Drug Safety

, Volume 28, Issue 2, pp 153–181 | Cite as

Benefit-Risk Assessment of Sirolimus in Renal Transplantation

Review Article

Abstract

Sirolimus (rapamycin) is a macrocyclic lactone isolated from a strain of Streptomyces hygroscopicus that inhibits the mammalian target of rapamycin (mTOR)-mediated signal-transduction pathways, resulting in the arrest of cell cycle of various cell types, including T- and B-lymphocytes. Sirolimus has been demonstrated to prolong graft survival in various animal models of transplantation, ranging from rodents to primates for both heterotopic, as well as orthotopic organ grafting, bone marrow transplantation and islet cell grafting.

In human clinical renal transplantation, sirolimus in combination with ciclosporin (cyclosporine) efficiently reduces the incidence of acute allograft rejection. Because of the synergistic effect of sirolimus on ciclosporin-induced nephrotoxicity, a prolonged combination of the two drugs inevitably leads to progressive irreversible renal allograft damage. Early elimination of calcineurin inhibitor therapy or complete avoidance of the latter by using sirolimus therapy is the optimal strategy for this drug. Prospective randomised phase II and III clinical studies have confirmed this approach, at least for recipients with a low to moderate immunological risk. For patients with a high immunological risk or recipients exposed to delayed graft function, sirolimus might not constitute the best therapeutic choice — despite its ability to enable calcineurin inhibitor sparing in the latter situation — because of its anti-proliferative effects on recovering renal tubular cells. Whether lower doses of sirolimus or a combination with a reduced dose of tacrolimus would be advantageous in these high risk situations remains to be determined.

Clinically relevant adverse effects of sirolimus that require a specific therapeutic response or can potentially influence short- and long-term patient morbidity and mortality as well as graft survival include hypercholesterolaemia, hypertriglyceridaemia, infectious and non-infectious pneumonia, anaemia, lymphocele formation and impaired wound healing. These drug-related adverse effects are important determinants in the choice of a tailor-made immunosuppressive drug regimen that complies with the individual patient risk profile. Equally important in the latter decision is the lack of severe intrinsic nephrotoxicity associated with sirolimus and its advantageous effects on arterial hypertension, post-transplantation diabetes mellitus and esthetic changes induced by calcineurin inhibitors. Mild and transient thrombocytopenia, leukopenia, gastrointestinal adverse effects and mucosal ulcerations are all minor complications of sirolimus therapy that have less impact on the decision for choosing this drug as the basis for tailor-made immunosuppressive therapy.

It is clear that sirolimus has gained a proper place in the present-day immunosuppressive armament used in renal transplantation and will contribute to the development of a tailor-made immunosuppressive therapy aimed at fulfilling the requirements outlined by the individual patient profile.

Notes

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The author has no conflicts of interest that are directly relevant to the content of this review.

References

  1. 1.
    Sehgal SN. Sirolimus: its discovery, biological properties, and mechanism of action. Transplant Proc 2003; 35 Suppl. 3A: 7S–14SCrossRefGoogle Scholar
  2. 2.
    Kirken RA, Wang YL. Molecular actions of sirolimus: sirolimus and mTOR. Transplant Proc 2003; 35Suppl. 3A: 227S–30SPubMedCrossRefGoogle Scholar
  3. 3.
    Dumont FJ, Qingxiang S. Mechanism of action of the immunosuppressant rapamycin. Life Sci 1996; 58(5): 373–95PubMedCrossRefGoogle Scholar
  4. 4.
    Stepkowski SM. Preclinical results of sirolimus treatment in transplant models. Transplant Proc 2003; 35Suppl. 3A: 219S–26SPubMedCrossRefGoogle Scholar
  5. 5.
    Moon JI, Kim YS, Kim EH. Effect of cyclosporine, mycophenolic acid, and rapamycin on the proliferation of rat aortic vascular smooth muscle cells: in vitro study. Transplant Proc 2000; 32: 2026–7PubMedCrossRefGoogle Scholar
  6. 6.
    Marks AR. Rapamycin: signaling in vascular smooth muscle. Transplant Proc 2003; 35Suppl. 3A: 231S–3SPubMedCrossRefGoogle Scholar
  7. 7.
    Gregory C, Huie P, Billingham ME, et al. Rapamycin inhibits arterial intimal thickening caused by both alloimmune and mechanical injury. Transplantation 1993; 55(6): 1409–18PubMedCrossRefGoogle Scholar
  8. 8.
    Moses JW, Leon MB, Popma JJ, et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med 2003; 349(14): 1315–25PubMedCrossRefGoogle Scholar
  9. 9.
    Lemos PA, Saia F, Hofma SH, et al. Short- and long-term clinical benefit of sirolimus-eluting stents compared to conventional bare stents for patients with acute myocardial infarction. J Am Coll Cardiol 2004; 43(4): 704–8PubMedCrossRefGoogle Scholar
  10. 10.
    Luan FL, Ding R, Sharma VK, et al. Rapamycin is an effective inhibitor of human renal cancer metastasis. Kidney Int 2003; 63: 917–26PubMedCrossRefGoogle Scholar
  11. 11.
    Majewski M, Korecka M, Joergensen J, et al. Immunosuppressive TOR kinase inhibitor everolimus (RAD) supresses growth of cells derived from posttransplant lymphoproliferative disorder at allograft-protecting doses. Transplantation 2003; 75(10): 1710–7PubMedCrossRefGoogle Scholar
  12. 12.
    MacDonald A, Scarola J, Burke JT, et al. Clinical pharmacokinetics and therapeutic drug monitoring of sirolimus. Clin Ther 2000; 22Suppl. B: B101–20PubMedCrossRefGoogle Scholar
  13. 13.
    Mahalati K, Kahan BD. Clinical pharmacokinetics of sirolimus. Clin Pharmacokinet 2001; 40(8): 573–85PubMedCrossRefGoogle Scholar
  14. 14.
    Holt DW, Denny K, Lee D, et al. Therapeutic monitoring of sirolimus: its contribution to optimal prescription. Transplant Proc 2003; 35Suppl. 3A: 157S–61SPubMedCrossRefGoogle Scholar
  15. 15.
    Aspeslet LJ, Yatscoff RW. Requirements for therapeutic drug monitoring of sirolimus, an immunosuppressive agent used in renal transplantation. Clin Ther 2000; 22Suppl. B: B86–92PubMedCrossRefGoogle Scholar
  16. 16.
    Podder H, Stepkowski SM, Napoli KL, et al. Pharmacokinetic interactions augment toxicities of sirolimus/cyclosporine combinations. J Am Soc Nephrol 2001; 12: 1059–71PubMedGoogle Scholar
  17. 17.
    Kreis H, Cisterne JM, Land W, et al. Sirolimus in association with mycophenolate mofetil induction for the prevention of acute graft rejection in renal allograft recipients. Transplantation 2000; 69: 1252–60PubMedCrossRefGoogle Scholar
  18. 18.
    Kuypers DRJ, Claes K, Evenepoel P, et al. Long-term pharmacokinetic study of the novel combination of tacrolimus and sirolimus in de novo renal allograft recipients. Ther Drug Monit 2003; 25(4): 447–51PubMedCrossRefGoogle Scholar
  19. 19.
    Meier-Kriesche HU, Kaplan B. Toxicity and efficacy of sirolimus: relationship to whole-blood concentrations. Clin Ther 2000; 22Suppl. B: B93–B100PubMedCrossRefGoogle Scholar
  20. 20.
    Kahan BD, Napoli KL, Kelly PA, et al. Therapeutic drug monitoring of sirolimus: correlations with efficacy and toxicity. Clin Transplant 2000; 14: 97–109PubMedCrossRefGoogle Scholar
  21. 21.
    Groth CG, Backman L, Morales JM, et al. Sirolimus (rapamycin): based therapy in human renal transplantation. Transplantation 1999; 67: 1036–42PubMedCrossRefGoogle Scholar
  22. 22.
    Flechner SM, Goldfarb D, Modlin C, et al. Kidney transplantation without calcineurin inhibitor drugs: a prospective, randomised trial of sirolimus versus cyclosporine. Transplantation 2002; 74(8): 1070–6PubMedCrossRefGoogle Scholar
  23. 23.
    Oberbauer R, Kreis H, Johnson R, et al. Long-term improvement in renal function with sirolimus after early cyclosporine withdrawal in renal transplant recipients: 2-year results of the rapamune maintenance regimen study. Transplantation 2003; 76(2): 364–70PubMedCrossRefGoogle Scholar
  24. 24.
    McAlister VC, Mahalati K, Peltekian KM, et al. A clinical pharmacokinetic study of tacrolimus and sirolimus combination immunosuppression comparing simultaneous to separated administration. Ther Drug Monit 2002; 24: 346–50PubMedCrossRefGoogle Scholar
  25. 25.
    Kahan BD. Efficacy of sirolimus compare with azathioprine for reduction of acute renal allograft rejection: a randomised multicentre study. The Rapamune US Study Group. Lancet 2000; 356: 194–202PubMedCrossRefGoogle Scholar
  26. 26.
    Solez K, Axelsen RA, Benediktsson H, et al. International standardization of criteria for the histologic diagnosis of renal allograft rejection: the Banff working classification of kidney transplantation. Kidney Int 1993; 44(2): 411–22PubMedCrossRefGoogle Scholar
  27. 27.
    MacDonald AS, RAPAMUNE Global Study Group. A worldwide, phase III, randomised, controlled, safety and efficacy study of a sirolimus/cyclosporine regimen for prevention of acute rejection in recipients of primary mismatched renal allografts. Transplantation 2001; 71(2): 271–80PubMedCrossRefGoogle Scholar
  28. 28.
    Kahan BD, Julian BA, Pescovitz MD, et al. Sirolimus reduces the incidence of acute rejection episodes despite lower cyclosporine doses in caucasian recipients of mismatched primary renal allografts: a phase II trial. Transplantation 1999; 68(10): 1526–32PubMedCrossRefGoogle Scholar
  29. 29.
    Podder H, Podbielski J, Hussein I, et al. Sirolimus improves the two-year outcome of renal allografts in African-American patients. Transpl Int 2001; 14: 135–42PubMedCrossRefGoogle Scholar
  30. 30.
    Zimmerman JJ, Kahan BD. Pharmacokinetics of sirolimus in stable renal transplant patients after multiple oral dose administration. J Clin Pharmacol 1997; 37: 405–15PubMedGoogle Scholar
  31. 31.
    Kovarik JM, Hsu CH, McMahon L, et al. Population pharmacokinetics of everolimus in de novo renal transplant patients: impact of ethnicity and comedications. Clin Pharmacol Ther 2001; 70: 247–54PubMedCrossRefGoogle Scholar
  32. 32.
    Stepkowski SM, Napoli KL, Wang ME, et al. Effects of the pharmacokinetic interaction between orally administered sirolimus and cyclosporine on the synergistic prolongation of heart allograft survival in rats. Transplantation 1996; 62(7): 986–94PubMedCrossRefGoogle Scholar
  33. 33.
    Shihab FS, Bennett WM, Yi H, et al. Sirolimus increases transforming growth factor-p1 expression and potentiates chronic cyclosporine nephrotoxicity. Kidney Int 2004; 65: 1262–71PubMedCrossRefGoogle Scholar
  34. 34.
    Andoh TF, Lindsley J, Franceschini N, et al. Synergistic effects of cyclosporine and rapamycin in a chronic nephrotoxicity model. Transplantation 1996; 62(3): 311–6PubMedCrossRefGoogle Scholar
  35. 35.
    Formica Jr RN, Lorber KM, Friedman AL, et al. Sirolimus-based immunosuppression with reduce dose cyclosporine or tacrolimus after renal transplantation. Transplant Proc 2003; 35Suppl. 3A: 95S–8SPubMedCrossRefGoogle Scholar
  36. 36.
    Wiseman AC, Kam I, Christians U, et al. Fixed-dose sirolimus with reduced dose calcineurin inhibitor: the University of Colorado experience. Transplant Proc 2003; 35Suppl. 3A: 122S–4SPubMedCrossRefGoogle Scholar
  37. 37.
    Hong JC, Kahan BD. Use of anti-CD25 monoclonal antibody in combination with rapamycin to eliminate cyclosporine treatment during the induction phase of immunosuppression. Transplantation 1999; 68(5): 701–4PubMedCrossRefGoogle Scholar
  38. 38.
    Langer RM, Hong DM, Katz SM, et al. Basiliximab-sirolimusprednisone induction regimen followed by delayed low-dose cyclosporine in renal transplant recipients of living donors. Transplant Proc 2002; 34: 3162–4PubMedCrossRefGoogle Scholar
  39. 39.
    Kuypers DR, Chapman JR, O’Connell PJ, et al. Predictors of renal transplant histology at three months. Transplantation 1999; 67(9): 1222–30PubMedCrossRefGoogle Scholar
  40. 40.
    Kreis H, Oberbauer R, Campistol JM, et al. Long-term benefits with sirolimus-based therapy after early cyclosporine withdrawal. J Am Soc Nephrol 2004; 15: 809–17PubMedCrossRefGoogle Scholar
  41. 41.
    Gonwa TA, Hricik DE, Brinker K, et al. Improved renal function in sirolimus-treated renal transplant patients after early cyclosporine elimination. Transplantation 2002; 74(11): 1560–7PubMedCrossRefGoogle Scholar
  42. 42.
    Baboolal K. A phase III prospective, randomised study to evaluate concentration-controlled sirolimus (rapamune) with cyclosporine dose minimization or elimination at six months in de novo renal allograft recipients. Transplantation 2003; 75(8): 1404–8PubMedCrossRefGoogle Scholar
  43. 43.
    Johnson RW, Kreis H, Oberbauer R, et al. Sirolimus allows early cyclosporine withdrawal in renal transplantation resulting in improved renal function and lower blood pressure. Transplantation 2001; 72(5): 777–86PubMedCrossRefGoogle Scholar
  44. 44.
    Mota A, Arias M, Taskinen E, et al. Sirolimus-based therapy following early cyclosporine withdrawal provides significantly improved renal histology and function at 3 years. Am J Transplant 2004; 4(6): 953–61PubMedCrossRefGoogle Scholar
  45. 45.
    Yilmaz S, Tomlanovich S, Matthew T, et al. Protocol core needle biopsy and histologic chronic allograft damage index (CADI) as surrogate end point for long-term graft survival in multicenter studies. J Am Soc Nephrol 2003; 14: 773–9PubMedCrossRefGoogle Scholar
  46. 46.
    Nankivell BJ, Fenton-Lee CA, Kuypers DR, et al. Effect of histological damage on long-term kidney transplant outcome. Transplantation 2001; 71(4): 515–23PubMedCrossRefGoogle Scholar
  47. 47.
    Morales JM, Wramner L, Kreis H, et al. Sirolimus does not exhibit nephrotoxicity compared to cyclosporine in renal transplant recipients. Am J Transplant 2002; 2: 436–42PubMedCrossRefGoogle Scholar
  48. 48.
    Stegall MD, Larson TS, Prieto M, et al. Kidney transplantation without calcineurin inhibitors using sirolimus. Transplant Proc 2003; 35Suppl. 3A: 125S–7SPubMedCrossRefGoogle Scholar
  49. 49.
    Shaffer D, Langone A, Nylander WA, et al. A pilot protocol of a calcineurin inhibitor free regimen for kidney transplant recipients of marginal donor kidneys or with delayed graft function. Clin Transplant 2003; 17Suppl. 9: 31–4PubMedCrossRefGoogle Scholar
  50. 50.
    Chang GJ, Mahanty HD, Vincenti F, et al. A calcineurin inhibitor-sparing regimen with sirolimus, mycophenolate mofetil, and anti-CD25 mAb provides effective immunosuppression in kidney transplant recipients with delayed or impaired graft function. Clin Transplant 2000; 14: 550–4PubMedCrossRefGoogle Scholar
  51. 51.
    Flechner S, Kurian SM, Solez K, et al. De novo kidney transplantation without use of calcineurin inhibitors preserves renal structure and function at two years. Am J Transplant 2004; 4: 1776–85PubMedCrossRefGoogle Scholar
  52. 52.
    Kahan BD, Knight R, Schoenberg L, et al. Ten years of sirolimus therapy for human renal transplantation: the University of Texas at Houston experience. Transplant Proc 2003; 35Suppl. 3A: 25S–34SPubMedCrossRefGoogle Scholar
  53. 53.
    Vincenti F, Stock P. De novo use of sirolimus in immunosuppression regimens in kidney and kidney-pancreas transplantation at the University of California, San Francisco. Transplant Proc 2003; 35Suppl. 3A: 183S–6SPubMedCrossRefGoogle Scholar
  54. 54.
    Stegall MD, Larson TS, Prieto M, et al. Living-donor kidney transplantation at Mayo Clinic - Rochester. Clin Transpl 2002, 155–61Google Scholar
  55. 55.
    Grimbert P, Baron C, Fruchaud G, et al. Long-term results of a prospective randomised study comparing two immunosuppressive regimens, one with and one without CsA, in low-risk transplant recipients. Transpl Int 2002; 15(11): 550–5PubMedCrossRefGoogle Scholar
  56. 56.
    Vincenti F, Ramos E, Brattstrom C, et al. Multicenter trial exploring calcineurin inhibitors avoidance in renal transplantation. Transplantation 2001; 71: 1282–7PubMedCrossRefGoogle Scholar
  57. 57.
    Shihab FS, Bennett WM, Yi H, et al. Combination therapy with sirolimus and mycophenolate mofetil: effects on the kidney and on transforming growth factor-[beta]1. Transplantation 2004; 77(5): 683–6PubMedCrossRefGoogle Scholar
  58. 58.
    Undre NA. Pharmacokinetics of tacrolimus-based combination therapies. Nephrol Dial Transplant 2003; 18Suppl. 1: 12–5CrossRefGoogle Scholar
  59. 59.
    van Hooff JP, Squifflet JP, Wlodarczyk Z, et al. A prospective randomized multicenter study of tacrolimus in combination with sirolimus in renal-transplant recipients. Transplantation 2003; 75(12): 1934–9PubMedCrossRefGoogle Scholar
  60. 60.
    Gonwa T, Johnson C, Ahsan N, et al. Randomized trial of tacrolimus + mycophenolate mofetil or azathioprine versus cyclosporine + mycophenolate mofetil after cadaveric kidney transplantation: results at three years. Transplantation 2003; 75(12): 2048–53PubMedCrossRefGoogle Scholar
  61. 61.
    Squifflet JP, Backman L, Claesson K, et al. Dose optimisation of mycophenolate mofetil when administered with a low dose of tacrolimus in cadaveric renal transplant recipients. Transplantation 2001; 72(1): 63–9PubMedCrossRefGoogle Scholar
  62. 62.
    Balupuri S, Buckley P, Snowden C, et al. The trouble with kidneys derived from the non heart-beating donor: a single center 10-year experience. Transplantation 2000; 69(5): 842–6PubMedCrossRefGoogle Scholar
  63. 63.
    Paczek L, Bechstein WO, Wramner L, et al. An open-label, concentration-controlled, randomised 6-month study of standard-dose tacrolimus + sirolimus + steroids compared to reduced-dose tacrolimus + sirolimus + steroids in renal allograft recipients [abstract]. Am J Transplant 2003; 3Suppl. 5: 464Google Scholar
  64. 64.
    Russ GR, Campbell S, Chadban S, et al. Reduced and standard target concentration tacrolimus with sirolimus in renal allograft recipients. Transplant Proc 2003; 35Suppl. 3: 115S–7SPubMedCrossRefGoogle Scholar
  65. 65.
    Lo A, Egidi MF, Gaber LW, et al. Observations regarding the use of sirolimus and tacrolimus in high-risk cadaveric renal transplantation. Clin Transplant 2004; 18: 53–61PubMedCrossRefGoogle Scholar
  66. 66.
    Ciancio G, Burke GW, Gaynor JJ, et al. A randomized longterm trial of tacrolimus and sirolimus versus tacrolimus and mycophenolate mofetil versus cyclosporine (neoral) and sirolimus in renal transplantation: I. drug interactions and rejection at one year. Transplantation 2004; 77(2): 244–51PubMedCrossRefGoogle Scholar
  67. 67.
    Ciancio G, Burke GW, Gaynor JJ, et al. A randomized longterm trial of tacrolimus/sirolimus versus tacrolimus/mycophenolate mofetil versus cyclosporine (neoral)/sirolimus in renal transplantation: II. Survival, function, and protocol compliance at 1 year. Transplantation 2004; 77(2): 252–8PubMedCrossRefGoogle Scholar
  68. 68.
    Grinyo JM, Campistol JM, Paul J, et al. Pilot randomized study of early tacrolimus withdrawal from a regimen with sirolimus plus tacrolimus in kidney transplantation. Am J Transplant 2004; 4: 1308–14PubMedCrossRefGoogle Scholar
  69. 69.
    Shapiro R, Scantlebury VP, Jordan ML, et al. A pilot trial of tacrolimus, sirolimus, and steroids in renal transplant recipients. Transplant Proc 2002; 34: 1651–2PubMedCrossRefGoogle Scholar
  70. 70.
    El-Sabrout R, Delaney V, Qadir M, et al. Sirolimus in combination with tacrolimus or mycophenolate mofetil for minimizing acute rejection risk in renal transplant recipients: a single center experience. Transplant Proc 2003; 35Suppl. 3A: 89S–94SPubMedCrossRefGoogle Scholar
  71. 71.
    Hricik DE, Knauss TC, Bodziak KA, et al. Withdrawal of steroid therapy in African American kidney transplant recipients receiving sirolimus and tacrolimus. Transplantation 2003; 76(6): 938–42PubMedCrossRefGoogle Scholar
  72. 72.
    Lo A, Egidi MF, Gaber LW, et al. Comparison of sirolimus-based calcineurin inhibitor-sparing and calcineurin inhibitor-free regimens in cadaveric renal transplantation. Transplantation 2004; 77(8): 1228–35PubMedCrossRefGoogle Scholar
  73. 73.
    Chen H, Wu J, Xu D, et al. Reversal of ongoing heart, kidney, and pancreas allograft rejection and suppression of accelerated heart allograft rejection in the rat by rapamycin. Transplantation 1993; 56: 661–6PubMedCrossRefGoogle Scholar
  74. 74.
    Hong JC, Kahan BD. Sirolimus rescue therapy for refractory rejection in renal transplantation. Transplantation 2001; 7(11): 1579–84CrossRefGoogle Scholar
  75. 75.
    Slaton JW, Kahan BD. Case report: sirolimus rescue therapy for refractory renal allograft rejection. Transplantation 1996; 61(6): 977–9PubMedCrossRefGoogle Scholar
  76. 76.
    Straatman LP, Coles JG. Pediatric utilization of rapamycin for severe cardiac allograft rejection. Transplantation 2000; 70(3): 541–3PubMedCrossRefGoogle Scholar
  77. 77.
    Sindhi R, Webber S, Venkataramanan R, et al. Sirolimus for rescue and primary immunosuppression in transplanted children receiving tacrolimus. Transplantation 2001; 72(5): 851–5PubMedCrossRefGoogle Scholar
  78. 78.
    Ikonen TS, Gummert JF, Hayase M, et al. Sirolimus (rapamycin) halts and reverses progression of allograft vascular disease in non-human primates. Transplantation 2000; 70(6): 969–75PubMedCrossRefGoogle Scholar
  79. 79.
    Poston RS, Billingham M, Grant Hoyt E, et al. Rapamycin reverses chronic graft vascular disease in a novel cardiac allograft model. Circulation 1999; 100(1): 67–74PubMedCrossRefGoogle Scholar
  80. 80.
    Nair S, Eason J, Loss G. Sirolimus monotherapy in nephrotoxicity due to calcineurin inhibitors in liver transplant recipients. Liver Transpl 2003; 9(2): 126–9PubMedCrossRefGoogle Scholar
  81. 81.
    Chang GJ, Mahanty HD, Quan D, et al. Experience with the use of sirolimus in liver transplantation-use in patients for whom calcineurin inhibitors are contraindicated. Liver Transpl 2000; 6(6): 734–40PubMedCrossRefGoogle Scholar
  82. 82.
    Groetzner J, Meiser B, Landwehr P, et al. Mycophenolate mofetil and sirolimus as calcienurin inhibitor-free immunosuppression for late cardiac-transplant recipients with chronic renal failure. Transplantation 2004; 77(4): 568–74PubMedCrossRefGoogle Scholar
  83. 83.
    Ussetti P, Laporta R, de Pablo A, et al. Rapamycin in lung transplantation: preliminary results. Transplant Proc 2003; 35: 1974–7PubMedCrossRefGoogle Scholar
  84. 84.
    Dominguez J, Mahalati K, Kiberd B, et al. Conversion to rapamycin immunosuppression in renal transplant recipients: report of an initial experience. Transplantation 2000; 70(8): 1244–7PubMedCrossRefGoogle Scholar
  85. 85.
    Diekmann F, Waiser J, Fritsche L, et al. Conversion to rapamycin in renal allograft recipients with biopsy-proven calcineurin inhibitor-induced nephrotoxicity. Transplant Proc 2001; 33: 3234–5PubMedCrossRefGoogle Scholar
  86. 86.
    Citterlo F, Scata MC, Violi P, et al. Rapid conversion to sirolimus for chronic progressive deterioration of the renal function in kidney allograft recipients. Transplant Proc 2003; 35: 1292–4PubMedCrossRefGoogle Scholar
  87. 87.
    Morelon E, Kreis H. Sirolimus therapy without calcineurin inhibitors: necker hospital 8-year experience. Transplant Proc 2003; 35Suppl. 3A: 52S–7SPubMedCrossRefGoogle Scholar
  88. 88.
    Sundberg AK, Rohr MS, Hartmann EL, et al. Conversion to sirolimus-based maintenance immunosuppression using daclizumab bridge therapy in renal transplant recipients. Clin Transplant 2004; 18Suppl. 12: 61–6PubMedCrossRefGoogle Scholar
  89. 89.
    Saunders RN, Bicknell GR, Nicholson ML. The impact of cyclosporine dose reduction with or without the addition of rapamycin on functional, molecular, and histological markers of chronic allograft nephropathy. Transplantation 2003; 75(6): 772–80PubMedCrossRefGoogle Scholar
  90. 90.
    Napoli KL, Wang ME, Stepkowski SM, et al. Relative tissue distributions of cyclosporin and sirolimus after concomitant peroral administration in the rat: evidence for pharmacokinetic interactions. Ther Drug Monit 1998; 20(2): 123–33PubMedCrossRefGoogle Scholar
  91. 91.
    Stallone G, Di Paolo S, Schena A, et al. Early withdrawal of cyclosporine A improves 1-year kidney graft structure and function in sirolimus-treated patients. Transplantation 2003; 75(7): 998–1003PubMedCrossRefGoogle Scholar
  92. 92.
    Diekmann F, Budde K, Oppenheimer F, et al. Predictors of success in conversion from calcineurin inhibitor to sirolimus in chronic allograft dysfunction. Am J Transplant 2004; 4: 1869–75PubMedCrossRefGoogle Scholar
  93. 93.
    Li Y, Zheng XX, Li XC, et al. Combined costimulation blockade plus rapamycin but not cyclosporine produces permanent engraftment. Transplantation 1998; 66(10): 1387–8PubMedCrossRefGoogle Scholar
  94. 94.
    Sho M, Sandner SE, Najafian N, et al. New insights into the interactions between T-cell costimulatory blockade and conventional immunosuppressive drugs. Ann Surg 2002;236(5): 667–75PubMedCrossRefGoogle Scholar
  95. 95.
    Knechtle SJ, Pirsch JD, Fechner Jr H, et al.Campath-1H induction plus rapamycin monotherapy for renal transplantation: results of a pilot study. Am J Transplant 2003; 3: 722–30PubMedCrossRefGoogle Scholar
  96. 96.
    Kirk AD, Hale DA, Mannon RB, et al. Results from a human renal allograft tolerance trial evaluating the humanized CD52-specific monoclonal antibody alemtuzumab (campath-1H). Transplantation 2003; 76(1): 120–9PubMedCrossRefGoogle Scholar
  97. 97.
    Swanson SJ, Hale DA, Mannon RB, et al. Kidney transplantation with rabbit antithymocyte globulin induction and sirolimus monotherapy. Lancet 2002; 360: 1662–4PubMedCrossRefGoogle Scholar
  98. 98.
    Andoh TF, Burdmann EA, Fransechini N, et al. Comparison of acute rapamycin nephrotoxicity with cyclosporine and FK-506. Kidney Int 1996; 50: 1110–7PubMedCrossRefGoogle Scholar
  99. 99.
    Thliveris JA, Yatscoff RW. Effect of rapamycin on morphological and functional parameters in the kidney of the rabbit. Transplantation 1995; 59(3): 427–9PubMedGoogle Scholar
  100. 100.
    Goldbaekdal K, Nielsen CB, Djurhuus JC, et al. Effects of rapamycin on renal hemodynamics, water and sodium excretion, and plasma levels of angiotensin II, aldosterone, atrial natriuretic peptiden and vasopressin in pigs. Transplantation 1994; 58(11): 1153–7CrossRefGoogle Scholar
  101. 101.
    DiJoseph JF, Sharma RN, Chang JY. The effect of rapamycin on kidney function in the Sprague-Dawley rat. Transplantation 1992; 53(3): 507–13PubMedCrossRefGoogle Scholar
  102. 102.
    DiJoseph JF, Mihatsch MJ, Sehgal SN. Renal effects of rapamycin in the spontaneously hypertenive rat. Transpl Int 1994; 7: 83–8PubMedCrossRefGoogle Scholar
  103. 103.
    Sabbatini M, Sansone G, Ucello F, et al. Acute effects of rapamycin on glomerular dynamics: a micropuncture study in the rat. Transplantation 2000; 69(9): 1946–9PubMedCrossRefGoogle Scholar
  104. 104.
    DiJoseph JF, Sehgal SN. Functional and histopathologic effects of rapamycin on mouse kidney. Immunopharmacol Immunotoxicol 1993; 15(1): 45–56CrossRefGoogle Scholar
  105. 105.
    Lieberthal W, Fuhro R, Andry CC, et al. Rapamycine impairs recovery from acute renal failure: role of cell-cycle arrest and apoptosis of tubular cells. Am J Renal Physiol 2001; 281: F693–706Google Scholar
  106. 106.
    Fuller TF, Freise CE, Serkova N, et al. Sirolimus delays recovery of rat kidney transplants after ischemia-reperfusion injury. Transplantation 2003; 76(11): 1594–9PubMedCrossRefGoogle Scholar
  107. 107.
    Niemann CU, Saeed M, Akbari H, et al. Close association between the reduction in myocardial energy metabolism and infarct size: dose-response assessment of cyclosporine. J Pharmacol Exp Ther 2002; 302(3): 1123–8PubMedCrossRefGoogle Scholar
  108. 108.
    Edinger AL, Linardic CM, Chiang GG, et al. Differential effects of rapamycin on mammalian target of rapamycin signalling functions in mammalian cells. Cancer Res 2003; 63: 8451–60PubMedGoogle Scholar
  109. 109.
    Simon N, Morin C, Urien S, et al. Tacrolimusrolimus and sirolimus decrease oxidative phosphorylation of isolated rat kidney mitochondria. Br J Pharmacol 2003; 138(2): 369–76PubMedCrossRefGoogle Scholar
  110. 110.
    Nielsen FT, Ottosen P, Starklint H, et al. Kidney function and morphology after short-term combination therapy with cyclosporine A, tacrolimus and sirolimus in rat. Nephrol Dial Transplant 2003; 18: 491–6PubMedCrossRefGoogle Scholar
  111. 111.
    Lawsin L, Light JA. Severe acute renal failure after exposure to sirolimus-tacrolimus in two living donor kidney recipients. Transplantation 2003; 75(1): 157–60PubMedCrossRefGoogle Scholar
  112. 112.
    Smith KD, Wrenshall LE, Nicosia RF, et al. Delayed graft function and cast nephropathy associated with tacrolimus plus rapamycin use. J Am Soc Nephrol 2003; 14: 1037–45PubMedCrossRefGoogle Scholar
  113. 113.
    McTaggart RA, Gottlieb D, BrooksT J, et al. Sirolimus prolongs recovery from delayed graft function after cadaveric renal transplantation. Am J Transplant 2003; 3: 416–23PubMedCrossRefGoogle Scholar
  114. 114.
    Stallone G, Di Paolo S, Schena A, et al. Addition of sirolimus to cyclosporine delays the recovery from delayed graft function but does not affect 1-year graft function. J Am Soc Nephrol 2004; 15: 228–33PubMedCrossRefGoogle Scholar
  115. 115.
    Morales JM, Andres A, Dominguez-Gil B, et al. Tubular function in patients with hypokalemia induced by sirolimus after renal transplantation. Transplant Proc 2003; 35Suppl. 3A: 154S–6SPubMedCrossRefGoogle Scholar
  116. 116.
    Charpentier B. Bicetre Hospital experience with sirolimus-based therapy in human renal transplantation: the Sirolimus European Renal Transplant Study. Transplant Proc 2003; 35Suppl. 3A: 58S–61SPubMedCrossRefGoogle Scholar
  117. 117.
    Schwarz C, Böhmig GA, Steininger R, et al. Impaired phosphate handling of renal allografts is aggravated under rapamycin-based immunosuppression. Nephrol Dial Transplant 2001; 16: 378–82PubMedCrossRefGoogle Scholar
  118. 118.
    Caravaca F, Fernandez MA, Ruiz-Calero R, et al. Effects of oral phosphorus supplementation on mineral metabolism of renal transplant recipients. Nephrol Dial Transplant 1998; 13: 2605–11PubMedCrossRefGoogle Scholar
  119. 119.
    Wyzgal J, Paczek L, Senatorski G, et al. Sirolimus rescue treatment in calcineurin inhibitor nephrotoxicity after kidney transplantation. Transplant Proc 2002; 34: 3185–7PubMedCrossRefGoogle Scholar
  120. 120.
    Radermacher J, Meiners M, Bramlage C, et al. Pronounced renal vasoconstriction and systemic hypertension in renal transplant patients treated with cyclosporin A versus KF506. Transpl Int 1998; 11(1): 3–10PubMedCrossRefGoogle Scholar
  121. 121.
    Nankivell BJ, Borrows RJ, Fung CL, et al. The natural history of chronic allograft nephropathy. N Engl J Med 2003; 349: 2326–33PubMedCrossRefGoogle Scholar
  122. 122.
    Daniel C, Ziswiler R, Frey B, et al. Proinflammatory effects in experimental mesangial proliferative glomerulonephritis of the immunosuppressive agent SDZ RAD, a rapamycin derivative. Exp Nephrol 2000; 8: 52–62PubMedCrossRefGoogle Scholar
  123. 123.
    Wang W, Chan YH, Lee W, et al. Effects of rapamycin and FK506 on mesangial cell proliferation. Transplant Proc 2001; 33: 1036–7PubMedCrossRefGoogle Scholar
  124. 124.
    Fervenza FC, Fitzpatrick PM, Mertz J, et al. Acute rapamycin nephrotoxicity in native kidneys of patients with chronic glomerulopathies. Mayo Nephrology Collaborative Committee. Nephrol Dial Transplant 2004; 19: 1288–92PubMedCrossRefGoogle Scholar
  125. 125.
    Dittrich E, Schmaldienst S, Soleimn A, et al. Rapamycin-associated posttransplant glomerulonephritis and its complete remission after reintroduction of calcineurin inhibitor therapy. Transplant Int 2004; 17(4): 215–20CrossRefGoogle Scholar
  126. 126.
    Chueh SJ, Kahan BD. Dyslipidemia in renal transplant recipients treated with a sirolimus and cyclosporine-based immunosuppressive regimen: incidence, risk factors, progression, and prognosis. Transplantation 2003; 76(2): 375–82PubMedCrossRefGoogle Scholar
  127. 127.
    Hoogeveen RC, Ballantyne CM, Pownall HJ, et al. Effect of sirolimus on the metabolism of ApoB100-containing lipoproteins in renal transplant patients. Transplantation 2001; 72(7): 1244–50PubMedCrossRefGoogle Scholar
  128. 128.
    Tur MD, Carrigue V, Vela C, et al. Apolipoprotein CIII is upregulated by anticalcineurins and rapamycin: implications in transplantation-induced dyslipidemia. Transplant Proc 2000; 32: 2783–4PubMedCrossRefGoogle Scholar
  129. 129.
    Morrisett JD, Abdel-Fattah G, Hoogeveen R, et al. Effects of sirolimus on plasma lipids, lipoprotein levels, and fatty acid metabolism in renal transplant patients. J Lipid Res 2002; 43: 1170–80PubMedGoogle Scholar
  130. 130.
    Brattstrom C, Wilczek HE, Tyden G, et al. Hypertriglyceridemia in renal transplant recipients treated with sirolimus. Transplant Proc 1998; 30: 3950–1PubMedCrossRefGoogle Scholar
  131. 131.
    Blum CB. Effects of sirolimus on lipids in renal allograft recipients: an analysis using the Framingham risk model. Am J Transplant 2002; 2: 551–9PubMedCrossRefGoogle Scholar
  132. 132.
    Rigatto C. Clinical epidemiology of cardiac disease in renal transplant recipients. Semin Dial 2003; 16(2): 106–10PubMedCrossRefGoogle Scholar
  133. 133.
    Langer RM, Kahan BD. Sirolimus does not increase the risk for postoperative thromboembolic events among renal transplant recipients. Transplantation 2003; 76(2): 318–23PubMedCrossRefGoogle Scholar
  134. 134.
    Trotter JF, Wachs ME, Trouillot TE, et al. Dyslipidemia during sirolimus therapy in liver transplant recipients occurs with concomitant cyclosporine but not tacrolimus. Liver Transpl 2001; 7(5): 401–8PubMedCrossRefGoogle Scholar
  135. 135.
    McAlister VC, Gao Z, Peltekian K, et al. Sirolimus-tacrolimus combination immunosuppression. Lancet 2000; 355: 376–7PubMedCrossRefGoogle Scholar
  136. 136.
    Fabian MC, Lakey JR, Rajotte RV, et al. The efficacy and toxicity of rapamycin in murine islet transplantation: in vitro and in vivo studies. Transplantation 1993; 56(5): 1137–42PubMedCrossRefGoogle Scholar
  137. 137.
    Fuhrer DK, Kobayashi M, Jiang H. Insulin release and suppression by tacrolimus, rapamycin and cyclosporin A are through regulation of the ATP-sensitive potassium channel. Diabetes Obes Metab 2001; 3: 393–402PubMedCrossRefGoogle Scholar
  138. 138.
    Shapiro AM, Suarez-Pinzon WL, Power R, et al. Combination therapy with low dose sirolimus and tacrolimus is synergistic in preventing spontaneous and recurrent autoimmune diabetes in non-obese diabetic mice. Diabetologia 2002; 45(2): 224–30PubMedCrossRefGoogle Scholar
  139. 139.
    Kasiske BL, Snyder JJ, Gilbertson D, et al. Diabetes mellitus after kidney transplantation in the United States. Am J Transplant 2003; 3(2): 178–85PubMedCrossRefGoogle Scholar
  140. 140.
    Bererhi L, Flamant M, Martinez F, et al. Rapamycin-induced oligospermia. Transplantation 2003; 76(5): 885–6PubMedCrossRefGoogle Scholar
  141. 141.
    Morris RE. Rapamycins: antifungal, antitumor, antiproliferative and immunosuppressive macrolides. Transplant Rev 1992; 6: 39–87CrossRefGoogle Scholar
  142. 142.
    Fritsche L, Budde K, Dragun D, et al. Testosterone concentrations and sirolimus in male renal transplant patients. Am J Transplant 2004; 4: 130–1PubMedCrossRefGoogle Scholar
  143. 143.
    Kaczmarek I, Groetzner J, Adamidis I, et al. Sirolimus impairs gonadal function in heart transplant recipients. Am J Transplant 2004; 4(7): 1084–8PubMedCrossRefGoogle Scholar
  144. 144.
    Blume-Jensen P, Jiang G, Hyman R, et al. Kit/stem cell factor receptor-induced activation of phosphatidylinositol 3’-kinase is essential for male fertility. Nat Genet 2000; 24(2): 157–62PubMedCrossRefGoogle Scholar
  145. 145.
    Cure P, Pileggi A, Froud T, et al. Alterations of the female reproductive system in recipients of islets grafts. Transplantation 2004; 78: 1576–81PubMedCrossRefGoogle Scholar
  146. 146.
    EBPG Expert Group on Renal Transplantation. European best practice guidelines for renal transplantation, section IV: longterm management of the transplant recipient. IV.10. Pregnancy in renal transplant recipients. Nephrol Dial Transplant 2002; 17 Suppl. 4: 50–5Google Scholar
  147. 147.
    Armenti VT, Radomski JS, Moritz MJ, et al. Report from the National Transplantation Pregnancy Registry (NTPR): outcomes of pregnancy after transplantation. Clin Transpl 2002, 121–30Google Scholar
  148. 148.
    Langer RM, Kahan BD. Incidence, therapy, and consequences of lymphocele after sirolimus-cyclosporine-prednisone immunosuppression in renal transplant recipients. Transplantation 2002; 74(6): 804–8PubMedCrossRefGoogle Scholar
  149. 149.
    Giessing M, Budde K. Sirolimus and lymphocele formation after kidney transplantation: an immunosuppressive medication as co-factor for a surgical problem? Nephrol Dial Transplant 2003; 18: 448–9PubMedCrossRefGoogle Scholar
  150. 150.
    Bischof G, Rockenschaub S, Berlakovich G, et al. Management of lymphoceles after kidney transplantation. Transpl Int 1998; 11(4): 277–80PubMedCrossRefGoogle Scholar
  151. 151.
    Dutly AE, Gaspert A, Inci I, et al. The influence of the rapamycin-derivate SDZ RAD on the healing of airway anastomoses. Eur J Cardiothorac Surg 2003; 24(1): 154–8PubMedCrossRefGoogle Scholar
  152. 152.
    King-Biggs MB, Dunitz JM, Park SJ, et al. Airway anastomotic dehiscence associated with use of sirolimus immediately after lung transplantation. Transplantation 2003; 75(9): 1437–43PubMedCrossRefGoogle Scholar
  153. 153.
    Tan A, Levrey H, Dahm C, et al. Lovastatin induces fibroblast apoptosis in vitro and in vivo: a possible therapy for fibroproliferative disorders. Am J Respir Crit Care Med 1999; 159 (1): 220–7Google Scholar
  154. 154.
    Salas-Prato M, Assalian A, Medhi AZ, et al. Inhibition by rapamycin of PDGF- and bFGF-induced human tendon fibroblast proliferation in vitro. J Glaucoma 1996; 5: 54–9PubMedCrossRefGoogle Scholar
  155. 155.
    Azzola A, Havryk A, Chhajed P, et al. Everolimus and mycophenolate mofetil are potent inhibitors of fibroblast proliferation after lung transplantation. Transplantation 2004; 77(2): 275–80PubMedCrossRefGoogle Scholar
  156. 156.
    Humar A, Ramcharan T, Denny R, et al. Are wound complications after a kidney transplant more common with modern immunosuppression? Transplantation 2001; 72(12): 1920–3PubMedCrossRefGoogle Scholar
  157. 157.
    Troppmann C, Pierce JL, Gandhi MM, et al. Higher surgical wound complication rates with sirolimus immunosuppression after kidney transplantation: a matched-pair pilot study. Transplantation 2003; 76(2): 426–9PubMedCrossRefGoogle Scholar
  158. 158.
    Valente JF, Hricik D, Weigel K, et al. Comparison of sirolimus vs. mycophenolate mofetil on surgical complications and wound healing in adult kidney transplantation. Am J Transplant 2003; 3: 1128–34PubMedCrossRefGoogle Scholar
  159. 159.
    Flechner SM, Zhou L, Derweesh I, et al. The impact of sirolimus, mycophenolate mofetil, cycosporine, azathioprine, and steroids on wound healing in 513 kidney-transplant recipients. Transplantation 2003; 76(12): 1729–34PubMedCrossRefGoogle Scholar
  160. 160.
    Dean PG, Lund WJ, Larson TS, et al. Wound-healing complications after kidney transplantation: a prospective, randomized comparison of sirolimus and tacrolimus. Transplantation 2004; 77: 1555–61PubMedCrossRefGoogle Scholar
  161. 161.
    Husain S, Singh N. The impact of novel immunosuppressive agents in infections in organ transplant recipients and the interactions of these agents with antimicrobials. Clin Infect Dis 2002; 35: 53–61PubMedCrossRefGoogle Scholar
  162. 162.
    Oz HS, Hughes WT. Novel anti-pneumocystis carinii effects of the immunosuppressant mycophenolate mofetil in contrast to provocative effects of tacrolimus, sirolimus and dexamethasone. J Infect Dis 1997; 175: 901–4PubMedCrossRefGoogle Scholar
  163. 163.
    Gordon SM, LaRosa SP, Kalmadi S, et al. Should prophylaxis for pneumocystis carinii pneumonia in solid organ transplant recipients ever be discontinued? Clin Infect Dis 1999; 28(2): 240–6PubMedCrossRefGoogle Scholar
  164. 164.
    Jørgensen PF, Wang JE, Almlof M, et al. Sirolimus interferes with the innate response to bacterial products in human whole blood by attenuation of IL-10 production. Scand J Immunol 2001; 53: 184–91PubMedCrossRefGoogle Scholar
  165. 165.
    Gomez-Cambronero J. Rapamycin inhibits GM-CSF-induced neutrophil migration. FEBS Lett 2003; 550: 94–100PubMedCrossRefGoogle Scholar
  166. 166.
    Gee I, Trull AK, Charman SC, et al. Sirolimus inhibits oxidative burst activity in transplant recipients. Transplantation 2003; 76(12): 1766–8PubMedCrossRefGoogle Scholar
  167. 167.
    Eisen HJ, Tuczu EM, Dorrent R, et al. Everolimus for the prevention of allograft rejection and vasculopathy in cardiac transplant recipients. N Engl J Med 2003; 349(9): 847–58PubMedCrossRefGoogle Scholar
  168. 168.
    Cruz MC, Goldstein AL, Blankenship J, et al. Rapamycin and less immunosuppressive analogs are toxic to Candida Albicans and Cryptococcus neoformans via FKBP12-dependent inhibition of TOR. Antimicrob Agents Chemother 2001; 45: 3162–700PubMedCrossRefGoogle Scholar
  169. 169.
    Deborska D, Durlik M, Sadowska A, et al. Human herpesvirus-6 in renal transplant recipients: potential risk factors for the development of human herpesvirus-6 seroconversion. Transplant Proc 2003; 35: 2199–201PubMedCrossRefGoogle Scholar
  170. 170.
    Kuypers DR, Evenepoel P, Maes BD, et al. Role of immunosuppressive drugs in the development of tissue-invasive cytomegalovirus infection in renal tranplant recipients. Transplant Proc 2002; 34(4): 1164–70PubMedCrossRefGoogle Scholar
  171. 171.
    Radisic M, Lattes R, Chapman JF, et al. Risk factors for Pneumocystis carinii pneumonia in kidney transplant recipients: a case-control study. Transpl Infect Dis 2003; 5: 84–93PubMedCrossRefGoogle Scholar
  172. 172.
    Morelon E, Stern M, Kreis H. Interstitial pneumonitis associated with sirolimus therapy in renal-transplant recipients. Lancet 2000; 343(3): 225–6Google Scholar
  173. 173.
    Singer SJ, Tiernan R, Sullivan EJ. Interstitial pneumonitis associated with sirolimus therapy in renal-transplant recipients. Lancet 2000; 343(24): 1815–6Google Scholar
  174. 174.
    Mahalati K, Murphy DM, West ML. Bronchiolitis obliterans and organizing pneumonia in renal transplant recipients. Transplantation 2000; 69: 1531–2CrossRefGoogle Scholar
  175. 175.
    Haydar AA, Denton M, West A, et al. Sirolimus-induced pneumonitis: three cases and a review of the literature. Am J Transplant 2004; 4: 137–9PubMedCrossRefGoogle Scholar
  176. 176.
    Lennon A, Finan K, Fitzgerald MX, et al. Interstitial pneumonitis associated with sirolimus (rapamycin) therapy after liver transplantation. Transplantation 2001; 72(6): 1166–7PubMedCrossRefGoogle Scholar
  177. 177.
    Avitzur Y, Jimenez-Rivera C, Fecteau A, et al. Interstitial granulomatous pneumonitis associated with sirolimus in a child after liver transplantation. J Pediatr Gastroenterol Nutr 2003; 37(1): 91–4PubMedCrossRefGoogle Scholar
  178. 178.
    McWilliams TJ, Levvey BJ, Russell PA, et al. Interstitial pneumonitis associated with sirolimus: a dilemma for lung transplantation. J Heart Lung Transplant 2003; 22: 210–3PubMedCrossRefGoogle Scholar
  179. 179.
    Digon BJ, Rother KI, Hirshberg B, et al. Sirolimus-induced interstitial pneumonitis in an islet transplant recipient [letter]. Diabetes Care 2003; 26(11): 3191PubMedCrossRefGoogle Scholar
  180. 180.
    Morelon E, Stern M, Israel-Biet D, et al. Characteristics of sirolimus-associated interstitial pneumonitis in renal transplant patients. Transplantation 2001; 72(5): 787–90PubMedCrossRefGoogle Scholar
  181. 181.
    Pham PTT, Pham PCT, Danovitch GM, et al. Sirolimus-associated pulmonary toxicity. Transplantation 2004; 77(8): 1215–20PubMedCrossRefGoogle Scholar
  182. 182.
    Gross DC, Sasaki TM, Buick MK, et al. Acute respiratory failure and pulmonary fibrosis secondary to administration of mycophenolate mofetil. Transplantation 1997; 64(11): 1607–9PubMedCrossRefGoogle Scholar
  183. 183.
    Schrestha NK, Mossad SB, Braun W. Pneumonitis associated with the use of mycophenolate mofetil [letter]. Transplantation 2003; 75(10): 1762CrossRefGoogle Scholar
  184. 184.
    Hong JC, Kahan BD. Sirolimus-induced thrombocytopenia and leukopenia in renal transplant recipients: risk factors, incidence, progression, and management. Transplantation 2000; 69(10): 2085–90PubMedCrossRefGoogle Scholar
  185. 185.
    Babinska A, Markell MS, Salifu MO, et al. Enhancement of human platelet aggregation and secretion induced by rapamycin. Nephrol Dial Transplant 1998; 13: 3153–9PubMedCrossRefGoogle Scholar
  186. 186.
    Quesniaux VF, Wehrli S, Steiner C, et al. The immunosuppressant rapamycin blocks in vitro responses to hematopoietic cytokines and inhibits recovering but not steady-state hematopoiesis in vivo. Blood 1994; 84(5): 1543–52PubMedGoogle Scholar
  187. 187.
    Kahan BD, Podbielski J, Napoli KL, et al. Immunosuppressive effects and safety of a sirolimus/cyclosporine combination regimen for renal transplantation. Transplantation 1998; 66(8): 1040–6PubMedCrossRefGoogle Scholar
  188. 188.
    Augustine JJ, Knauss TC, Schulak JA, et al. Comparative effects of sirolimus and mycophenolate mofetil on erythropoiesis in kidney transplant patients. Am J Transplant 2004; 4: 2001–6PubMedCrossRefGoogle Scholar
  189. 189.
    Edwards C, House A, Shahinian V, et al. Sirolimus-based immunosuppression for transplant-associated thrombotic microangiopathy. Nephrol Dial Transplant 2002; 17: 1524–6PubMedCrossRefGoogle Scholar
  190. 190.
    Yango A, Morrissey P, Monaco A, et al. Successful treatment of tacrolimus-associated thrombotic microangiopathy with sirolimus conversion and plasma exchange. Clin Nephrol 2002; 58(1): 77–8PubMedGoogle Scholar
  191. 191.
    Franco A, Hernandez L, Capdevilla L, et al. De novo haemolytic-uremic syndrome/thrombotic microangiopathy in renal transplant patients receiving calcineurin inhibitors: role of sirolimus. Transplant Proc 2003; 35: 1764–6PubMedCrossRefGoogle Scholar
  192. 192.
    Egidi MF, Cowan PA, Naseer A, et al. Conversion to sirolimus in solid organ transplantation: a single-center experience. Transplant Proc 2003; 35Suppl. 3A: 131S–7SPubMedCrossRefGoogle Scholar
  193. 193.
    Langer RM, Van Buren CT, Katz SM, et al. De novo hemolytic uremic syndrome after kidney transplantation in patients treated with cyclosporine-sirolimus combination. Transplantation 2002; 73(5): 756–60PubMedCrossRefGoogle Scholar
  194. 194.
    Robson M, Cote I, Abbs I, et al. Thrombotic micro-angiopathy with sirolimus-based immunosuppression: potentiation of calcineurin-inhibitor-induced endothelial damage? Am J Transplant 2003; 3: 324–7PubMedCrossRefGoogle Scholar
  195. 195.
    Saikali JA, Truong LD, Suki WN. Sirolimus may promote thrombotic microangiopathy. Am J Transplant 2003; 3: 229–30PubMedCrossRefGoogle Scholar
  196. 196.
    Paramesh AS, Grosskreutz C, Florman SS, et al. Thrombotic microangiopathy associated with combined sirolimus and tacrolimus immunosuppression after intestinal transplantation. Transplantation 2004; 77(1): 129–31PubMedCrossRefGoogle Scholar
  197. 197.
    Wilasrusmee C, Da Silva M, Singh B, et al. Morphological and biochemical effects of immunosuppressive drugs in a capillary tube assay for endothelial dysfunction. Clin Transplant 2003; 17Suppl. 9: 6–12PubMedCrossRefGoogle Scholar
  198. 198.
    Fortin MC, Raymond MA, Madore F, et al. Increased risk of thrombotic microangiopathy in patients receiving a cyclosporin-sirolimus combination. Am J Transplant 2004; 4: 946–52PubMedCrossRefGoogle Scholar
  199. 199.
    Reynolds JC, Agodoa LY, Yuan CM, et al. Thrombotic microangiopathy after renal transplantation in the United States. Am J Kidney Dis 2003; 42(5): 1058–68PubMedCrossRefGoogle Scholar
  200. 200.
    Barone GW, Gurley BJ, Abul-Ezz SR, et al. Sirolimus-induced thrombotic microangiopathy in a renal transplant recipient. Am J Kidney Dis 2003; 42(1): 202–6PubMedCrossRefGoogle Scholar
  201. 201.
    Bramow S, Ott P, Nielsen FT, et al. Cholestasis and regulation of genes related to drug metabolism and biliary transport in rat liver following treatment with cyclosporine A and sirolimus (rapamycin). Pharmacol Toxicol 2001; 89: 133–9PubMedCrossRefGoogle Scholar
  202. 202.
    Deters M, Klabunde T, Kirchner G, et al. Sirolimus/cyclosporine/tacrolimus interactions on bile flow and biliary excretion of immunosuppressants in a subchronic bile fistula rat model. Br J Pharmacol 2002; 136(4): 604–12PubMedCrossRefGoogle Scholar
  203. 203.
    Francavilla A, Carr BI, Starzl TE, et al. Effects of rapamycin on cultured hepatocyte proliferation and gene expression. Hepatology 1992; 15(5): 871–7PubMedCrossRefGoogle Scholar
  204. 204.
    Masterson R, Leikis M, Perkovic V, et al. Sirolimus: a single center experience in combination with calcineurin inhibitors. Transplant Proc 2003; 35Suppl. 3: 99S–104SPubMedCrossRefGoogle Scholar
  205. 205.
    Kuypers DR, Herelixka A, Vanrenterghem Y. Clinical use of rapamycin in renal allograft recipients identifies its relevant toxicity profile and raises unsolved questions: a single-center experience. Leuven Collaborative Group for Renal Transplantation. Transplant Proc 2003; 35Suppl. 3A: 138S–42SPubMedCrossRefGoogle Scholar
  206. 206.
    van Gelder T, ter Meulen CG, Hene R, et al, editor. Oral ulcers in kidney transplant recipients treated with sirolimus and mycophenolate mofetil. Transplantation 2003; 75(6): 788–91Google Scholar
  207. 207.
    Neff GW, Montalbano M, Slapak-Green G, et al. A retrospective review of sirolimus (rapamune) therapy in orthotopic liver transplant recipients diagnosed with chronic rejection. Liver Transplant 2003; 9(5): 477–83CrossRefGoogle Scholar
  208. 208.
    Reitamo S, Spuls P, Sassolas B, et al. Efficacy of sirolimus (rapamycin) administered concomitantly with a subtherapeutic dose of cyclosporin in the treatment of severe psoriasis: a randomised controlled trial. Br J Deramtol 2001; 145: 438–45CrossRefGoogle Scholar
  209. 209.
    Garrigue V, Canet S, Dereure O, et al. Oral ulcerations in a renal transplant recipient: a mycophenolate mofetil-induced complication? Transplantation 2001; 72(5): 968–9PubMedCrossRefGoogle Scholar
  210. 210.
    Shapiro JA, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 2000; 343(4): 230–8PubMedCrossRefGoogle Scholar
  211. 211.
    Evenepoel P, Vanrenterghem Y. Death with functioning graft: a preventable cause of graft loss. Ann Transplant 2001; 6(4): 17–20PubMedGoogle Scholar
  212. 212.
    Koehl GE, Andrassy J, Guba M, et al. Rapamycin protects allografts from rejection while simultaneously attacking tumors in immunosuppressed mice. Transplantation 2004; 77(9): 1319–26PubMedCrossRefGoogle Scholar
  213. 213.
    Mathew T, Kreis H, Friend P. Two-year incidence of malignancy in sirolimus-treated renal transplant recipients: results from five multicenter studies. Clin Transplant 2004; 18: 446–9PubMedCrossRefGoogle Scholar
  214. 214.
    Campistol JM, Gutierrez-Dalmau A, Torregrose JV. Conversion to sirolimus: a successful treatment for post-transplantation Kaposi’s sarcoma. Transplantation 2004; 77(5): 760–2PubMedCrossRefGoogle Scholar
  215. 215.
    Joffe I, Katz I, Seghal S, et al. Lack of change of cancellous bone volume with short-term use of the new immunosuppressant rapamycin in rats. Calcif Tissue Int 1993; 53: 45–52PubMedCrossRefGoogle Scholar
  216. 216.
    Shui C, Riggs BL, Khosla S. The immunosuppressant rapamycin, alone or with transforming growth factor-p, enhances osteoclast differentiation of RAW264.7 monocytemacrophage cells in the presence of RANK-ligand. Calcif Tissue Int 2002; 71: 437–46PubMedCrossRefGoogle Scholar
  217. 217.
    Mikuls TR, Julian BA, Bartolucci A, et al. Bone mineral density changes within six months of renal transplantation. Transplantation 2003; 75(1): 49–54PubMedCrossRefGoogle Scholar
  218. 218.
    Thiebaud D, Krieg MA, Gillard-Berguer D, et al. Cyclosporine induces high bone turnover and may contribute to bone loss after heart transplantation. Eur J Clin Invest 1996; 26(7): 549–55PubMedCrossRefGoogle Scholar
  219. 219.
    Goodman GR, Dissanayake IR, Sodam BR, et al. Immunosuppressant use without bone loss-implications for bone loss after transplantation. J Bone Miner Res 2001; 16(1): 72–8PubMedCrossRefGoogle Scholar
  220. 220.
    Goffin E, Vande Berg B, Devogelaer JP, et al. Post-renal transplant syndrome of transient lower limb joint pain: description under a tacrolimus-based immunosuppression. Clin Nephrol 2003; 59(2): 98–105PubMedGoogle Scholar
  221. 221.
    Grotz WH, Breitenfeldt MK, Braune SW, et al. Calcineurin inhibitor induced pain syndrome (CIPS): a severe disable complication after organ transplantation. Transpl Int 2001; 14(1): 16–23PubMedCrossRefGoogle Scholar
  222. 222.
    Bhandari S, Eris J. Premature osteonecrosis and sirolimus treatment in renal transplantation [case report]. BMJ 2001; 323: 665PubMedCrossRefGoogle Scholar
  223. 223.
    Finsterer J, Kanzler M. Sirolimus myopathy. Transplantation 2003; 76(12): 1773–4PubMedCrossRefGoogle Scholar
  224. 224.
    Aboujaoude W, Milgrom ML, Govani MV. Lymphedema associated with sirolimus in renal transplant recipients. Transplantation 2004; 77(7): 1094–6PubMedCrossRefGoogle Scholar
  225. 225.
    Kaplan MJ, Ellis CN, Bata-Csorgo Z, et al. Systemic toxicity following administration of sirolimus (formerly rapamycin) for psoriasis. Arch Dermatol 1999; 135: 553–7PubMedCrossRefGoogle Scholar
  226. 226.
    Cahill BC, Somerville KT, Crompton JA, et al. Early experience with sirolimus in lung transplant recipients with chronic allograft rejection. J Heart Lung Transplant 2003; 22(2): 169–76PubMedCrossRefGoogle Scholar
  227. 227.
    Yatscoff RW, Fryer J, Thliveris JA. Comparison of the effect of rapamycin and FK506 on release of prostacyclin and endothelin in vitro. Clin Biochem 1993; 26(5): 409–14PubMedCrossRefGoogle Scholar
  228. 228.
    Mohaupt MG, Vogt B, Frey FJ. Sirolimus-associated eyelid edema in kidney transplant recipients. Transplantation 2001; 72(1): 162–4PubMedCrossRefGoogle Scholar
  229. 229.
    Wadei H, Gruber SA, El-Amm JM, et al. Sirolimus-induced angioedema. Am J Transplant 2004; 4: 1002–5PubMedCrossRefGoogle Scholar
  230. 230.
    Hardinger KL, Cornelius LA, Trulock III EP, et al. Sirolimus-induced leukocytoclastic vasculitis. Transplantation 2002;74(5): 739–43PubMedCrossRefGoogle Scholar
  231. 231.
    Pasqualotto AC, Bianco PD, Sukiennik CT, et al. Sirolimus-induced leukocytoclastic vasculitis: the second case reported. Am J Transplant 2004; 4(9): 1549–51PubMedCrossRefGoogle Scholar

Copyright information

© Adis Data Information BV 2005

Authors and Affiliations

  1. 1.Department of Nephrology and Renal TransplantationUniversity Hospitals Leuven, University of LeuvenLeuvenBelgium

Personalised recommendations