding action of these medications increases their safety margin with regard to tyramine interactions. Further information in this area is required. In addition, moclobemide has pharmacokinetic features that are clinically beneficial (e.g. aging and renal dysfunction have little effect on the elimination of the drug), but also features that are not beneficial (e.g. nonlinear pharmacokinetics).

Among the SSRIs, there are a range of t½ values for the parent drugs, from relatively short t½ values of less than 24 hours (paroxetine, fluvoxamine) to among the longest found (e.g. 2 days for fluoxetine). Only 2 of the agents (sertraline and citalopram) have linear pharmacokinetics, and 1 drug has nonlinear pharmacokinetics within the usual therapeutic range (fluvoxamine). Once a therapeutic blood concentration is established, linearity is helpful in avoiding the small dose changes and repeated rechecking of concentrations of medications that would be required for those agents with nonlinear pharmacokinetics. Sertraline stands out as having the best effects on behaviour among all antidepressants. However, fluoxetine and fluvoxamine are least likely to penetrate into breast milk.

All 3 of the structurally unique newer antidepressants [amfebutamone (bupropion), viloxazine venlafaxine] have relatively short tmax values (1 to 2 hours), which may relate to the early onset of adverse effects. Amfebutamone has the benefits of linear pharmacokinetics with potential for defined therapeutic blood concentrations, lack of effect of liver enzymes on metabolism of the drug, and lack of significant effects of either aging or hepatic dysfunction on elimination of the drug.

Thus, the antidepressants best suited for pharmacokinetic optimisation of therapy are the following: desipramine, sertraline, fluvoxamine, citalopram and amfebutamone.

Keywords

Fluoxetine Paroxetine Imipramine Sertraline Fluvoxamine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Preskorn SH. Pharmacokinetics of antidepressants: why and how they are relevant to treatment. J Clin Psychiatry 1993; 54 Suppl.: 14–34Google Scholar
  2. 2.
    Pons G, Rey E, Matheson I. Excretion of psychoactive drugs into breast milk: pharmacokinetic principles and recommendations. Clin Pharmacokinet 1994; 27(4): 270–89PubMedCrossRefGoogle Scholar
  3. 3.
    Ereshefsky L, Tran-Johnson T, Davis CM, et al. Pharmacokinetic factors affecting antidepressant drug clearance and clinical effect: evaluation of doxepin and imipramine. Clin Chem 1988; 34: 863–80PubMedGoogle Scholar
  4. 4.
    Martensson E, Axelsson R, Nyberg G, et al. Pharmacokinetic properties of the antidepressant drugs amitriptyline, clomipramine, and imipramine: a clinical study. Curr Ther Res 1984; 36: 228–38Google Scholar
  5. 5.
    Caccia S, Garattini S. Pharmacokinetic and pharmacodynamic significance of antidepressant drug metabolites. Pharmacol Res 1992; 26: 317–29PubMedCrossRefGoogle Scholar
  6. 6.
    Abernethy DR, Divoli M, Greenblatt DJ, et al. Absolute availability of imipramine: influence of food. Psychopharmacology 1984; 83: 104–6CrossRefGoogle Scholar
  7. 7.
    Benetello P, Furlant M, Zara G, et al. Imipramine pharmacokinetics in depressed geriatric patients. Int J Clin Pharmacol Res 1990; 10: 191–5PubMedGoogle Scholar
  8. 8.
    Ciraulo DA, Alderson LM, Chapron DJ, et al. Imipramine disposition in alcoholics. J Clin Psychopharmacol 1982; 2: 2–7PubMedCrossRefGoogle Scholar
  9. 9.
    Ciraulo DA, Barnhill JG, Jaffe JH. Clinical pharmacokinetics of imipramine and desipramine in alcohlics and normal volunteers. Clin Pharmacol Ther 1988; 43: 509–18PubMedCrossRefGoogle Scholar
  10. 10.
    Perel JM, Hurwic MJ, Kanzler MB. Pharmacodynamics of imipramine in depressed patients. Psychopharmacol Bull 1975; 114: 16–8Google Scholar
  11. 11.
    Suftin TA, Perini GI, Molnar G, et al. Multiple-dose pharmacokinetics of imipramine and its major active and conjugated metabolites in depressed patients. J Clin Psychopharmacol 1988; 8: 48–53Google Scholar
  12. 12.
    Sovner R, Orsulak P. Excretion of imipramine and desipramine in human breast milk. Am J Psychiatry 1979; 136: 451–2PubMedGoogle Scholar
  13. 13.
    de Oliveira IR, Do Prado-Lima PAS, Samuel-Lajeunesse B. Monitoring of tricyclic antidepressant plasma levels and clinical response: a review of the literature. Part I. Psychiatry Psychobiol 1989; 4: 43–60Google Scholar
  14. 14.
    Haydu GG, Dhrymiotis A, Quinn GP. Plasma imipramine level in syndromes of depression. Am J Psychiatry 1962; 119: 574–5PubMedGoogle Scholar
  15. 15.
    Walter CJS. Clinical significance of plasma imipramine levels. Proc R Soc Med 1971; 64: 282–5PubMedGoogle Scholar
  16. 16.
    Zeidenberg P, Perel JM, Kanzler M. Clinical and metabolic studies with imipramine in man. Am J Psychiatry 1971; 127: 1321–6PubMedGoogle Scholar
  17. 17.
    Ballinger BR, Presley A, Reid AH. The effect of hypnotics on imipramine treatment. Psychopharmacology 1974; 39: 267–74CrossRefGoogle Scholar
  18. 18.
    Olivier-Martin R, Marzin D, Buschsenschultz E. Concentrations plasmatiques de I’ imipramine et de la desmethylimipramine et effet antidépresseur au cours d’un traitement controle. Psychopharmacology 1975; 41: 187–95CrossRefGoogle Scholar
  19. 19.
    Sathananthan GL, Gershon S, Almeida M. Correlations between plasma and cerebrospinal levels of imipramine. Arch Gen Psychiatry 1976; 33: 1109–10PubMedCrossRefGoogle Scholar
  20. 20.
    Bhanji S, Lader M. The electroencephalograhic and psychological effects of imipramine in depressed inpatients. Eur J Clin Pharmacol 1977; 12: 349–54PubMedCrossRefGoogle Scholar
  21. 21.
    Glassman AH, Perel JM, Shostak M. Clinical implications of imipramine plasma levels for depressive illness. Arch Gen Psychiatry 1977; 34: 197–204PubMedCrossRefGoogle Scholar
  22. 22.
    Reisby N, Gram LF, Bech P. Imipramine: clinical effects and pharmacokinetic variability. Psychopharmacology 1977; 54: 263–72PubMedCrossRefGoogle Scholar
  23. 23.
    Muscettola G, Goodwin FK, Potter WZ. Imipramine and desipramine in plasma and spinal fluid: relationship to clinical response and serotonin metabolism. Arch Gen Psychiatry 1978; 35: 621–5PubMedCrossRefGoogle Scholar
  24. 24.
    Costa D, Predescu V, Visan-Ionescu I. Endogenous depression and imipramine levels in the blood. Psychopharamacology 1980; 70: 291–4CrossRefGoogle Scholar
  25. 25.
    Matuzas W, Javaid JI, Glass R. Plasma concentrations of imipramine and clinical response among depressed outpatients. J Clin Psychopharmacol 1982; 2: 140–2PubMedCrossRefGoogle Scholar
  26. 26.
    Preskorn SH, Weller EB, Weller RA. Depression in children: relationship between plasma imipramine levels and response. J Clin Psychiatry 1982; 43: 450–3PubMedGoogle Scholar
  27. 27.
    Simpson GM, White KL, Boyd JL. Relationship between plasma antidepressant levels and clinical outcome for inpatients receiving imipramine. Am J Psychiatry 1982; 139: 358–60PubMedGoogle Scholar
  28. 28.
    Matuzas W, Javaid JI, Uhlenhuth EH. Plasma and red blood cell imipramine levels and clinical response among depressed outpatients. Psychopharmacol Bull 1983; 19: 652–4Google Scholar
  29. 29.
    Montgomery SA, Roy D, Wynne-Wilson S. Plasma levels and clinical response with imipramine in a study comparing efficacy with mianserin and nomifensine Br J Clin Pharmacol 1983; 25: 205S–211SCrossRefGoogle Scholar
  30. 30.
    Puig-Antich J, Perel JM, Lupatkin W. Plasma levels of imipramine (IMI) and desmethylimipramine (DMI) and clinical response in prepubertal major depressive disorder. J Am Acad Child Psychiatry 1979; 18: 616–27PubMedCrossRefGoogle Scholar
  31. 31.
    Kocsis JH, Hanin I, Bowden C. Imipramine and amitriptyline plasma concentrations and clinical response in major depression. Br J Psychiatry 1986; 148: 52–7PubMedCrossRefGoogle Scholar
  32. 32.
    Feet PO, Larsen S, Lillevold PE. Comparison of the serum levels in primary non-agitated depressive outpatients treated with imipramine in combination with placebo, diazepam, or dixyrazine. Acta Psychiatr Scand 1987; 75: 435–40PubMedCrossRefGoogle Scholar
  33. 33.
    Rigal JC, Albin HC, Duchier AR. Imipramine blood levels and clinical outcome. J Clin Psychopharmacol 1987; 7: 222–59PubMedCrossRefGoogle Scholar
  34. 34.
    Vandel S, Bertschy G, Bonin B, et al. Tricyclic antidepressant plasma levels after fluoxetine addition. Neuropsychobiology 1992; 25: 202–7PubMedCrossRefGoogle Scholar
  35. 35.
    Henauer SA, Hollister LE. Cimetidine interaction with imipramine and nortriptyline. Clin Pharmacol Ther 1984; 35: 183–7PubMedCrossRefGoogle Scholar
  36. 36.
    Warton RN, Perel JM, Dayton PG, et al. A potential use for the interaction of methylphenidate with tricyclic antidepressants. Am J Psychiatry 1971; 127: 1619–25Google Scholar
  37. 37.
    Abernethy DR, Greenblatt DJ, Shader RI. Imipramine disposition in users of oral contraceptives steroids. Clin Pharmacol Ther 1984; 35: 792–7PubMedCrossRefGoogle Scholar
  38. 38.
    Gram LF, Overo FK. Drug interaction: inhibitory effect of neuroleptics on the metabolism of tricyclic antidepressants in man. BMJ 1972; 1: 463–5PubMedCrossRefGoogle Scholar
  39. 39.
    Brown CS, Wells BG, Self TH, et al. Influence of carbamazepine on plasma imipramine concentration in children with attention-deficit hyperactivity disorder [abstract 122E]. Pharmacotherapy 1988; 8: 135Google Scholar
  40. 40.
    Abernethy DR, Greenblatt DJ, Shader R. Imipramine and desipramine disposition in the elderly. J Pharmaol Exper Ther 1985; 232: 183–8Google Scholar
  41. 41.
    Antal EJ, Lawson LM, Chapron DJ, et al. Estimating steady state desipramine levels in noninstitutionalized elderly patients using single dose disposition parameters. J Clin Psychopharmacol 1982; 2: 193–8PubMedCrossRefGoogle Scholar
  42. 42.
    Wilens TE, Biederman J, Baldessarini RJ, et al. Developmental changes in serum concentrations of desipramine and 2-hydroxydesipramine during treatment with desipramine. J Am Acad Child Adolesc Psychiatry 1992; 31: 691–8PubMedCrossRefGoogle Scholar
  43. 43.
    Kosten TR, Gawin FH, Morgan C, et al. Evidence for altered desipramine disposition in methadone-maintained patients treated for cocaine abuse. Am J Drug Alcohol Abuse 1990; 16: 329–36PubMedCrossRefGoogle Scholar
  44. 44.
    Crewe HK, Lennard MS, Tucker GT, et al. The effect of selective serotonin reuptake inhibitors on cytochrome P4502D6 (CYP2D6) activity in human liver microsomes. Br J Clin Pharmacol 1992; 34: 262–5PubMedCrossRefGoogle Scholar
  45. 45.
    Stancer H, Reed K. Desipramine and 2-hydroxydesipramine in human breast milk and the nursing infant’s serum. Am J Psychiatry 1986; 143: 1597–600PubMedGoogle Scholar
  46. 46.
    Ayesh R, Dawling S, Widdop B, et al. Influence of quinidine on the pharmacokinetics of nortriptyline and desipramine. Br J Clin Pharmacol 1988; 25: 140–1Google Scholar
  47. 47.
    Kerr JS, Sherwood N, Hindmarch I. The comparative psychopharmacology of 5HT reuptake inhibitors. Hum Psychopharmacol 1991; 6: 313–7CrossRefGoogle Scholar
  48. 48.
    Nagy A, Johansson R. The demethylation of imipramine and clomipramine as apparent from their plasma kinetics. Psychopharmacology 1977; 54: 125–31PubMedCrossRefGoogle Scholar
  49. 49.
    Dawling S, Braithwaite RA, McAuley R, et al. Single oral dose pharmacokinetics of clomipramine in depressed patients. Postgrad Med J 1980; 56 Suppl. 1: 115–6PubMedGoogle Scholar
  50. 50.
    Balant-Gorgia AE, Gex-Fabry M, Balant LP. Clinical pharmacokinetics of clomipramine. Clin Pharmacokinet 1991; 20: 447–62PubMedCrossRefGoogle Scholar
  51. 51.
    John VA, Luscombe DK, Kemp H. Effects of age, cigarette smoking, and the oral contraceptive on the pharmacokinetics of clomipramine and its desmethyl metabolite during chronic dosing. J Int Med Res 1980; 8 Suppl. 3: 88–95PubMedGoogle Scholar
  52. 52.
    Takemura M, Toshida S, Fuchino K. Excretion of clomipramine and desmethylclomipramine in human breast milk. Seishin Igaku 1982; 24: 749–53Google Scholar
  53. 53.
    Goezo F, Rop PP, Viala A. Influence du sexe et du tabagisme sur les concentrations plasmatiques de la clomipramine, de l’amitriptyline, et de leurs metabolites demethyles. J Toxicol Clin Exp 1988; 8: 39–46Google Scholar
  54. 54.
    Balant-Gorgia AE, Gay M, Gex-Fabry M, et al. Persistent impairment of clomipramine demethylation in recently detoxified alcoholic patients. Ther Drug Monit 1992; 14: 119–24PubMedCrossRefGoogle Scholar
  55. 55.
    Allen JJ, Rack PH, Vaddadi KS. Differences in the effects of clomipramine on English and Asian volunteers; preliminary report on a pilot study. Postgrad Med J 1977; 53 Suppl. 4: 79–85PubMedGoogle Scholar
  56. 56.
    Shimoda K, Minowada T, Noguchi T, et al. Interindividual variations of desmethylation and hydroxylation of clomipramine in oriental population. J Clin Psychopharmacol 1993; 13: 181–8PubMedCrossRefGoogle Scholar
  57. 57.
    Wargny E, Lamiable D, Havet JM, et al. Concentrations plasmatiques de clomipramine et de déclomipramine chez les patients atteints de dépression: recherche de correlations avec l’efficacité thérapeutique. Ann Med Psychol 1986; 144: 396–400Google Scholar
  58. 58.
    Stern RS, Marks IM, Wright J, et al. Clomipramine: plasma levels, side effects, and outcome in obsessive-compulsive neurosis. Postgrad Med J 1980; 56 Suppl. 1: 134–9PubMedGoogle Scholar
  59. 59.
    Marvissakalian M, Jones B, Olson S, et al. The relationship of plasma clomipramine and n-desmethylclomipramine to response in obsessive-compulsive disorder. Psychopharmacol Bull 1990; 26: 119–22Google Scholar
  60. 60.
    Gastpar G. Treatment of Depression with Clomipramine. Basel: CIBA-GEIGY, 1988Google Scholar
  61. 61.
    Moller HJ, Kissling W, Kuss HJ, et al. Can haloperidol increase the effect of antidepressant drug? [abstract] Proceedings of the Fourteenth CINP Congress; 1984 Jun 19–23: Florence, Italy: Abstract F263Google Scholar
  62. 62.
    Lancaster SG, Gonzalez JP. Lofepramine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in depressive illness. Drugs 1989; 37: 123–40PubMedCrossRefGoogle Scholar
  63. 63.
    Ghose K, Spragg BP. Pharmacokinetics of lofepramine and amitriptyline in elderly healthy subjects. Int Clin Psychopharmacol 1989; 4: 201–15PubMedCrossRefGoogle Scholar
  64. 64.
    Ogura C, Kishimoto A, Mizukawa R, et al. Age differences in effects on blood pressure, flicker fusion frequency, salivation and pharmacokinetics of single oral doses of dothiepin and amitriptyline. Eur J Clin Pharmacol 1983; 25: 811–4PubMedCrossRefGoogle Scholar
  65. 65.
    Yu DK, Dimmitt DC, Lanman RC, et al. Pharmacokinetics of dothiepin in humans a single dose dose-proportionality study. J Pharm Sci 1986; 75: 353–9CrossRefGoogle Scholar
  66. 66.
    Maguire KP, Burrows GD, Norman TR, et al. Metabolism and pharmacokinetics of dothiepin. BrJ Clin Pharmacol 1981; 12: 405–9CrossRefGoogle Scholar
  67. 67.
    Bareggi SR, Cavallaro R, Pirola R, et al. Pharmacokinetics and adverse effects of single doses of dothiepin in young and elderly subjects. Prog Neuropsychopharmacol Biol Psychiatry 1990; 14: 163–70PubMedCrossRefGoogle Scholar
  68. 68.
    Ilett KF, Lebedevs TH, Wojnar-Horton RE, et al. The excretion of dothieipin and its primary metabolites in breast milk. Br J Clin Pharmacol 1993; 33: 635–9CrossRefGoogle Scholar
  69. 69.
    Mendlewicz J, Linkowski P, Rees JA. A double blind comparison of dothiepin and amitriptyline in patients with primary affective disorder, serum levels, and clinical response. Br J Psychiatry 1980; 136: 154–60PubMedCrossRefGoogle Scholar
  70. 70.
    Salvadori C, Ward C, Defrance R, et al. The pharmacokinetics of the antidepressant tianeptine and its main metabolite in healthy humans — influence of alcohol co-administration. Fundam Clin Pharmacol 1990; 4: 115–25PubMedCrossRefGoogle Scholar
  71. 71.
    Carlhant D, Le Garrec J, Guedes Y, et al. Pharmacokinetics and bioavailability of tianeptine in the elderly. Drug Invest 1990; 2: 167–72CrossRefGoogle Scholar
  72. 72.
    Demotes-Mainard F, Galley P, Manciet G, et al. Pharmacokinetics of the antidepressant tianeptine at steady state in the elderly. J Clin Pharmacol 1991; 31: 174–8PubMedGoogle Scholar
  73. 73.
    Royer RJ, Royer-Marrot MJ, Paille F, et al. Tianeptine and its main metabolite. Pharmacokinetics in chronic alcoholism and cirrhosis. Clin Pharmacokinet 1989; 16: 186–91PubMedCrossRefGoogle Scholar
  74. 74.
    Dresse A, Rosen JM, Brems H, et al. Influence of food on tianeptine and its main metabolites. J Clin Pharm 1988; 28: 1115–9Google Scholar
  75. 75.
    Zini R, Morin D, Savadori C, et al. Tianeptine binding to human plasma proteins and plasma from patients with hepatic cirrhosis or renal failure Br J Clin Pharmacol 1990; 29: 9–18PubMedCrossRefGoogle Scholar
  76. 76.
    Salavdori C, Merjdan H, Brourard R, et al. Tianeptine and its main metabolite. Disposition in chronic renal failure and haemodialysis. Fundam Clin Pharmacol 1990; 4: 663–71CrossRefGoogle Scholar
  77. 77.
    Zini R, Morin D, Salvadori C, et al. The influence of various drugs on the binding of tiianeptine to human plasma proteins. Int J Clin Pharmacol Ther Toxicol 1991; 29: 64–6PubMedGoogle Scholar
  78. 78.
    Riche C, Lachatre G, Guedes Y, et al. Pharmacokinetics of amineptine after single dose, repeated treatment and study of the at-risk populations. Clin Neuropharmacol 1989; 12 Suppl. 2: S32–S40PubMedGoogle Scholar
  79. 79.
    Lachatre G, Piva C, Riche C, et al. Single dose pharmacokinetics of amineptine and of its main metabolite in healthy young adults. Fundam Clin Pharmacol 1989; 3: 19–26PubMedCrossRefGoogle Scholar
  80. 80.
    Caille G, De Montigny C, Besner J-G. Quantitation of iprindole in plasma by GLC. Biopharm Drug Dis 1982; 3: 11–7CrossRefGoogle Scholar
  81. 81.
    Jue SG, Dawson GW, Brogden RN. Amoxapine: a review of its pharmacology and efficacy in depressed states. Drugs 1982; 24: 1–23PubMedCrossRefGoogle Scholar
  82. 82.
    Amoxapine. Lederle Laboratories. Pearl River: American Cyanamid Co., 1987Google Scholar
  83. 83.
    Boutelle WE. Clinical response and blood levels in the treatment of depression with a new antidepressant drug, amoxapine. Neuropharmacology 1980; 19: 1229–31PubMedCrossRefGoogle Scholar
  84. 84.
    Alkalay D, Wagner Jr WE, Carlsen S, et al. Bioavailability and kinetics of maprotiline. Clin Pharmacol Ther 1980; 27: 697–703PubMedCrossRefGoogle Scholar
  85. 85.
    Riess W, Dubey L, Funfgeld EW, et al. The pharmacokinetic properties of maprotiline in man. J Int Med Res 1975; 3 Suppl. 2: 16–41Google Scholar
  86. 86.
    Riess W. The relevance of blood level determinations during the evaluation of maprotiline in man. In: Murphy A, editor. Research and clinical investigations in depression. Northampton: Cambridge Medical Publications, 1976: 19–30Google Scholar
  87. 87.
    Kasper S, Dotsch M, Kick H, et al. Plasma concentrations of fluvoxamine and maprotiline in major depression: implications on therapeutic efficacy and side effects. Eur Neuropsychopharm 1993; 3: 13–21CrossRefGoogle Scholar
  88. 88.
    Shami M, Elliot HL, Kelman AW, et al. The pharmacokinetics of mianserin. Br J Clin Pharmacol 1983; 15: 313S–322SPubMedCrossRefGoogle Scholar
  89. 89.
    Timmer CJ, Pourbaix S, Desager JP, et al. Absolute bioavailability of mianserin tablets and solution in healthy humans. Eur J Drug Metab Pharmacokinet 1985; 10: 315–23PubMedCrossRefGoogle Scholar
  90. 90.
    Maguire KP, Norman TR, Burrows GD, et al. A pharmacokinetic study of mianserin. Eur J Clin Pharmacol 1982; 21: 517–20PubMedCrossRefGoogle Scholar
  91. 91.
    Begg EG, Sharman JR, Kidd JE, et al. Variability in the elimination of mianserin in elderly patients. Br J Clin Pharmacol 1989; 27: 445–51PubMedCrossRefGoogle Scholar
  92. 92.
    Sasa H. Steady state plasma kinetics of mianserin and its major metabolite desmethylmianserin. Jpn J Neuropsychopharmacol 1992; 14: 441–8Google Scholar
  93. 93.
    Otani K, Sasa H, Kaneko S, et al. Steady-state plasma concentrations of mianserin and its major active metabolite, desmethylmianserin. Ther Drug Monit 1993; 15: 113–7PubMedCrossRefGoogle Scholar
  94. 94.
    Otani K, Kaneko S, Sasa H, et al. Is there a therapeutic window for plasma concentrations of mianserin plus desmethylmianserin. Hum Psychopharmacol 1991; 6: 243–8CrossRefGoogle Scholar
  95. 95.
    Leinonen E, Rimon R. Serum levels of mianserin and clinical outcome in elderly depressive inpatients. Isr J Psychiatry Relat Sci 1992; 28: 64–8PubMedGoogle Scholar
  96. 96.
    Leinonen E, Lillsunde P, Laukkanen V, et al. Effects of carbamazepine on serum antidepressant concentrations in psychiatric patients. J Clin Psychopharmacol 1991; 11: 313–8PubMedCrossRefGoogle Scholar
  97. 97.
    Suckow RF. A simultaneous determination of trazodone and its metabolite 1-m-chlorophenylpiperazine in plasma by liquid chromatography with electro-chemical detection. J Liq Chromatog 1983; 6: 2195–208CrossRefGoogle Scholar
  98. 98.
    Greenblatt DJ, Friedman H, Burstein ES, et al. Trazodone kinetics: effect of age, gender, and obesity. Clin Pharmacol Ther 1987; 42: 193–200PubMedCrossRefGoogle Scholar
  99. 99.
    Bayer AJ, Pathy MSJ, Ankier SI. Pharmacokinetic and pharmacodynamic characteristics of trazodone in the elderly. Br J Clin Pharmacol 1983; 16: 371–6PubMedCrossRefGoogle Scholar
  100. 100.
    Fabre LF. Trazodone dosing regimen: experience with single daily administration. J Clin Psychiatry 1990; 51(9 Suppl.): 23–6PubMedGoogle Scholar
  101. 101.
    Jacobsen FM. Low dose trazodone as a hypnotic in patients treated with MAOIs and other psychotropics: a pilot study. J Clin Psychiatry 1990; 51: 298–302PubMedGoogle Scholar
  102. 102.
    Brooks D, Prothero W, Bouras N, et al. Trazodone: a comparison of single night-time and divided daily dosage regimens. Psychopharmacology 1984; 84: 1–8PubMedCrossRefGoogle Scholar
  103. 103.
    Wheatley D. Trazodone: alternative dose regimens and sleep. Pharmatherapeutica 1984; 3: 607–12PubMedGoogle Scholar
  104. 104.
    Nilsen OG, Dale O. Single dose pharmacokinetics of trazodone in healthy subjects. Pharmacol Toxicol 1992; 71: 150–3PubMedCrossRefGoogle Scholar
  105. 105.
    Verbeek RK, Ross SG, McKenna EA. Excretion of trazodone in breast milk. Br J Clin Pharmacol 1986; 22: 367–70CrossRefGoogle Scholar
  106. 106.
    Monteleone P, Gnocchi G. Evidence for a linear relationship between plasma trazodone levels and clinical response in depression in the elderly. Clin Neuropharmacol 1990; 13 Suppl. 1: S84–9PubMedCrossRefGoogle Scholar
  107. 107.
    Spar JE. Plasma trazodone concentrations in elderly depressed inpatients: cardiac effects and short-term efficacy. J Clin Psychopharmacol 1987; 7: 406–9PubMedCrossRefGoogle Scholar
  108. 108.
    Rausch PK, Jenike MA. Digoxin toxicity possibly precipitated by trazodone. Psychosomatics 1984; 25: 334–5CrossRefGoogle Scholar
  109. 109.
    Dorn JM. A case of phenytoin toxicity possibly precipitated by trazodone J Clin Psychiatry 1986; 47: 89–90PubMedGoogle Scholar
  110. 110.
    Aranow RB, Hudson JI, Pope HG, et al. Elevated antidepressant plasma levels after addition of fluoxetine. Am J Psychiatry 1989; 146: 911–3PubMedGoogle Scholar
  111. 111.
    Asayesh K. Combination of trazodone and phenothiazines: a possible additive hypotensive effect. Can J Psychiatry 1986; 31: 857–8PubMedGoogle Scholar
  112. 112.
    Fontaine R. Novel serotonergic mechanisms and clinical experience with nefazodone. Clin Neuropharmacol 1993; 16 Suppl. 2: S45–50PubMedGoogle Scholar
  113. 113.
    Sharpley AL, Walsh AES, Cowen PJ. Nefazodone — a novel antidepressant- may increase REM sleep. Biol Psychiatry 1992; 31: 1070–3PubMedCrossRefGoogle Scholar
  114. 114.
    Sainati S, Shukla U, Chaikin P, et al. The single and multiple dose pharmacokinetics of nefazodone in healthy volunteers and subjects with hepatic impairment [abstract 60]. Proceedings of the 21 st Annual American College of Clinical Pharmacology Meeting. J Clin Pharmacol 1992; 32: 756Google Scholar
  115. 115.
    Shukla UA, Marathe PH, Labudde JA, et al. Pharmacokinetics of nefazodone in the dog following single oral administration. Eur J Drug Metab Pharmacokinet 1992; 17: 301–8PubMedCrossRefGoogle Scholar
  116. 116.
    Archibald D, Copp J, Anton S, et al. Determination of the therapeutic dose range of nefazodone from clinical trial data [abstract]. Abstracts of New Clinical Drug Evaulation Unit meeting; 1993 June 1–3; Boca Raton, FloridaGoogle Scholar
  117. 117.
    Miller F, Friedman R, Tanenbaum J, et al. Disseminated intravascular coagulation and acute myoglobinuria renal failure: a consequence of the serotonin syndrome. J Clin Psychopharmacol 1991; 148: 790–2Google Scholar
  118. 118.
    Robinson DS, Cooper TB, Jindal SP, et al. Metabolism and pharmacokinetics of phenelzine: Lack of evidence for acetylation pathway in humans. J Clin Psychopharmacol 1985; 5: 333–7PubMedGoogle Scholar
  119. 119.
    Baker GB, Coutts RT. Metabolism of monoamine oxidase inhibitors. Prog Neuropsychopharmacol Biol Psychiatry 1989; 13: 395–403PubMedCrossRefGoogle Scholar
  120. 120.
    Robinson DS, Nies A, Cooper TB. Relationships of plasma phenelzine levels to platelet MAO inhibition, acetylator phenotype, and clinical outcome in depressed outpatients [abstract]. Clin Pharmacol Ther 1980; 27: 280Google Scholar
  121. 121.
    Mallinger AG, Edwards DJ, Himmelhoch JM, et al. Pharmacokinetics of tranylcypromine in patients who are depressed: Relationship to cardiovascular effects. Clin Pharmacol Ther 1986; 40: 444–50PubMedCrossRefGoogle Scholar
  122. 122.
    Mallinger AG, Himmelhoch JM, Thase ME, et al. Plasma tranylcypromine: Relationship to pharmacokinetic variables and clinical antidepressant action. J Clin Psychopharmacol 1990; 10: 176–83PubMedCrossRefGoogle Scholar
  123. 123.
    Riederer P, Youdim MBH, Rausch WD, et al. On the mode of action of 1-deprenyl in the human central nervous system. J Neural Transm 1978; 43: 217–26PubMedCrossRefGoogle Scholar
  124. 124.
    Mann JJ, Aaron SF, Wilner PJ, et al. A controlled study of the antidepressant efficacy and side effects of deprenyl; a selective monoamine oxidase inhibitor. Arch Gen Psychiatry 1989; 46: 45–50PubMedCrossRefGoogle Scholar
  125. 125.
    Elsworth JD, Glover V, Reynolds GP, et al. Deprenyl administration in man: a selective monoamine oxidase B inhibitor without the ‘cheese effect’. Psychopharmacology (Berl) 1978; 57: 33–8CrossRefGoogle Scholar
  126. 126.
    Karoum F, Chuang LW, Eisler T, et al. Metabolism of deprenyl to amphetamine and methamphetamine may be responsible for deprenyl’s therapeutic benefit: A biochemical assessment. Neurology 1982; 32: 503–9PubMedCrossRefGoogle Scholar
  127. 127.
    Schoerlin MP, Mayersohn M, Korn A, et al. Disposition kinetics of moclobemide: A monoamine oxidase A enzyme inhibitor: Single and multiple dosing in normal subjects. Clin Pharmacol Ther 1987; 42: 395–404PubMedCrossRefGoogle Scholar
  128. 128.
    Raafluab J, Haefelfinger P, Trautmann KH. Single-dose pharmacokinetics of the MAO inhibitor moclobemide in man. Arzneimittelforschung 1984; 34: 80–2Google Scholar
  129. 129.
    Stoeckel K, Pfefen JP, Mayersohn M, et al. Absorption and disposition of moclobemide in patients with advanced age or reduced liver or kidney function. Acta Psychiatr Scand 1990; 82 Suppl. 360: 94–7CrossRefGoogle Scholar
  130. 130.
    Maguire K, Pereira A, Tiller J. Moclobemide pharmacokinetics in depressed patients: lack of age effect. Hum Psychopharmacol 1991; 6: 249–52CrossRefGoogle Scholar
  131. 131.
    Schoerlin MP, Horber FF, Frey FJ, et al. Disposition kinetics of moclobemide, a new MAO-A inhibitor in subjects with impaired renal function. J Clin Pharmacol 1990; 30: 272–84PubMedGoogle Scholar
  132. 132.
    Pons G, Schoerlin MP, Tarn YK, et al. Moclobemide excretion in human breast milk. Br J Clin Pharmacol 1990; 29: 27–31PubMedCrossRefGoogle Scholar
  133. 133.
    Dingemanse J, Korne A, Pfefen JP, et al. Biochemical effects of high single doses of moclobemide in man: correlation with plasma concentrations. Psychopharmacology 1992; 106 Suppl.: S46–8PubMedCrossRefGoogle Scholar
  134. 134.
    Schoerlin MP, Mayersohn M, Hoevels B, et al. Effect of food intake on the relative bioavailability of moclobemide (Ro 11–1163). J Neural Transm 1988; 26: 115–21Google Scholar
  135. 135.
    Korn A, Da Prada M, Raffesberg W, et al. Tyramine pressor effect in man: studies with moclobemide, a novel, reversible monoamine oxidase inhibitor. J Neural Transm 1988; 26 Suppl.: 57–71Google Scholar
  136. 136.
    Muller T, Gieschke R, Ziegler WH. Blood pressure response to tyramine-enriched meal before and during MAO-inhibition in man: influence of dosage regimen. J Neural Transm 1988; 26 Suppl.: 105–14Google Scholar
  137. 137.
    Amrein R, Allen SR, Vranesic D, et al. Antidepressant drug therapy: associated risks. J Neural Transm 1988; 26 Suppl.: 73–86Google Scholar
  138. 138.
    Fitton A, Faulds D, Goa KL. Moclobemide: a review of its pharmacological properties and therapeutic use in depressive illness. Drugs 1992; 43: 561–96PubMedCrossRefGoogle Scholar
  139. 139.
    Hindmarch I, Kerr J. Behavioural toxicity of antidepressants with particular reference to moclobemide. Psychopharmacology 1992; 106: S49–55PubMedCrossRefGoogle Scholar
  140. 140.
    Waldmeier PC, Baumann PA, Delini-Stula A, et al. Characterisation of a new, short-acting and specific inhibitor of type A monamineoxidase. Mod Probl Pharmacopsychiatry 1983; 19: 31–52PubMedGoogle Scholar
  141. 141.
    Bergstrom RF, Lemberger L, Farid NA, et al. Clinical pharmacology and pharmacokinetics of fluoxetine. Br J Psychiatry 1988; 153 Suppl. 3: 47–50Google Scholar
  142. 142.
    Benfield P, Heel RC, Lewis SP. Fluoxetine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in depressive illness. Drugs 1986; 32: 481–508PubMedCrossRefGoogle Scholar
  143. 143.
    Garratini S, Caccia S, Mennini T, et al. Progress report on drugs inducing anorexia by affecting brain serotonin. In: Rothwell NJ, Stock MJ, editors. Obesity and cachexia: physiological mechanisms and new approaches to pharmacological control. Chichester: John Wiley, 1991: 221–40Google Scholar
  144. 144.
    Isenberg KE. Excretion of fluoxetine in human breast milk [letter]. J Clin Psychiatry 1990; 51: 169PubMedGoogle Scholar
  145. 145.
    Schenker S, Bergstrom RF, Wolen RL, et al. Fluoxetine disposition and elimination in cirrhosis. Clin Pharmacol Ther 1988; 44: 353–9PubMedCrossRefGoogle Scholar
  146. 146.
    Aronoff GR, Bergstrom RF, Pottratz ST, et al. Fluoxetine kinetics and protein binding in normal and impaired renal function. Clin Pharmacol Ther 1984; 36: 138–44PubMedCrossRefGoogle Scholar
  147. 147.
    Sommi RW, Crismon L, Bowden CL. Fluoxetine: a serotonin-specific second-generation antidepressant. Pharmacotherapy 1987; 7: 1–14PubMedGoogle Scholar
  148. 148.
    Goodnick PJ. Influence of fluoxetine on plasma levels of desipramine [letter]. Am J Psychiatry 1989; 146: 552PubMedGoogle Scholar
  149. 149.
    Salama A, Shafey M. A case of severe lithium toxicity induced by combined fluoxetine and lithium carbonate [letter]. Am J Psychiatry 1989; 146: 278PubMedGoogle Scholar
  150. 150.
    Tate JL. Extrapyramidal symptoms in a patient taking haloperidol and fluoxetine. Am J Psychiatry 1989; 146: 399–400PubMedGoogle Scholar
  151. 151.
    Pearson HJ. Interaction of fluoxetine with carbamazepine [letter]. J Clin Psychiatry 1990; 51: 126PubMedGoogle Scholar
  152. 152.
    Lemberger L, Rowe H, Bosomworth JC, et al. The effect of fluoxetine on the pharmacokinetics and psychomotor responses of diazepam. Clin Pharmacol Ther 1988; 43: 412–9PubMedCrossRefGoogle Scholar
  153. 153.
    Rowe H, Carmichael R, Lemberger L. The effect of fluoxetine on warfarin metabolism in the rat and man. Life Sci 1978; 23: 807–12PubMedCrossRefGoogle Scholar
  154. 154.
    Hansen TE, Dieter K, Keepers GA. Interaction of fluoxetine and petazocine. Am J Psychiatry 1990; 147: 949–50PubMedGoogle Scholar
  155. 155.
    Kelly MW, Perry PJ, Holstad SG, et al. Serum fluoxetine and norfluoxetine concentrations and antidepressant response. Ther Drug Monit 1989; 11: 165–70PubMedCrossRefGoogle Scholar
  156. 156.
    Martennson B, Nyberg S, Toresson G, et al. Fluoxetine treatment of depression. Acta Psychiatr Scand 1989; 79: 586–96CrossRefGoogle Scholar
  157. 157.
    Beasley Jr CM, Bosomworth JC, Wernicke JF. Fluoxetine: Relationships among dose, response, adverse events, and plasma concentrations in the treatment of depression. Psychopharmacol Bull 1990; 26: 18–24PubMedGoogle Scholar
  158. 158.
    Montgomery SA, Baldwin D, Shah A, et al. Plasma level response relationships with fluoxetine and zimelidine. Clin Neuropharmacol 1990; 13 Suppl. 1: S71–5PubMedCrossRefGoogle Scholar
  159. 159.
    Tyrer SP, Marshall EF, Griffiths HW. The relationship between response to fluoxetine, plasma drug levels, imipramine binding to platelet membranes, and whole blood 5HT. Prog Neuropsychopharmacol. Biol Psychiatry 1990; 14: 797–805Google Scholar
  160. 160.
    Goodnick PJ. Pharmacokinetics of second generation antidepressants: fluoxetine. Psychopharmacol Bull 1991; 27: 503–12PubMedGoogle Scholar
  161. 161.
    Norman TR, Gupta RK, Burrows GD, et al. Relationship between antidepressant response and plasma concentrations of fluoxetine and norfluoxetine. Int Clin Psychopharmacol 1993; 8: 25–9PubMedCrossRefGoogle Scholar
  162. 162.
    Keck PE, McElroy SL. Ratio of plasma fluoxetine to norfluoxetine concentrations and associated sedation. J Clin Psychiatry 1992; 53: 127–9PubMedGoogle Scholar
  163. 163.
    Ronfeld RA, Shaw GL, Tremaine LM. Distribution and pharmacokinetics of the selective 5HT uptake blocker sertraline in man, rat and dog [abstract]. Psychopharmacology 1988; 96 Suppl.: 269Google Scholar
  164. 164.
    Doogan DP, Caillard V. Sertraline: a new antidepressant. J Clin Psychiatry 1988; 49(8 Suppl.): 46–51PubMedGoogle Scholar
  165. 165.
    Warrington SJ. Clinical implications of the pharmacology of sertraline. Int Clin Psychopharmacol 1991; 6 Suppl. 2: 11–21PubMedCrossRefGoogle Scholar
  166. 166.
    The Pink Sheet. 1990; November 16: 3–5Google Scholar
  167. 167.
    Kaye CM, Haddock RE, Langley PF, et al. A review of the metabolism and pharmacokinetics of paroxetine in man. Acta Psychiatr Scand 1989; 80 Suppl. 350: 60–75CrossRefGoogle Scholar
  168. 168.
    Lund J, Lomholt B, Fabricum J, et al. Paroxetine: pharmacokinetics, tolerance, and depletion of blood 5HT in man. Acta Pharmacol Toxicol 1979: 44: 289–95CrossRefGoogle Scholar
  169. 169.
    Tasker TCG, Kaye CM, Zussman BD, et al. Paroxetine plasma levels: lack of correlation with efficacy or adverse events. Acta Psychiatr Scand 1989; 80 Suppl. 350: 152–5CrossRefGoogle Scholar
  170. 170.
    Bayer AJ, Roberts NA, Allen EA, et al. The pharmacokinetics of paroxetine in the elderly. Acta Psychiatr Scand 1989; 80 Suppl. 350: 85–6CrossRefGoogle Scholar
  171. 171.
    Doyle GD, Laher M, Kelly JG, et al. The pharmacokinetics of paroxetine in renal impairment. Acta Psychiatr Scand 1989; 80 Suppl. 350: 89–90CrossRefGoogle Scholar
  172. 172.
    Krastev Z, Terziivanov D, Vlahov V, et al. The pharmacokinetics of paroxetine in patients with liver cirrhosis. Acta Psychiatr Scand 1989; 80 Suppl. 350: 91–2CrossRefGoogle Scholar
  173. 173.
    Mellerup ET, Bech P, Lauritzen L, et al. Platelet paroxetine binding in alcoholics. Alcohol Alcohol. 1992; 27: 603–6PubMedGoogle Scholar
  174. 174.
    Brosen K, Gram L, Sindrup S, et al. Pharmacogenetics of tricyclic antidepressants and novel antidepressants: recent developments. Clin Neuropharmacol 1992; 15 Suppl. 1: 80A–81APubMedCrossRefGoogle Scholar
  175. 175.
    Dechant KL, Clissold SP. Paroxetine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in depressive illness. Drugs 1991; 41: 225–53PubMedCrossRefGoogle Scholar
  176. 176.
    Bannister SJ, Houser VP, Hulse JD, et al. Evaluation of the potential for interactions of paroxetine with diazepam, cimetidine, warfarin, and digoxin. Acta Psychiatr Scand 1989; 80 Suppl. 350: 102–6CrossRefGoogle Scholar
  177. 177.
    DeBree H, Van der Schoot JB, Post LC. Fluvoxamine maleate; disposition in man. Eur J Drug Metab Pharmacokinet 1983; 8: 175–9CrossRefGoogle Scholar
  178. 178.
    DeVries MH, Raghoebar M, Mathlener IS, et al. Single and multiple dose fluvoxamine kinetics in young and elderly subjects. Ther Drug Monit 1992; 14: 493–8CrossRefGoogle Scholar
  179. 179.
    Raghoebar M, Roseboom H. Kinetics of fluvoxamine in special populations. Poster presented at the Symposium on Variability in Pharmacokinetics and Drug Response; 1988 Oct 3–5: GothenburgGoogle Scholar
  180. 180.
    Van Harten J, van Bemmel P, Dobrinska MR, et al. Bioavailability of fluvoxamine given with and without food. Biopharm Drug Disp 1991; 12: 571–6CrossRefGoogle Scholar
  181. 181.
    Wright S, Dawling S, Ashford JJ. Excretion of fluvoxamine in breast milk. Br J Clin Pharmacol 1991; 31: 209PubMedCrossRefGoogle Scholar
  182. 182.
    Foglia JP, Perel JM, Nathan RS, et al. Therapeutic drug monitoring of fluvoxamine, a selective antidepressant [abstract]. Clin Chem 1990; 36: 1043Google Scholar
  183. 183.
    DeWilde JEM, Doogan DP. Fluvoxamine and chlorimipramine in endogenous depression. J Affect Dis 1982; 4: 249–59CrossRefGoogle Scholar
  184. 184.
    Ochs HR, Greenblatt DJ, Verburg-Ochs B, et al. Chronic treatment with fluvoxamine, clovoxamine, and placebo: interaction with digoxin and effects on sleep and alertness. J Clin Pharmacol 1989; 29: 91–5PubMedGoogle Scholar
  185. 185.
    Ottevanger EA. Fluvoxamine: highly selective 5HT reuptake inhibitor. Weesp, Duphar BV: Basic Brochure, 1987Google Scholar
  186. 186.
    Fritze J, Unsorg B, Lanczik M. Interaction between carbamazepine and fluvoxamine. Acta Psychiatr Scand 1991; 84: 583–4PubMedCrossRefGoogle Scholar
  187. 187.
    Kragh-Sorensen P, Fredricson Overo K, Petersen OL, et al. The kinetics of citalopram: single and multiple dose studies in man. Acta Pharmacol Toxicol 1981; 48: 53–60CrossRefGoogle Scholar
  188. 188.
    Investigator’s brochure. Citalopram. H. Lundbeck, 4 June 1993Google Scholar
  189. 189.
    Fredricson Overo K, Toft B, Christophersen L, et al. Kinetics of citalopram in elderly patients. Psychopharmacology 1985; 86: 253–7CrossRefGoogle Scholar
  190. 190.
    Bjerkenstedt L, Flyckt L, Fredricson Overo K, et al. Relationship between clinical effects, serum drug concentration, and serotonin uptake inhibition in depressed patients treated with citalopram. Eur J Clin Pharmacol 1985; 28: 553–7PubMedCrossRefGoogle Scholar
  191. 191.
    Fredicson-Overo K. Kinetics of citalopram in man: plasma levels in patients. Prog Neuropsychopharmacol Biol Psychiatry 1982; 6: 311–8CrossRefGoogle Scholar
  192. 192.
    Gram L, Hansen MG, Sindrup SH, et al. Citalopram: Interaction studies with levomepromazine, imipramine, and lithium. Ther Drug Monit 1993; 15: 18–24PubMedCrossRefGoogle Scholar
  193. 193.
    Oyehaug E, Eide G, Salvesan B. Effect of phenothiazines on citalopram steady state kinetics in psychiatric patients. Nor Pharma Acta 1984; 46: 37–46Google Scholar
  194. 194.
    Vandel B, Vandel S, Journet JM, et al. Pharmacokinetics of viloxazine hydrochloride in man. Eur J Drug Metab Pharmacokinet 1982; 7: 65–8PubMedCrossRefGoogle Scholar
  195. 195.
    Peet M. A clinical trial of ICI 58,834 — a potential antidepressant. J Int Med Res 1973; 1: 624–6Google Scholar
  196. 196.
    Muller-Oerlinghausen B, Ruther E. Clinical profile and serum concentration of viloxazine as compared to amitriptyline. Pharmacopsychiatry 1979; 12: 321–37CrossRefGoogle Scholar
  197. 197.
    Norman TR, Burrows GD, Davis BM. Viloxazine plasma concentrations and clinical response. J Affect Dis 1980; 2: 157–64PubMedCrossRefGoogle Scholar
  198. 198.
    Vandel V, Vandel S, Allers G. Clinical pharmacology of viloxazine hydrochloride. Pharmacopsychiatry 1981; 14: 66–70CrossRefGoogle Scholar
  199. 199.
    Laaban JP, Dupeyon JP, Lafay M, et al. Theophylline intoxication following viloxazine-induced decrease in clearance. Eur J Clin Pharmacol 1986; 30: 351–3PubMedCrossRefGoogle Scholar
  200. 200.
    Pisani F, Fazio A, Oteri G, et al. Carbamazepine-viloxazine interaction in patients with epilepsy. J Neurol Neurosurg Psychiatry 1986; 49: 1142–5PubMedCrossRefGoogle Scholar
  201. 201.
    Findlay JWA, Van Wyck Fleet J, Smith PG, et al. Pharmacokinetics of bupropion, a novel antidepressant agent, following oral administration to healthy subjects. Eur J Clin Pharmacol 1981; 21: 127–35PubMedCrossRefGoogle Scholar
  202. 202.
    Laizure SC, DeVane L, Stewart JT, et al. Pharmacokinetics of bupropion and its major basic metabolites in normal subjects after a single dose. Clin Pharmacol Ther 1985; 38: 586–9PubMedCrossRefGoogle Scholar
  203. 203.
    Lai AA, Schroeder DH. Clinical pharmacokinetics of bupropion. J Clin Psychiatry 1983; 44 Suppl. 2: 82–4PubMedGoogle Scholar
  204. 204.
    Branconnier RJ, Cole JO, Ghazvinian S, et al. Clinical pharmacology of bupropion and imipramine in elderly depressives. J Clin Psychiatry 1983; 44 Suppl 2: 130–3PubMedGoogle Scholar
  205. 205.
    DeVane CL, Laizure SC, Stewart JT, et al. Disposition of bupropion in healthy volunteers and subjects with alcoholic liver disease. J Clin Psychopharmacol 1990; 10: 328–32PubMedCrossRefGoogle Scholar
  206. 206.
    Briggs GG, Samson JH, Ambrose PJ. Excretion of bupropion in breast milk. Ann Pharmacother 1993; 27: 431–3PubMedGoogle Scholar
  207. 207.
    Preskorn SH. Antidepressant response and plasma concentrations of bupropion. J Clin Psychiatry 1983; 44(5 sec 2): 137–9PubMedGoogle Scholar
  208. 208.
    Golden RN, Rudorfer MV, Sherer MA, et al. Bupropion in depression I. Biochemical effects and clinical response. Arch Gen Psychiatry 1988; 45: 139–43PubMedCrossRefGoogle Scholar
  209. 209.
    Goodnick PJ. Blood levels and acute response to bupropion. Am J Psychiatry 1992; 149: 399–400PubMedGoogle Scholar
  210. 210.
    Goodnick PJ, Sandoval R, Brickman A, et al. Bupropion treatment of chronic fatigue syndrome. Biol Psychiatry 1992; 32: 834–8PubMedCrossRefGoogle Scholar
  211. 211.
    Schroeder DH. Metabolism and kinetics of bupropion. J Clin Psychiatry 44 (5 sec 2): 79–81Google Scholar
  212. 212.
    Ketter TA, Barnett J, Schroeder DH, et al. Carbamazepine induces bupropion metabolism. New Research Abstracts. APA Annual Meeting; 1992 May 2–7: Washington DC: #NR 563Google Scholar
  213. 213.
    Klamerus KJ, Maloney K, Rudolph RL, et al. Introduction of a composite parameter to the pharmacokinetics of venlafaxine and its active o-esmethyl-metabolite. J Clin Pharmacol 1992; 32: 716–24PubMedGoogle Scholar
  214. 214.
    Montgomery SA. Venlafaxine: a new dimension in antidepressant pharmacotherapy. J Clin Psychiatry 1993; 54: 119–26Google Scholar

Copyright information

© Adis International Limited 1994

Authors and Affiliations

  • Paul J. Goodnick
    • 1
  1. 1.Department of PsychiatryUniversity of MiamiMiamiUSA

Personalised recommendations