Drugs & Aging

, Volume 22, Issue 2, pp 141–161

Disease-Modifying Therapies for Osteoarthritis

Current Status
  • Marc Fajardo
  • Paul E. Di Cesare
Review Article


Osteoarthritis, the most common form of arthritis, is a debilitating progressive disease principally affecting the elderly. Osteoarthritis therapy has evolved in the past few decades from symptomatic treatment to possible disease-modifying solutions. In this paper, the pathophysiology of osteoarthritis is first reviewed, including an examination of the mechanisms underlying osteoarthritis and discussions of the roles of cartilage, synovial fluid and subchondral bone. The remainder of the paper discusses therapeutic approaches in current use and those in development, with special attention given to pharmacological treatments. Current approaches to treating osteoarthritis — i.e. medications; nonpharmacological modalities, such as physical therapy, exercise, weight management and orthotics; and (as a last resort) surgery — focus on reducing pain and improving (or at least maintaining) mobility. Drugs currently used to treat osteoarthritis fall into several categories: analgesics, NSAIDs, cyclo-oxygenase-2 (COX-2) inhibitors, corticosteroids, viscosupplementation, and symptomatic slow-acting drugs (‘nutraceuticals’). The analgesics (paracetamol [acetaminophen] and opiates) have demonstrated less symptomatic efficacy than NSAIDs, while the latter have displayed mixed results in terms of joint space narrowing. COX-2 inhibitors have been demonstrated to be equal to or superior to NSAIDs in effectiveness. However, once considered a safer alternative, COX-2 inhibitors have become the subject of intense scrutiny since recent clinical evidence has cast suspicion on their cardiovascular safety profile. Injectable therapies, such as corticosteroids and viscosupplementation have elicited favorable short-term response but no long-term structural modification. On the other hand, the slow-acting drugs, especially chondroitin and glucosamine sulfate, have shown promising results. Also reviewed are other established and experimental therapies that seek to modify and/or even reverse the course of osteoarthritis. These include such medications as colchicine, bisphosphonates and hormones; dietary therapeutics, such as ginger extract and green tea; and such truly experimental treatments as matrix metalloproteinase inhibitors, cytokines, nitric oxide, growth factors and gene therapy. Osteoarthritis continues to be a difficult disorder to treat, as there is no cure as such and current treatments focus mainly on relieving pain and maintaining joint function. The search nevertheless continues for management regimens that can slow, alter or reverse the degenerative processes of osteoarthritis.


  1. 1.
    Lohmander LS. What can we do about osteoarthritis? Arthritis Res 2000; 2(2): 95–100PubMedCrossRefGoogle Scholar
  2. 2.
    Yelin E. The economics of osteoarthritis. In: Brandt K, Doherty M, Lohmander LS, editors. Osteoarthritis. New York: Oxford University Press, 1998: 23–30Google Scholar
  3. 3.
    Di Cesare PE, Abramson SB. Pathogenesis of Osteoarthritis. In: Harris ED, editor. Kelley’s textbook of rheumatology. 7th ed. Philadelphia (PA): Elsevier Science Publisher, 2003: 1493–513Google Scholar
  4. 4.
    Polisson R. Innovative therapies in osteoarthritis. Curr Rheumatol Rep 2001; 3(6): 489–95PubMedCrossRefGoogle Scholar
  5. 5.
    Linn FC, Radin EL. Lubrication of animal joints: 3. The effect of certain chemical alterations of the cartilage and lubricant. Arthritis Rheum 1968; 11(5): 674–82PubMedCrossRefGoogle Scholar
  6. 6.
    Dieppe P. The classification and diagnosis of osteoarthritis. In: Kuettner K, Goldberg V, editors. Osteoarthritic Disorders. Rosemont (IL): American Academy of Orthopaedic Surgeons, 1995Google Scholar
  7. 7.
    Lawrence RC, Hochberg MC, Kelsey JL, et al. Estimates of the prevalence of selected arthritic and musculoskeletal diseases in the United States. J Rheumatol 1989; 16(4): 427–41PubMedGoogle Scholar
  8. 8.
    Martin JA, Buckwalter JA. Articular cartilage aging and degeneration. Sports Med Arthroscop Rev 1996; 4: 263–75CrossRefGoogle Scholar
  9. 9.
    Pelletier JP Martel-Pelletier J, Howell DS. Etiopathogenesis of osteoarthritis. In: Koopman WJ, editor. Arthritis and allied conditions: a textbook of rheumatology. Baltimore (MD): Williams and Wilkins, 2001: 2195–45Google Scholar
  10. 10.
    Murphy G, Docherty AJP. Molecular studies on the connective tissue metalloproteinases and their inhibitor TIMP. In: Glauert AM, editor. The control of tissue damage. Oxford: Oxford Press, 1988Google Scholar
  11. 11.
    Dean DD, Woessner Jr JF. Extracts of human articular cartilage contain an inhibitor of tissue metalloproteinases. Biochem J 1984; 218(1): 277–80PubMedGoogle Scholar
  12. 12.
    Yamada H, Stephens RW, Nakagawa T, et al. Human articular cartilage contains an inhibitor of plasminogen activator. J Rheumatol 1988; 15(7): 1138–43PubMedGoogle Scholar
  13. 13.
    Balazs EA, Denlinger JL. Viscosupplementation: a new concept in the treatment of osteoarthritis. J Rheumatol Suppl 1993; 39: 3–9PubMedGoogle Scholar
  14. 14.
    Uthman I, Raynauld JP, Haraoui B. Intra-articular therapy in osteoarthritis. Postgrad Med J 2003; 79(934): 449–53PubMedCrossRefGoogle Scholar
  15. 15.
    Altman D. Laboratory findings in osteoarthritis. In: Moskowitz R, Goldberg V, Mankin J, editors. Osteoarthritis-diagnosis and medical surgical management. Philadelphia (PA): WB Saunders, 1992: 313–328Google Scholar
  16. 16.
    Buckwalter JA, Lane NE. Athletics and osteoarthritis. Am J Sports Med 1997; 25(6): 873–81PubMedCrossRefGoogle Scholar
  17. 17.
    Guermazi A, Zaim S, Taouli B, et al. MR findings in knee osteoarthritis. Eur Radiol 2003; 13(6): 1370–86PubMedCrossRefGoogle Scholar
  18. 18.
    Lajeunesse D. The role of bone in the treatment of osteoarthritis (1). Osteoarthritis Cartilage 2004; 12Suppl. A: 34–8CrossRefGoogle Scholar
  19. 19.
    Recommendations for the medical management of osteoarthritis of the hip and knee: 2000 update. American College of Rheumatology Subcommittee on Osteoarthritis Guidelines. Arthritis Rheum 2000; 43(9): 1905–15Google Scholar
  20. 20.
    Pendleton A, Arden N, Dougados M, et al. EULAR recommendations for the management of knee osteoarthritis: report of a task force of the Standing Committee for International Clinical Studies Including Therapeutic Trials (ESCISIT). Ann Rheum Dis 2000; 59(12): 936–44PubMedCrossRefGoogle Scholar
  21. 21.
    Jordan KM, Arden NK, Doherty M, et al. EULAR Recommendations 2003: an evidence based approach to the management of knee osteoarthritis. Report of a Task Force of the Standing Committee for International Clinical Studies Including Therapeutic Trials (ESCISIT). Ann Rheum Dis 2003; 62(12): 1145–55PubMedCrossRefGoogle Scholar
  22. 22.
    Hochberg MC, Altman RD, Brandt K, et al. Guidelines for the medical management of osteoarthritis: Part II. Osteoarthritis of the knee. American College of Rheumatology. Arthritis Rheum 1995; 38(11): 1541–6PubMedCrossRefGoogle Scholar
  23. 23.
    Superio-Cabuslay E, Ward MM, Lorig KR. Patient education interventions in osteoarthritis and rheumatoid arthritis: a meta-analytic comparison with nonsteroidal antiinflammatory drug treatment. Arthritis Care Res 1996; 9(4): 292–301PubMedCrossRefGoogle Scholar
  24. 24.
    Fransen M, Crosbie J, Edmonds J. Physical therapy is effective for patients with osteoarthritis of the knee: a randomized controlled clinical trial. J Rheumatol 2001; 28(1): 156–64PubMedGoogle Scholar
  25. 25.
    Toda Y. The effect of energy restriction, walking, and exercise on lower extremity lean body mass in obese women with osteoarthritis of the knee. J Orthop Sci 2001; 6(2): 148–54PubMedCrossRefGoogle Scholar
  26. 26.
    Huang MH, Chen CH, Chen TW, et al. The effects of weight reduction on the rehabilitation of patients with knee osteoarthritis and obesity. Arthritis Care Res 2000; 13(6): 398–405PubMedCrossRefGoogle Scholar
  27. 27.
    Toda Y, Toda T, Takemura S, et al. Change in body fat, but not body weight or metabolic correlates of obesity, is related to symptomatic relief of obese patients with knee osteoarthritis after a weight control program. J Rheumatol 1998; 25(11): 2181–6PubMedGoogle Scholar
  28. 28.
    Messier SP, Loeser RF, Miller GD, et al. Exercise and dietary weight loss in overweight and obese older adults with knee osteoarthritis: the Arthritis, Diet, and Activity Promotion Trial. Arthritis Rheum 2004; 50(5): 1501–10PubMedCrossRefGoogle Scholar
  29. 29.
    Kerrigan DC, Lelas JL, Goggins J, et al. Effectiveness of a lateral-wedge insole on knee varus torque in patients with knee osteoarthritis. Arch Phys Med Rehabil 2002; 83(7): 889–93PubMedCrossRefGoogle Scholar
  30. 30.
    Toda Y, Tsukimura N, Kato A. The effects of different elevations of laterally wedged insoles with subtalar strapping on medial compartment osteoarthritis of the knee. Arch Phys Med Rehabil 2004; 85(4): 673–7PubMedCrossRefGoogle Scholar
  31. 31.
    The management of chronic pain in older persons. AGS Panel on Chronic Pain in Older Persons. American Geriatrics Society. Geriatrics 1998; 53Suppl. 3: S8–24Google Scholar
  32. 32.
    Case JP, Baliunas AJ, Block JA. Lack of efficacy of acetaminophen in treating symptomatic knee osteoarthritis: a randomized, double-blind, placebo-controlled comparison trial with diclofenac sodium. Arch Intern Med 2003; 163(2): 169–78PubMedCrossRefGoogle Scholar
  33. 33.
    Pincus T, Koch GG, Sokka T, et al. A randomized, double-blind, crossover clinical trial of diclofenac plus misoprostol versus acetaminophen in patients with osteoarthritis of the hip or knee. Arthritis Rheum 2001; 44(7): 1587–98PubMedCrossRefGoogle Scholar
  34. 34.
    Peloso PM, Bellamy N, Bensen W, et al. Double blind randomized placebo control trial of controlled release codeine in the treatment of osteoarthritis of the hip or knee. J Rheumatol 2000; 27(3): 764–71PubMedGoogle Scholar
  35. 35.
    Ottillinger B, Gomor B, Michel BA, et al. Efficacy and safety of eltenac gel in the treatment of knee osteoarthritis. Osteoarthritis Cartilage 2001; 9(3): 273–80PubMedCrossRefGoogle Scholar
  36. 36.
    Huskisson EC, Berry H, Gishen P, et al. Effects of antiinflammatory drugs on the progression of osteoarthritis of the knee. LINK Study Group. Longitudinal Investigation of Nonsteroidal Antiinflammatory Drugs in Knee Osteoarthritis. J Rheumatol 1995; 22(10): 1941–6PubMedGoogle Scholar
  37. 37.
    van Kuijk C, Cheng X, Hottya G, et al. The effects of rofecoxib and diclofenac on knee osteoarthritis articular cartilage: the results from one-year prospective clinical trials. Arthritis Rheum 2000; 43: s220–924Google Scholar
  38. 38.
    Day R, Morrison B, Luza A, et al. A randomized trial of the efficacy and tolerability of the COX-2 inhibitor rofecoxib vs ibuprofen in patients with osteoarthritis. Rofecoxib/Ibuprofen Comparator Study Group. Arch Intern Med 2000; 160(12): 1781–7PubMedCrossRefGoogle Scholar
  39. 39.
    Geba GP, Weaver AL, Polis AB, et al. Efficacy of rofecoxib, celecoxib, and acetaminophen in osteoarthritis of the knee: a randomized trial. JAMA 2002; 287(1): 64–71PubMedCrossRefGoogle Scholar
  40. 40.
    Gibofsky A, Williams GW, McKenna F, et al. Comparing the efficacy of cyclooxygenase 2-specific inhibitors in treating osteoarthritis: appropriate trial design considerations and results of a randomized, placebo-controlled trial. Arthritis Rheum 2003; 48(11): 3102–11PubMedCrossRefGoogle Scholar
  41. 41.
    Raynauld JP, Buckland-Wright C, Ward R, et al. Safety and efficacy of long-term intraarticular steroid injections in osteoarthritis of the knee: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum 2003; 48(2): 370–7PubMedCrossRefGoogle Scholar
  42. 42.
    Ravaud P, Moulinier L, Giraudeau B, et al. Effects of joint lavage and steroid injection in patients with osteoarthritis of the knee: results of a multicenter, randomized, controlled trial. Arthritis Rheum 1999; 42(3): 475–82PubMedCrossRefGoogle Scholar
  43. 43.
    Altman RD, Moskowitz R. Intraarticular sodium hyaluronate (Hyalgan) in the treatment of patients with osteoarthritis of the knee: a randomized clinical trial. Hyalgan Study Group. J Rheumatol 1998; 25(11): 2203–12PubMedGoogle Scholar
  44. 44.
    Lo GH, LaValley M, McAlindon T, et al. Intra-articular hyaluronic acid in treatment of knee osteoarthritis: a meta-analysis. JAMA 2003; 290(23): 3115–21PubMedCrossRefGoogle Scholar
  45. 45.
    Towheed TE, Anastassiades TP, Shea B, et al. Glucosamine therapy for treating osteoarthritis. Cochrane Database Syst Rev 2001; (1): CD002946Google Scholar
  46. 46.
    Leeb BF, Schweitzer H, Montag K, et al. A metaanalysis of chondroitin sulfate in the treatment of osteoarthritis. J Rheumatol 2000; 27(1): 205–11PubMedGoogle Scholar
  47. 47.
    Richy F, Bruyere O, Ethgen O, et al. Structural and symptomatic efficacy of glucosamine and chondroitin in knee osteoarthritis: a comprehensive meta-analysis. Arch Intern Med 2003; 163(13): 1514–22PubMedCrossRefGoogle Scholar
  48. 48.
    McAlindon TE, LaValley MP, Gulin JP, et al. Glucosamine and chondroitin for treatment of osteoarthritis: a systematic quality assessment and meta-analysis. JAMA 2000; 283(11): 1469–75PubMedCrossRefGoogle Scholar
  49. 49.
    Dougados M, Nguyen M, Berdah L, et al. Evaluation of the structure-modifying effects of diacerein in hip osteoarthritis: ECHODIAH, a three-year, placebo-controlled trial: evaluation of the chondromodulating effect of diacerein in OA of the hip. Arthritis Rheum 2001; 44(11): 2539–47PubMedCrossRefGoogle Scholar
  50. 50.
    Pelletier JP, Yaron M, Haraoui B, et al. Efficacy and safety of diacerein in osteoarthritis of the knee: a double-blind, placebo-controlled trial. The Diacerein Study Group. Arthritis Rheum 2000; 43(10): 2339–48PubMedCrossRefGoogle Scholar
  51. 51.
    Das SK, Ramakrishnan S, Mishra K, et al. A randomized controlled trial to evaluate the slow-acting symptom-modifying effects of colchicine in osteoarthritis of the knee: a preliminary report. Arthritis Rheum 2002; 47(3): 280–4PubMedCrossRefGoogle Scholar
  52. 52.
    Nevitt MC, Felson DT, Williams EN, et al. The effect of estrogen plus progestin on knee symptoms and related disability in postmenopausal women: The Heart and Estrogen/Progestin Replacement Study, a randomized, double-blind, placebo-controlled trial. Arthritis Rheum 2001; 44(4): 811–8PubMedCrossRefGoogle Scholar
  53. 53.
    Bliddal H, Rosetzsky A, Schlichting P, et al. A randomized, placebo-controlled, cross-over study of ginger extracts and ibuprofen in osteoarthritis. Osteoarthritis Cartilage 2000; 8(1): 9–12PubMedCrossRefGoogle Scholar
  54. 54.
    Mazzuca S. Effect of doxycycline on OA progression [online]. Available from URL: http://www.clinicaltrial.gov [2005 Jan 19]
  55. 55.
    Spector TD, Conaghan P, Buckland-Wright JC, et al. Risedronate produces disease modification and symptomatic benefit in the treatment of knee osteoarthritis: results from the BRISK Study [abstract SLB20]. 67th Annual Scientific Meeting of American College of Rheumatology; 2003 Oct 23–28; OrlandoGoogle Scholar
  56. 56.
    Caldwell JR, Offenberg HL, Ramanathan-Girish S, et al. A safety, tolerability and pharmaco-kinetic study of intra-articular recombinant human insulin-like growth factor 1 (rhIGF-1) in patients with severe osteoarthritis of the knee. Arthritis Rheum 2000; 43: s223–941Google Scholar
  57. 57.
    Goupille P, Giraubeau B, Conrozier T, et al. Safety and efficacy of intra-articular injection of IL-1ra (IL-1 receptor antagonist) in patients with painful osteoarthritis of the knee: a multicenter, double blind study [abstract 1822]. Arthritis Rheum 2003; 48 (suppl): S696Google Scholar
  58. 58.
    Bradley JD, Brandt KD, Katz BP, et al. Comparison of an antiinflammatory dose of ibuprofen, an analgesic dose of ibuprofen, and acetaminophen in the treatment of patients with osteoarthritis of the knee. N Engl J Med 1991; 325(2): 87–91PubMedCrossRefGoogle Scholar
  59. 59.
    Bradley JD, Brandt KD, Katz BP, et al. Treatment of knee osteoarthritis: relationship of clinical features of joint inflammation to the response to a nonsteroidal antiinflammatory drug or pure analgesic. J Rheumatol 1992; 19(12): 1950–4PubMedGoogle Scholar
  60. 60.
    Amadio Jr P. Peripherally acting analgesics. Am J Med 1984; 77(3A): 17–26PubMedGoogle Scholar
  61. 61.
    Altman R, Howell DS. Disease modifying osteoarthritis drugs. In: LL Brandt K, editor. Osteoarthritis. Oxford: Oxford University Press, 1998: 417–428Google Scholar
  62. 62.
    Wolfe F, Zhao S, Lane N. Preference for nonsteroidal antiinflammatory drugs over acetaminophen by rheumatic disease patients: a survey of 1799 patients with osteoarthritis, rheumatoid arthritis, and fibromyalgia. Arthritis Rheum 2000; 43(2): 378–85PubMedCrossRefGoogle Scholar
  63. 63.
    Towheed TE. Hochberg MC. A systematic review of randomized controlled trials of pharmacological therapy in osteoarthritis of the hip. Journal of Rheumatology 1997; 24(2): 349–57PubMedGoogle Scholar
  64. 64.
    Tramer MR, Moore RA, Reynolds DJ, et al. Quantitative systematic review of topically applied non-steroidal anti-inflammatory drugs. BMJ 1998; 316(7128): 333–8PubMedCrossRefGoogle Scholar
  65. 65.
    Scheiman JM. Outcomes studies of the gastrointestinal safety of cyclooxygenase-2 inhibitors. Cleve Clin J Med 2002; 69Suppl. 1: SI40–6PubMedCrossRefGoogle Scholar
  66. 66.
    McKenna F, Borenstein D, Wendt H, et al. Celecoxib versus diclofenac in the management of osteoarthritis of the knee. Scand J Rheumatol 2001; 30(1): 11–8PubMedCrossRefGoogle Scholar
  67. 67.
    Fitzgerald G. Coxibs and cardiovascular disease. New Engl J Med 2004; 351(17): 1710–1CrossRefGoogle Scholar
  68. 68.
    Menkes CJ. Intraarticular treatment of osteoarthritis and guidelines to its assessment. J Rheumatol Suppl 1994; 41: 74–6PubMedGoogle Scholar
  69. 69.
    Creamer P. Intra-articular corticosteroid treatment in osteoarthritis. Curr Opin Rheumatol 1999; 11(5): 417–21PubMedCrossRefGoogle Scholar
  70. 70.
    Wilder R. Corticosteroids. In: Klippel J, editor. Primer on the rheumatic diseases. Atlanta (GA): The Arthritis Foundation, 1997: 427–431Google Scholar
  71. 71.
    DiBattista JA, Martel-Pelletier, Wosu LO, et al. Glucocorticoid receptor mediated inhibition of interleukin-1 stimulated neutral metalloprotease synthesis in normal human chondrocytes. J Clin Endocrinol Metab 1991; 72(2): 316–26PubMedCrossRefGoogle Scholar
  72. 72.
    Gaffney K, Ledingham J, Perry JD. Intra-articular triamcinolone hexacetonide in knee osteoarthritis: factors influencing the clinical response. Ann Rheum Dis 1995; 54(5): 379–81PubMedCrossRefGoogle Scholar
  73. 73.
    Jones A, Regan M, Ledingham J, et al. Importance of placement of intra-articular steroid injections. BMJ 1993; 307(6915): 1329–30PubMedCrossRefGoogle Scholar
  74. 74.
    Balch HW, Gibson JM, El-Ghobarey AF, et al. Repeated corticosteroid injections into knee joints. Rheumatol Rehabil 1977; 16(3): 137–40PubMedCrossRefGoogle Scholar
  75. 75.
    Dieppe P, Sathapatayavongs B, Jones HE, et al. Intra-articular steroids in osteoarthritis. Rheumatol Rehabil 1980; 19(4): 212–7PubMedCrossRefGoogle Scholar
  76. 76.
    Brandt KD, Smith Jr GN, Simon LS. Intraarticular injection of hyaluronan as treatment for knee osteoarthritis: what is the evidence? Arthritis Rheum 2000; 43(6): 1192–203PubMedCrossRefGoogle Scholar
  77. 77.
    Kirwan JR, Rankin E. Intra-articular therapy in osteoarthritis. Baillieres Clin Rheumatol 1997; 11(4): 769–94PubMedCrossRefGoogle Scholar
  78. 78.
    Peyron JG. A new approach to the treatment of osteoarthritis: viscosupplementation. Osteoarthritis Cartilage 1993; 1(2): 85–7PubMedCrossRefGoogle Scholar
  79. 79.
    Dougados M, Nguyen M, Listrat V, et al. High molecular weight sodium hyaluronate (hyalectin) in osteoarthritis of the knee: a 1 year placebo-controlled trial. Osteoarthritis Cartilage 1993; 1(2): 97–103PubMedCrossRefGoogle Scholar
  80. 80.
    Leardini G, Mattara L, Franceschini M, et al. Intra-articular treatment of knee osteoarthritis: a comparative study between hyaluronic acid and 6-methyl prednisolone acetate. Clin Exp Rheumatol 1991; 9(4): 375–81PubMedGoogle Scholar
  81. 81.
    Jones AC, Pattrick M, Doherty S, et al. Intra-articular hyaluronic acid compared to intra-articular triamcinolone hexacetonide in inflammatory knee osteoarthritis. Osteoarthritis Cartilage 1995; 3(4): 269–73PubMedCrossRefGoogle Scholar
  82. 82.
    Maheu E. Hyaluronan in knee osteoarthritis: a review of the clinical trials with Hyalgan. Eur J Rheumatol Inflamm 1995; 15: 17–24Google Scholar
  83. 83.
    Raynauld JP, Torrance GW, Band PA, et al. A prospective, randomized, pragmatic, health outcomes trial evaluating the incorporation of hylan G-F 20 into the treatment paradigm for patients with knee osteoarthritis (Part 1 of 2): clinical results. Osteoarthritis Cartilage 2002; 10(7): 506–17PubMedCrossRefGoogle Scholar
  84. 84.
    Felson DT. Hyaluronate sodium injections for osteoarthritis: hope, hype, and hard truths. Arch Intern Med 2002; 162: 245–7PubMedCrossRefGoogle Scholar
  85. 85.
    Puhl W, Bernau A, Greiling H, et al. Intra-articular sodium hyaluronate in osteoarthritis of the knee: a multicenter double blind study. Osteoarthritis Cartilage 1993; 1(4): 233–41PubMedCrossRefGoogle Scholar
  86. 86.
    Lohmander LS, Dalen N, Englund G, et al. Intra-articular hyaluronan injections in the treatment of osteoarthritis of the knee: a randomised, double blind, placebo controlled multicentre trial. Hyaluronan Multicentre Trial Group. Ann Rheum Dis 1996; 55(7): 424–31PubMedCrossRefGoogle Scholar
  87. 87.
    Deal CL, Moskowitz RW. Nutraceuticals as therapeutic agents in osteoarthritis: the role of glucosamine, chondroitin sulfate, and collagen hydrolysate. Rheum Dis Clin North Am 1999; 25(2): 379–95PubMedCrossRefGoogle Scholar
  88. 88.
    Johnson KA, Hulse DA, Hart RC, et al. Effects of an orally administered mixture of chondroitin sulfate, glucosamine hydrochloride and manganese ascorbate on synovial fluid chondroitin sulfate 3B3 and 7D4 epitope in a canine cruciate ligament transection model of osteoarthritis. Osteoarthritis Cartilage 2001; 9(1): 14–21PubMedCrossRefGoogle Scholar
  89. 89.
    Cordoba F, Nimni ME. Chondroitin sulfate and other sulfate containing chondroprotective agents may exhibit their effects by overcoming a deficiency of sulfur amino acids. Osteoarthritis Cartilage 2003; 11(3): 228–30PubMedCrossRefGoogle Scholar
  90. 90.
    Mauviel A, Loyau G, Pujol JP, et al. Effects of unsaponifiable extracts of avocado/soy beans (PIAS) on the production of collagen by cultures of synoviocytes, articular chondrocytes and skin fibroblasts [in French]. Rev Rhum Mal Osteoartic 1989; 56(2): 207–11PubMedGoogle Scholar
  91. 91.
    Molist A, Romaris M, Lindahl U, et al. Changes in glycosami-noglycan structure and composition of the main heparan sulphate proteoglycan from human colon carcinoma cells (perlecan) during cell differentiation. Eur J Biochem 1998; 254(2): 371–7PubMedCrossRefGoogle Scholar
  92. 92.
    Adebowale AO, Cox DS, Liang Z, et al. Analysis of glucosamine and chondroitin sulfate content in marked products and the caco-2 permeability of chondroitin sulfate raw materials. J Am Nutraceutical Assoc (JANA) 2000; 3: 37–44Google Scholar
  93. 93.
    Rindone JP, Hiller D, Collacott E, et al. Randomized, controlled trial of glucosamine for treating osteoarthritis of the knee. West J Med 2000; 172(2): 91–4PubMedCrossRefGoogle Scholar
  94. 94.
    Florent F, Richy Y, Bruyere O, et al. Structural and symptomatic efficacy of glucosamine and chondroitin sulfate in osteoarthritis: a comprehensive meta-analysis. Washington, DC: ACR, 2003Google Scholar
  95. 95.
    NIH studying dietary supplements for arthritis. Mayo Clin Health Lett 2000; 18(8): 4Google Scholar
  96. 96.
    Henrotin YE, Sanchez C, Deberg MA, et al. Avocado/soybean unsaponifiables increase aggrecan synthesis and reduce catabolic and proinflammatory mediator production by human osteoarthritic chondrocytes. J Rheumatol 2003; 30(8): 1825–34PubMedGoogle Scholar
  97. 97.
    Ernst E. Avocado-soybean unsaponifiables (ASU) for osteoarthritis: a systematic review. Clin Rheumatol 2003; 22(4–5): 285–8PubMedCrossRefGoogle Scholar
  98. 98.
    Mycek M, Harvey R, Champe P. Pharmacology. 2nd ed. In: Harvey CP, editor. Lippincott’s illustrated reviews. New York: Lippincott, 2000Google Scholar
  99. 99.
    Katiyar SK, Mukhtar H. Tea consumption and cancer. World Rev Nutr Diet 1996; 79: 154–84PubMedGoogle Scholar
  100. 100.
    Haqqi TM, Anthony DD, Gupta S, et al. Prevention of collagen-induced arthritis in mice by a polyphenolic fraction from green tea. Proc Natl Acad Sci U S A 1999; 96(8): 4524–9PubMedCrossRefGoogle Scholar
  101. 101.
    Singh R, Ahmed S, Islam N, et al. Epigallocatechin-3-gallate inhibits interleukin-1beta-induced expression of nitric oxide synthase and production of nitric oxide in human chondrocytes: suppression of nuclear factor kappaB activation by degradation of the inhibitor of nuclear factor kappaB. Arthritis Rheum 2002; 46(8): 2079–86PubMedCrossRefGoogle Scholar
  102. 102.
    Adcocks C, Collin P, Buttle DJ. Catechins from green tea (Camellia sinensis) inhibit bovine and human cartilage proteoglycan and type II collagen degradation in vitro. J Nutr 2002; 132(3): 341–6PubMedGoogle Scholar
  103. 103.
    Awang D. Ginger. Can Pharm J 1992; 3: 309–11Google Scholar
  104. 104.
    Schulick P. Ginger, common spice and wonder drug. 3rd ed. Brattleboro (VT): Herbal Free Press Ltd, 1996Google Scholar
  105. 105.
    Kiuchi F, Iwakami S, Shibuya M, et al. Inhibition of prostaglandin and leukotriene biosynthesis by gingerols and diarylheptanoids. Chem Pharm Bull (Tokyo) 1992; 40(2): 387–91CrossRefGoogle Scholar
  106. 106.
    Altman RD, Marcussen KC. Effects of a ginger extract on knee pain in patients with osteoarthritis. Arthritis Rheum 2001; 44(11): 2531–8PubMedCrossRefGoogle Scholar
  107. 107.
    Fleisch H. Bisphosphonates: mechanisms of action. Endocr Rev 1998; 19(1): 80–100PubMedCrossRefGoogle Scholar
  108. 108.
    Fleisch H, Russell RGG, Bisaz S, et al. The influence of pyrophosphate analogues (diphosphonates) on the precipitation and dissolution of calcium phosphate in vitro and in vivo [abstract]. Calcif Tissue Res 1968; 2: 10ACrossRefGoogle Scholar
  109. 109.
    Spector TD. Bisphosphonates: potential therapeutic agents for disease modification in osteoarthritis. Aging Clin Exp Res 2003; 15(5): 413–8PubMedGoogle Scholar
  110. 110.
    Balena R, Toolan BC, Shea M, et al. The effects of 2-year treatment with the aminobisphosphonate alendronate on bone metabolism, bone histomorphometry, and bone strength in ovariectomized nonhuman primates. J Clin Invest 1993; 92(6): 2577–86PubMedCrossRefGoogle Scholar
  111. 111.
    Garnero P, Shih WJ, Gineyts E, et al. Comparison of new biochemical markers of bone turnover in late postmenopausal osteoporotic women in response to alendronate treatment. J Clin Endocrinol Metab 1994; 79(6): 1693–700PubMedCrossRefGoogle Scholar
  112. 112.
    Felson DT, Chaisson CE, Hill CL, et al. The association of bone marrow lesions with pain in knee osteoarthritis. Ann Intern Med 2001; 134(7): 541–9PubMedGoogle Scholar
  113. 113.
    Zhang Y, Hannan MT, Chaisson CE, et al. Bone mineral density and risk of incident and progressive radiographic knee osteoarthritis in women: the Framingham Study. J Rheumatol 2000; 27(4): 1032–7PubMedGoogle Scholar
  114. 114.
    Grimes DA, Lobo RA. Perspectives on the Women’s Health Initiative trial of hormone replacement therapy. Obstet Gynecol 2002; 100(6): 1344–53PubMedCrossRefGoogle Scholar
  115. 115.
    Beary III JF. Joint structure modification in osteoarthritis: development of SMOAD drugs. Curr Rheumatol Rep 2001; 3(6): 506–12PubMedCrossRefGoogle Scholar
  116. 116.
    Murphy G, Knauper V, Atkinson S, et al. Matrix metal-loproteinases in arthritic disease. Arthritis Res 2002; 4Suppl. 3: S39–49PubMedCrossRefGoogle Scholar
  117. 117.
    Borden P, Heller RA. Transcriptional control of matrix metal-loproteinases and the tissue inhibitors of matrix metal-loproteinases. Crit Rev Eukaryot Gene Expr 1997; 7(1–2): 159–78PubMedCrossRefGoogle Scholar
  118. 118.
    Vincenti MP, Clark IM, Brinckerhoff CE. Using inhibitors of metalloproteinases to treat arthritis: easier said than done? Arthritis Rheum 1994; 37(8): 1115–26PubMedCrossRefGoogle Scholar
  119. 119.
    Greenwald RA. Treatment of destructive arthritic disorders with MMP inhibitors: potential role of tetracyclines. Ann N Y Acad Sci 1994; 732: 181–98PubMedCrossRefGoogle Scholar
  120. 120.
    Yu Jr LP, Smith Jr GN, Brandt KD, et al. Reduction of the severity of canine osteoarthritis by prophylactic treatment with oral doxycycline. Arthritis Rheum 1992; 35(10): 1150–9PubMedCrossRefGoogle Scholar
  121. 121.
    Brandt KD. Modification by oral doxycycline administration of articular cartilage breakdown in osteoarthritis. J Rheumatol Suppl 1995; 43: 149–51PubMedGoogle Scholar
  122. 122.
    Caron JP, Fernandes JC, Martel-Pelletier J, et al. Chondroprotective effect of intraarticular injections of interleukin-1 receptor antagonist in experimental osteoarthritis: suppression of collagenase-1 expression. Arthritis Rheum 1996; 39(9): 1535–44PubMedCrossRefGoogle Scholar
  123. 123.
    van de Loo AA, Arntz OJ, Bakker AC, et al. Role of interleukin 1 in antigen-induced exacerbations of murine arthritis. Am J Pathol 1995; 146(1): 239–49PubMedGoogle Scholar
  124. 124.
    Saha N, Moldovan F, Tardif G, et al. Interleukin-1beta-converting enzyme/caspase-1 in human osteoarthritic tissues: localization and role in the maturation of interleukin-1beta and interleukin-18. Arthritis Rheum 1999; 42(8): 1577–87PubMedCrossRefGoogle Scholar
  125. 125.
    Rudolphi K, Gerwin N, Verzijl N, et al. Pralnacasan, an inhibitor of interleukin-1beta converting enzyme, reduces joint damage in two murine models of osteoarthritis. Osteoarthritis Cartilage 2003 Oct; 11(10): 738–46PubMedCrossRefGoogle Scholar
  126. 126.
    Amin AR, Abramson SB. The role of nitric oxide in articular cartilage breakdown in osteoarthritis. Curr Opin Rheumatol 1998; 10(3): 263–8PubMedCrossRefGoogle Scholar
  127. 127.
    Hirai Y, Migita K, Honda S, et al. Effects of nitric oxide on matrix metalloproteinase-2 production by rheumatoid synovial cells. Life Sci 2001; 68(8): 913–20PubMedCrossRefGoogle Scholar
  128. 128.
    Clancy RM, Abramson SB, Kohne C, et al. Nitric oxide attenuates cellular hexose monophosphate shunt response to oxidants in articular chondrocytes and acts to promote oxidant injury. J Cell Physiol 1997; 172(2): 183–91PubMedCrossRefGoogle Scholar
  129. 129.
    Pelletier JP, Jovanovic DV, Lascau-Coman V, et al. Selective inhibition of inducible nitric oxide synthase in experimental osteoarthritis is associated with reduction in tissue levels of catabolic factors. J Rheumatol 1999; 26(9): 2002–14PubMedGoogle Scholar
  130. 130.
    Pelletier JP, Jovanovic D, Fernandes JC, et al. Reduced progression of experimental osteoarthritis in vivo by selective inhibition of inducible nitric oxide synthase. Arthritis Rheum 1998; 41(7): 1275–86PubMedCrossRefGoogle Scholar
  131. 131.
    van den Berg WB, van de Loo F, Joosten LA, et al. Animal models of arthritis in NOS2-deficient mice. Osteoarthritis Cartilage 1999; 7(4): 413–5PubMedCrossRefGoogle Scholar
  132. 132.
    Evans CH. Gene therapies for osteoarthritis. Curr Rheumatol Rep 2004; 6(1): 31–40PubMedCrossRefGoogle Scholar
  133. 133.
    Bandara GM, Mueller GM, Galea-Lauri J, et al. Intraarticular expression of biologically active interleukin 1-receptor-antagonist protein by ex vivo gene transfer. Proc Natl Acad Sci U S A 1993; 90(22): 10764–8PubMedCrossRefGoogle Scholar
  134. 134.
    Mi Z, Ghivizzani SC, Lechman ER, et al. Adenovirus-mediated gene transfer of insulin-like growth factor 1 stimulates proteoglycan synthesis in rabbit joints. Arthritis Rheum 2000; 43(11): 2563–70PubMedCrossRefGoogle Scholar
  135. 135.
    Kang R, Marui T, Ghivizzani SC, et al. Ex vivo gene transfer to chondrocytes in full-thickness articular cartilage defects: a feasibility study. Osteoarthritis Cartilage 1997; 5(2): 139–43PubMedCrossRefGoogle Scholar
  136. 136.
    Evans CH, Ghivizzani SC, Herndon JH, et al. Clinical trials in the gene therapy of arthritis. Clin Orthop 2000; (379 Suppl.): S300–7Google Scholar

Copyright information

© Adis Data Information BV 2005

Authors and Affiliations

  • Marc Fajardo
    • 1
  • Paul E. Di Cesare
    • 1
  1. 1.Musculoskeletal Research CenterNYU-Hospital for Joint Diseases Department of Orthopaedic SurgeryNew YorkUSA
  2. 2.Musculoskeletal Research CenterHospital for Joint DiseasesNew YorkUSA

Personalised recommendations