Drug Safety

, Volume 27, Issue 14, pp 1093–1114 | Cite as

Benefit-Risk Assessment of Ropivacaine in the Management of Postoperative Pain

Review Article

Abstract

Ropivacaine is a long-acting amide-type local anaesthetic, released for clinical use in 1996. In comparison with bupivacaine, ropivacaine is equally effective for subcutaneous infiltration, epidural and peripheral nerve block for surgery, obstetric procedures and postoperative analgesia. Nevertheless, ropivacaine differs from bupivacaine in several aspects: firstly, it is marketed as a pure S(−)-enantiomer and not as a racemate, and secondly, its lipid solubility is markedly lower. These features have been suggested to significantly improve the safety profile of ropivacaine, and indeed, numerous studies have shown that ropivacaine has less cardiovascular and CNS toxicity than racemic bupivacaine in healthy volunteers.

Extensive clinical data have demonstrated that epidural 0.2% ropivacaine is nearly identical to 0.2% bupivacaine with regard to onset, quality and duration of sensory blockade for initiation and maintenance of labour analgesia. Ropivacaine also provides effective pain relief after abdominal or orthopaedic surgery, especially when given in conjunction with opioids or other adjuvants. Nevertheless, epidurally administered ropivacaine causes significantly less motor blockade at low concentrations. Whether the greater degree of blockade of nerve fibres involved in pain transmission (Aδ− and C-fibres) than of those controlling motor function (Aα− and Aβ-fibres) is due to a lower relative potency compared with bupivacaine or whether other physicochemical properties or stereoselectivity are involved, is still a matter of intense debate.

Recommended epidural doses for postoperative or labour pain are 20–40mg as bolus with 20–30mg as top-up dose, with an interval of ≥30 minutes. Alternatively, 0.2% ropivacaine can be given as continuous epidural infusion at a rate of 6–14 mL/h (lumbar route) or 4–10 mL/h (thoracic route).

Preoperative or postoperative subcutaneous wound infiltration, during cholecystectomy or inguinal hernia repair, with ropivacaine 100–175mg has been shown to be more effective than placebo and as effective as bupivacaine in reducing wound pain, whereby the vasoconstrictive potency of ropivacaine may be involved. Similar results were found in peripheral blockades on upper and lower limbs. Ropivacaine shows an identical efficacy and potency to that of bupivacaine, with similar analgesic duration over hours using single shot or continuous catheter techniques.

In summary, ropivacaine, a newer long-acting local anaesthetic, has an efficacy generally similar to that of the same dose of bupivacaine with regard to postoperative pain relief, but causes less motor blockade and stronger vasoconstriction at low concentrations. Despite a significantly better safety profile of the pure S(−)-isomer of ropivacaine, the increased cost of ropivacaine may presently limit its clinical utility in postoperative pain therapy.

References

  1. 1.
    Horlocker TT. Peripheral nerve blocks: regional anesthesia for the new millennium. Reg Anesth Pain Med 1998; 23: 237–40PubMedGoogle Scholar
  2. 2.
    Faccenda KA, Finucane BT. Complications of regional anaesthesia: incidence and prevention. Drug Saf 2001; 24: 413–42PubMedGoogle Scholar
  3. 3.
    Albright GA. Cardiac arrest following regional anesthesia with etidocaine or bupivacaine. Anesthesiology 1979; 51: 285–7PubMedGoogle Scholar
  4. 4.
    Zink W, Seif C, Bohl JRE, et al. The acute myotoxic effects of bupivacaine and ropivacaine after continuous peripheral nerve blockades. Anesth Analg 2003; 97: 1173–9PubMedGoogle Scholar
  5. 5.
    Vanhoutte F, Vereecke J, Verbeke N, et al. Stereoselective effects of the enantiomers of bupivacaine on the electrophysiological properties of the guinea-pig papillary muscle. Br J Pharmacol 1991; 103: 1275–81PubMedGoogle Scholar
  6. 6.
    Clarkson CW, Hondeghem LM. Mechanism for bupivacaine depression of cardiac conduction: fast block of sodium channels during the action potential with slow recovery from block during diastole. Anesthesiology 1985; 62: 396–405PubMedGoogle Scholar
  7. 7.
    Whiteside JB, Wildsmith JA. Developments in local anaesthetic drugs. Br J Anaesth 2001; 87: 27–35PubMedGoogle Scholar
  8. 8.
    Polley LS, Columb MO, Naughton NN, et al. Relative analgesic potencies of levobupivacaine and ropivacaine for epidural analgesia in labor [abstract]. Anesthesiology 2002; 96: A1052Google Scholar
  9. 9.
    Casati A, Leoni A, Aldegheri G, et al. A double-blind study of axillary brachial plexus block by 0.75% ropivacaine or 2% mepivacaine. Eur J Anaesthesiol 1998; 15: 549–52PubMedGoogle Scholar
  10. 10.
    Gristwood RW. Cardiac and CNS toxicity of levobupivacaine: strengths of evidence for advantage over bupivacaine. Drug Saf 2002; 25: 153–63PubMedGoogle Scholar
  11. 11.
    Groban L, Deal DD, Vernon JC, et al. Cardiac resuscitation after incremental overdosage with lidocaine, bupivacaine, levobupivacaine, and ropivacaine in anesthetized dogs. Anesth Analg 2001; 92: 37–43PubMedGoogle Scholar
  12. 12.
    Nancarrow C, Rutten A, Runciman W, et al. Myocardial and cerebral drug concentrations and the mechanisms of death after fatal intravenous doses of lidocaine, bupivacaine, and ropivacaine in the sheep. Anesth Analg 1989; 69: 276–83PubMedGoogle Scholar
  13. 13.
    Huang Y, Pryor M, Mather L, et al. Cardiovascular and central nervous system effects of intravenous levobupivacaine and bupivacaine in sheep. Anesth Analg 1998; 86: 797–804PubMedGoogle Scholar
  14. 14.
    Lee A, Fagan D, Lamont M, et al. Disposition kinetics of ropivacaine in humans. Anesth Analg 1989; 69: 736–8PubMedGoogle Scholar
  15. 15.
    Halldin MM, Bredberg E, Angelin B, et al. Metabolism and excretion of ropivacaine in humans. Drug Metab Dispos 1996; 24: 962–8PubMedGoogle Scholar
  16. 16.
    McCann ME, Sethna NF, Mazoit JX, et al. The pharmacokinetics of epidural ropivacaine in infants and young children. Anesth Analg 2001; 93: 893–7PubMedGoogle Scholar
  17. 17.
    Hansen TG, Ilett KF, Lim SI, et al. Pharmacokinetics and clinical efficacy of long-term epidural ropivacaine infusion in children. Br J Anaesth 2000; 85: 347–53PubMedGoogle Scholar
  18. 18.
    Ala-Kokko TI, Partanen A, Karinen J, et al. Pharmacokinetics of 0.2% ropivacaine and 0.2% bupivacaine following caudal blocks in children. Acta Anaesthesiol Scand 2000; 44: 1099–102PubMedGoogle Scholar
  19. 19.
    Karmakar MK, Aun CS, Wong EL, et al. Ropivacaine undergoes slower systemic absorption from the caudal epidural space in children than bupivacaine. Anesth Analg 2002; 94: 259–65PubMedGoogle Scholar
  20. 20.
    Habre W, Bergesio R, Johnson C, et al. Pharmacokinetics of ropivacaine following caudal analgesia in children. Paediatr Anaesth 2000; 10: 143–7PubMedGoogle Scholar
  21. 21.
    Akerman B, Hellberg IB, Trossvik C. Primary evaluation of the local anaesthetic properties of the amino amide agent ropivacaine (LEA 103). Acta Anaesthesiol Scand 1988; 32: 571–8PubMedGoogle Scholar
  22. 22.
    McGlade DP, Kalpokas MV, Mooney PH, et al. Comparison of 0.5% ropivacaine and 0.5% bupivacaine in lumbar epidural anaesthesia for lower limb orthopaedic surgery. Anaesth Intensive Care 1997; 25(3): 262–6PubMedGoogle Scholar
  23. 23.
    McGlade DP, Kalpokas MV, Mooney PH, et al. A comparison of 0.5% ropivacaine and 0.5% bupivacaine for axillary brachial plexus anaesthesia. Anaesth Intensive Care 1998; 26: 515–20PubMedGoogle Scholar
  24. 24.
    Eddleston JM, Holland JJ, Griffin RP, et al. A double-blind comparison of 0.25% ropivacaine and 0.25% bupivacaine for extradural analgesia in labour. Br J Anaesth 1996; 76: 66–77PubMedGoogle Scholar
  25. 25.
    Hickey R, Rowley CL, Candido KD, et al. A comparative study of 0.25% ropivacaine and 0.25% bupivacaine for brachial plexus block. Anesth Analg 1992; 75: 602–6PubMedGoogle Scholar
  26. 26.
    Kopacz DJ, Emanuelsson BM, Thompson GE, et al. Pharmacokinetics of ropivacaine and bupivacaine for bilateral intercostal blockade in healthy male volunteers. Anesthesiology 1994; 81: 1139–48PubMedGoogle Scholar
  27. 27.
    Ivani G, DeNegri P, Conio A, et al. Comparison of racemic bupivacaine, ropivacaine, and levo-bupivacaine for pediatric caudal anesthesia: effects on postoperative analgesia and motor block. Reg Anesth Pain Med 2002; 27: 157–61PubMedGoogle Scholar
  28. 28.
    Casati A, Borghi B, Fanelli G, et al. A double-blinded, randomized comparison of either 0.5% levobupivacaine or 0.5% ropivacaine for sciatic nerve block. Anesth Analg 2002; 94: 987–90PubMedGoogle Scholar
  29. 29.
    Hickey R, Hoffman J, Ramamurthy S. A comparison of ropivacaine 0.5% and bupivacaine 0.5% for brachial plexus block. Anesthesiology 1991; 74: 639–42PubMedGoogle Scholar
  30. 30.
    Da Conceicao MJ, Coelho L. Caudal anaesthesia with 0.375% ropivacaine or 0.375% bupivacaine in paediatric patients. Br J Anaesth 1998; 80: 507–8PubMedGoogle Scholar
  31. 31.
    Gautier P, De Kock M, Van Steenberge A, et al. A double-blind comparison of 0.125% ropivacaine with sufentanil and 0.125% bupivacaine with sufentanil for epidural labor analgesia. Anesthesiology 1999; 90: 772–8PubMedGoogle Scholar
  32. 32.
    Santorsola R, Casati A, Cerchierini E, et al. Levobupivacaine for peripheral blocks of the lower limb: a clinical comparison with bupivacaine and ropivacaine [in Italian]. Minerva Anestesiol 2001; 67(9 Suppl. 1): 33–6PubMedGoogle Scholar
  33. 33.
    Casati A, Fanelli G, Albertin A, et al. Interscalene brachial plexus anesthesia with either 0.5% ropivacaine or 0.5% bupivacaine. Minerva Anestesiol 2000; 66: 39–44PubMedGoogle Scholar
  34. 34.
    Uy HS, de Jesus AA, Paray AA, et al. Ropivacaine-lidocaine versus bupivacaine-lidocaine for retrobulbar anesthesia in cataract surgery. J Cataract Refract Surg 2002; 28: 1023–6PubMedGoogle Scholar
  35. 35.
    Brockway MS, Bannister J, McClure JH, et al. Comparison of extradural ropivacaine and bupivacaine. Br J Anaesth 1991; 66: 31–7PubMedGoogle Scholar
  36. 36.
    McDonald SB, Liu SS, Kopacz DJ, et al. Hyperbaric spinal ropivacaine: a comparison to bupivacaine in volunteers. Anesthesiology 1999; 90: 971–7PubMedGoogle Scholar
  37. 37.
    Polley LS, Columb MO, Naughton NN, et al. Relative analgesic potencies of ropivacaine and bupivacaine for epidural analgesia in labor: implications for therapeutic indexes. Anesthesiology 1999; 90: 944–50PubMedGoogle Scholar
  38. 38.
    Capogna G, Celleno D, Fusco P, et al. Relative potencies of bupivacaine and ropivacaine for analgesia in labour. Br J Anaesth 1999; 82: 371–3PubMedGoogle Scholar
  39. 39.
    Casati A, Fanelli G, Magistris L, et al. Minimum local anesthetic volume blocking the femoral nerve in 50% of cases: a double-blinded comparison between 0.5% ropivacaine and 0.5% bupivacaine. Anesth Analg 2001; 92: 205–8PubMedGoogle Scholar
  40. 40.
    Rosenberg PH, Heinonen E. Differential sensitivity of A and C nerve fibres to long-acting amide local anaesthetics. Br J Anaesth 1983; 55: 163–7PubMedGoogle Scholar
  41. 41.
    Bader AM, Datta S, Flanagan H, et al. Comparison of bupivacaine- and ropivacaine-induced conduction blockade in the isolated rabbit vagus nerve. Anesth Analg 1989; 68: 724–7PubMedGoogle Scholar
  42. 42.
    Wildsmith JA, Brown DT, Paul D, et al. Structure-activity relationships in differential nerve block at high and low frequency stimulation. Br J Anaesth 1989; 63: 444–52PubMedGoogle Scholar
  43. 43.
    McClure JH. Ropivacaine. Br J Anaesth 1996; 76: 300–7PubMedGoogle Scholar
  44. 44.
    Wildsmith JA. Relative potencies of ropivacaine and bupivacaine. Anesthesiology 2000; 92: 283–4PubMedGoogle Scholar
  45. 45.
    McCrae AF, Jozwiak H, McClure JH. Comparison of ropivacaine and bupivacaine in extradural analgesia for the relief of pain in labour. Br J Anaesth 1995; 74: 261–5PubMedGoogle Scholar
  46. 46.
    Erichsen CJ, Vibits H, Dahl JB, et al. Wound infiltration with ropivacaine and bupivacaine for pain after inguinal herniotomy. Acta Anaesthesiol Scand 1995; 39: 67–70PubMedGoogle Scholar
  47. 47.
    Capogna G, Celleno D, Laudano D, et al. Alkalinization of local anesthetics: which block, which local anesthetic? Reg Anesth 1995; 20: 369–77PubMedGoogle Scholar
  48. 48.
    Arthur GR, Wildsmith JAW, Tucker GT. Pharmacology of local anaesthetic drugs. In: Wildsmith JAW, Armitage EN, editors. Principles and practice of regional anesthesia. London: Churchill Livingstone, 1993: 29–45Google Scholar
  49. 49.
    Joshi GP, White PF. Management of acute and postoperative pain. Curr Opin Anaesth 2002; 14: 417–21Google Scholar
  50. 50.
    Joshi GP. Recent developments in regional anesthesia for ambulatory surgery. Curr Opin Anaesth 1999; 12: 643–7Google Scholar
  51. 51.
    Johr M. Postoperative pain management in infants and children: new developments. Curr Opin Anaesth 2000; 13: 285–9Google Scholar
  52. 52.
    Dahl JB, Moiniche S, Kehlet H. Wound infiltration with local anaesthetics for postoperative pain relief. Acta Anaesthesiol Scand 1994; 38: 7–14PubMedGoogle Scholar
  53. 53.
    Kopacz DJ, Carpenter RL, Mackey DC. Effect of ropivacaine on cutaneous capillary blood flow in pigs. Anesthesiology 1989; 71: 69–74PubMedGoogle Scholar
  54. 54.
    Nakamura K, Toda H, Kakuyama M, et al. Direct vascular effect of ropivacaine in femoral artery and vein of the dog. Acta Anaesthesiol Scand 1993; 37: 269–73PubMedGoogle Scholar
  55. 55.
    Cederholm I, Evers H, Lofstrom JB. Effect of intradermal injection of saline or a local anaesthetic agent on skin blood flow: a methodological study in man. Acta Anaesthesiol Scand 1991; 35: 208–15PubMedGoogle Scholar
  56. 56.
    Cederholm I, Akerman B, Evers H. Local analgesic and vascular effects of intradermal ropivacaine and bupivacaine in various concentrations with and without addition of adrenaline in man. Acta Anaesthesiol Scand 1994; 38: 322–7PubMedGoogle Scholar
  57. 57.
    Cederholm I, Evers H, Lofstrom JB. Skin blood flow after intradermal injection of ropivacaine in various concentrations with and without epinephrine evaluated by laser Doppler flowmetry. Reg Anesth 1992; 17: 322–8PubMedGoogle Scholar
  58. 58.
    Guinard J, Carpenter R, Owens B, et al. Comparison between ropivacaine and bupivacaine after subcutaneous injection in pigs: cutaneous blood flow and surgical bleeding. Reg Anesth 1991; 16: 268–71PubMedGoogle Scholar
  59. 59.
    Tetzlaff JE, editor. Ropivacaine, clinical pharmacology of local anesthetics. Boston: Butterworth Heinemann, 2000: 125–31Google Scholar
  60. 60.
    Burke D, Joypaul V, Thomson MF. Circumcision supplemented by dorsal penile nerve block with 0.75% ropivacaine: a complication. Reg Anesth Pain Med 2000; 25: 424–7PubMedGoogle Scholar
  61. 61.
    Johansson B, Glise H, Hallerback B, et al. Preoperative local infiltration with ropivacaine for postoperative pain relief after cholecystectomy. Anesth Analg 1994; 78: 210–4PubMedGoogle Scholar
  62. 62.
    Johansson B, Hallerback B, Stubberod A, et al. Preoperative local infiltration with ropivacaine for postoperative pain relief after inguinal hernia repair: a randomised controlled trial. Eur J Surg 1997; 163: 371–8PubMedGoogle Scholar
  63. 63.
    Mulroy MF, Wills RP. Spinal anesthesia for outpatients: appropriate agents and techniques. J Clin Anesth 1995; 7: 622–7PubMedGoogle Scholar
  64. 64.
    Pettersson N, Emanuelsson BM, Reventlid H, et al. High-dose ropivacaine wound infiltration for pain relief after inguinal hernia repair: a clinical and pharmacokinetic evaluation. Reg Anesth Pain Med 1998; 23: 189–96PubMedGoogle Scholar
  65. 65.
    Pettersson N, Berggren P, Larsson M, et al. Pain relief by wound infiltration with bupivacaine or high-dose ropivacaine after inguinal hernia repair. Reg Anesth Pain Med 1999; 24(6): 569–75PubMedGoogle Scholar
  66. 66.
    Fanelli G, Casati A, Beccaria P, et al. A double-blind comparison of ropivacaine, bupivacaine, and mepivacaine during sciatic and femoral nerve blockade. Anesth Analg 1998; 87: 597–600PubMedGoogle Scholar
  67. 67.
    Dixon WJ, Massey FJ. Introduction to statistical analysis. 4th ed. New York: McGraw-Hill, 1983: 428–39Google Scholar
  68. 68.
    Greengrass RA, Klein SM, D’Ercole FJ, et al. Lumbar plexus and sciatic nerve block for knee arthroplasty: comparison of ropivacaine and bupivacaine. Can J Anaesth 1998; 45: 1094–6PubMedGoogle Scholar
  69. 69.
    Raeder JC, Drosdahl S, Klaastad O, et al. Axillary brachial plexus block with ropivacaine 7.5 mg/ml: a comparative study with bupivacaine 5 mg/ml. Acta Anaesthesiol Scand 1999; 43: 794–8PubMedGoogle Scholar
  70. 70.
    Bertini L, Tagariello V, Mancini S, et al. 0.75% and 0.5% ropivacaine for axillary brachial plexus block: a clinical comparison with 0.5% bupivacaine. Reg Anesth Pain Med 1999; 24: 514–8PubMedGoogle Scholar
  71. 71.
    Rawal N, Allvin R, Axelsson K, et al. Patient-controlled regional analgesia (PCRA) at home: controlled comparison between bupivacaine and ropivacaine brachial plexus analgesia. Anesthesiology 2002; 96: 1290–6PubMedGoogle Scholar
  72. 72.
    Vaghadia H, Chan V, Ganapathy S, et al. A multicentre trial of ropivacaine 7.5mg × ml(-1) vs bupivacaine 5mg × ml(-1) for supra clavicular brachial plexus anesthesia. Can J Anaesth 1999; 46: 946–51PubMedGoogle Scholar
  73. 73.
    Hickey R, Blanchard J, Hoffman J, et al. Plasma concentrations of ropivacaine given with or without epinephrine for brachial plexus block. Can J Anaesth 1990; 37: 878–82PubMedGoogle Scholar
  74. 74.
    Salama H, Farr AK, Guyton DL. Anesthetic myotoxicity as a cause of restrictive strabismus after scleral buckling surgery. Retina 2000; 20: 478–82PubMedGoogle Scholar
  75. 75.
    Zink W, Graf BM, Sinner B, et al. Differential effects of bupivacaine on intracellular Ca2+ regulation: potential mechanisms of its myotoxicity. Anesthesiology 2002; 97: 710–6PubMedGoogle Scholar
  76. 76.
    Zink W, Kunst G, Martin E, et al. Differential effects of S(−)- ropivacaine and bupivacaine on intracellular Ca2+ homeostasis in mammalian skeletal muscle fibers [abstract]. Anesthesiology 2002; 96: A–972Google Scholar
  77. 77.
    Gioia L, Prandi E, Codenotti M, et al. Peribulbar anesthesia with either 0.75% ropivacaine or a 2% lidocaine and 0.5% bupivacaine mixture for vitreoretinal surgery: a double-blinded study. Anesth Analg 1999; 89: 739–42PubMedGoogle Scholar
  78. 78.
    Huha T, Ala-Kokko TI, Salomaki T, et al. Clinical efficacy and pharmacokinetics of 1% ropivacaine and 0.75% bupivacaine in peribulbar anaesthesia for cataract surgery. Anaesthesia 1999; 54: 137–41PubMedGoogle Scholar
  79. 79.
    Nociti JR, Serzedo PS, Zuccolotto EB, et al. Ropivacaine in peribulbar block: a comparative study with bupivacaine. Acta Anaesthesiol Scand 1999; 43: 799–802PubMedGoogle Scholar
  80. 80.
    Nociti JR, Serzedo PS, Zuccolotto EB, et al. Intraocular pressure and ropivacaine in peribulbar block: a comparative study with bupivacaine. Acta Anaesthesiol Scand 2001; 45: 600–2PubMedGoogle Scholar
  81. 81.
    Feldman HS, Covino BG. Comparative motor-blocking effects of bupivacaine and ropivacaine, a new amino amide local anesthetic, in the rat and dog. Anesth Analg 1988; 67: 1047–52PubMedGoogle Scholar
  82. 82.
    Malinovsky JM, Charles F, Baudrimont M, et al. Intrathecal ropivacaine in rabbits: pharmacodynamic and neurotoxicologic study. Anesthesiology 2002; 97: 429–35PubMedGoogle Scholar
  83. 83.
    van Kleef JW, Veering BT, Burm AG. Spinal anesthesia with ropivacaine: a double-blind study on the efficacy and safety of 0.5% and 0.75% solutions in patients undergoing minor lower limb surgery. Anesth Analg 1994; 78: 1125–30PubMedGoogle Scholar
  84. 84.
    Wahedi W, Nolte H, Klein P. Ropivacaine for spinal anesthesia: a dose-finding study [in German]. Anaesthesist 1996; 45: 737–44PubMedGoogle Scholar
  85. 85.
    Gautier PE, De Kock M, Van Steenberge A, et al. Intrathecal ropivacaine for ambulatory surgery. Anesthesiology 1999; 91: 1239–45PubMedGoogle Scholar
  86. 86.
    Gautier PE. Intrathecal ropivacaine. Acta Anaesthesiol Belg 2000; 51: 127–9PubMedGoogle Scholar
  87. 87.
    Whiteside JB, Burke D, Wildsmith JA. Spinal anaesthesia with ropivacaine 5mg ml(-1) in glucose 10mg ml(-1) or 50mg ml(-1). Br J Anaesth 2001; 86: 241–4PubMedGoogle Scholar
  88. 88.
    Khaw KS, Ngan Kee WD, Wong EL, et al. Spinal ropivacaine for cesarean section: a dose-finding study. Anesthesiology 2001; 95: 1346–50PubMedGoogle Scholar
  89. 89.
    Khaw KS, Ngan Kee WD, Wong M, et al. Spinal ropivacaine for cesarean delivery: a comparison of hyperbaric and plain solutions. Anesth Analg 2002; 94: 680–5PubMedGoogle Scholar
  90. 90.
    Soni AK, Miller CG, Pratt SD, et al. Low dose intrathecal ropivacaine with or without sufentanil provides effective analgesia and does not impair motor strength during labour: a pilot study. Can J Anaesth 2001; 48: 677–80PubMedGoogle Scholar
  91. 91.
    Chung CJ, Choi SR, Yeo KH, et al. Hyperbaric spinal ropivacaine for cesarean delivery: a comparison to hyperbaric bupivacaine. Anesth Analg 2001; 93: 157–61PubMedGoogle Scholar
  92. 92.
    Malinovsky JM, Charles F, Kick O, et al. Intrathecal anesthesia: ropivacaine versus bupivacaine. Anesth Analg 2000; 91: 1457–60PubMedGoogle Scholar
  93. 93.
    McNamee DA, Parks L, McClelland AM, et al. Intrathecal ropivacaine for total hip arthroplasty: double-blind comparative study with isobaric 7.5mg ml(-1) and 10mg ml(-1). Br J Anaesth 2001; 87: 743–7PubMedGoogle Scholar
  94. 94.
    Beilin Y, Galea M, Zahn J, et al. Epidural ropivacaine for the initiation of labor epidural analgesia: a dose finding study. Anesth Analg 1999; 88: 1340–5PubMedGoogle Scholar
  95. 95.
    Cascio MG, Gaiser RR, Camann WR, et al. Comparative evaluation of four different infusion rates of ropivacaine (2 mg/ml) for epidural labor analgesia. Reg Anesth Pain Med 1998; 23: 548–53PubMedGoogle Scholar
  96. 96.
    Benhamou D, Hamza J, Eledjam JJ, et al. Continuous extradural infusion of ropivacaine 2mg ml-1 for pain relief during labour. Br J Anaesth 1997; 78: 748–50PubMedGoogle Scholar
  97. 97.
    Sia AT, Chong JL. Epidural 0.2% ropivacaine for labour analgesia: parturient-controlled or continuous infusion? Anaesth Intensive Care 1999; 27: 154–8PubMedGoogle Scholar
  98. 98.
    Sia AT, Ruban P, Chong JL, et al. Motor blockade is reduced with ropivacaine 0.125% for parturient-controlled epidural analgesia during labour. Can J Anaesth 1999; 46: 1019–23PubMedGoogle Scholar
  99. 99.
    Meister GC, D’Angelo R, Owen M, et al. A comparison of epidural analgesia with 0.125% ropivacaine with fentanyl versus 0.125% bupivacaine with fentanyl during labor. Anesth Analg 2000; 90: 632–7PubMedGoogle Scholar
  100. 100.
    Gaiser RR, Venkateswaren P, Cheek TG, et al. Comparison of 0.25% ropivacaine and bupivacaine for epidural analgesia for labor and vaginal delivery. J Clin Anesth 1997; 9: 564–8PubMedGoogle Scholar
  101. 101.
    Muir HA, Writer D, Douglas J, et al. Double-blind comparison of epidural ropivacaine 0.25% and bupivacaine 0.25%, for the relief of childbirth pain. Can J Anaesth 1997; 44: 599–604PubMedGoogle Scholar
  102. 102.
    Stienstra R, Jonker TA, Bourdrez P, et al. Ropivacaine 0.25% versus bupivacaine 0.25% for continuous epidural analgesia in labor: a double-blind comparison. Anesth Analg 1995; 80: 285–9PubMedGoogle Scholar
  103. 103.
    Fischer C, Blanie P, Jaouen E, et al. Ropivacaine, 0.1%, plus sufentanil, 0.5 microg/ml, versus bupivacaine, 0.1%, plus sufentanil, 0.5 microg/ml, using patient-controlled epidural analgesia for labor: a double-blind comparison. Anesthesiology 2000; 92: 1588–93PubMedGoogle Scholar
  104. 104.
    Owen MD, D’Angelo R, Gerancher JC, et al. 0.125% ropivacaine is similar to 0.125% bupivacaine for labor analgesia using patient-controlled epidural infusion. Anesth Analg 1998; 86: 527–31PubMedGoogle Scholar
  105. 105.
    Owen MD, Dean LS. Ropivacaine. Expert Opin Pharmacother 2000; 1: 325–36PubMedGoogle Scholar
  106. 106.
    Campbell DC, Zwack RM, Crone LA, et al. Ambulatory labor epidural analgesia: bupivacaine versus ropivacaine. Anesth Analg 2000; 90: 1384–9PubMedGoogle Scholar
  107. 107.
    Lee BB, Ngan Kee WD, Lau WM, et al. Epidural infusions for labor analgesia: a comparison of 0.2% ropivacaine, 0.1% ropivacaine, and 0.1% ropivacaine with fentanyl. Reg Anesth Pain Med 2002; 27: 31–6PubMedGoogle Scholar
  108. 108.
    Lee BB, Ngan Kee WD, Wong EL, et al. Dose-response study of epidural ropivacaine for labor analgesia. Anesthesiology 2001; 94: 767–72PubMedGoogle Scholar
  109. 109.
    Writer WD, Stienstra R, Eddleston JM, et al. Neonatal outcome and mode of delivery after epidural analgesia for labour with ropivacaine and bupivacaine: a prospective meta-analysis. Br J Anaesth 1998; 81: 713–7PubMedGoogle Scholar
  110. 110.
    Owen MD, Thomas JA, Smith T, et al. Ropivacaine 0.075% and bupivacaine 0.075% with fentanyl 2 microg/mL are equivalent for labor epidural analgesia. Anesth Analg 2002; 94: 179–83PubMedGoogle Scholar
  111. 111.
    Hofmann-Kiefer K, Saran K, Brederode A, et al. Ropivacaine 2 mg/mL vs bupivacaine 1.25 mg/mL with sufentanil using patient-controlled epidural analgesia in labour. Acta Anaesthesiol Scand 2002; 46: 316–21PubMedGoogle Scholar
  112. 112.
    Clement HJ, Caruso L, Lopez F, et al. Epidural analgesia with 0.15% ropivacaine plus sufentanil 0.5 microgram ml-1 versus 0.10% bupivacaine plus sufentanil 0.5 microgram ml-1: a double blind comparison during labour. Br J Anaesth 2002; 88: 809–13PubMedGoogle Scholar
  113. 113.
    Landau R, Schiffer E, Morales M, et al. The dose-sparing effect of clonidine added to ropivacaine for labor epidural analgesia. Anesth Analg 2002; 95: 728–34PubMedGoogle Scholar
  114. 114.
    Aveline C, El Metaoua S, Masmoudi A, et al. The effect of clonidine on the minimum local analgesic concentration of epidural ropivacaine during labor. Anesth Analg 2002; 95: 735–40PubMedGoogle Scholar
  115. 115.
    Concepcion M, Arthur GR, Steele SM, et al. A new local anesthetic, ropivacaine: its epidural effects in humans. Anesth Analg 1990; 70: 80–5PubMedGoogle Scholar
  116. 116.
    Niesel HC, Eilingsfeld T, Kaiser H, et al. Ropivacaine for peridural anesthesia: studies on the dose-response relationship in orthopedic surgery [in German]. Reg Anaesth 1990; 13: 73–7PubMedGoogle Scholar
  117. 117.
    Whitehead E, Arrigoni B, Bannister J. An open study of ropivacaine in extradural anaesthesia. Br J Anaesth 1990; 64: 67–71PubMedGoogle Scholar
  118. 118.
    Kerkkamp HE, Gielen MJ, Edstrom HH. Comparison of 0.75% ropivacaine with epinephrine and 0.75% bupivacaine with epinephrine in lumbar epidural anesthesia. Reg Anesth 1990; 15: 204–7PubMedGoogle Scholar
  119. 119.
    Wood MB, Rubin AP. A comparison of epidural 1% ropivacaine and 0.75% bupivacaine for lower abdominal gynecologic surgery. Anesth Analg 1993; 76: 1274–8PubMedGoogle Scholar
  120. 120.
    Katz JA, Knarr D, Bridenbaugh PO. A double-blind comparison of 0.5% bupivacaine and 0.75% ropivacaine administered epidurally in humans. Reg Anesth 1990; 15: 250–2PubMedGoogle Scholar
  121. 121.
    Finucane BT, Sandler AN, McKenna J, et al. A double-blind comparison of ropivacaine 0.5%, 0.75%, 1.0% and bupivacaine 0.5%, injected epidurally, in patients undergoing abdominal. Can J Anaesth 1996; 43(5 Pt 1): 442–9PubMedGoogle Scholar
  122. 122.
    Wolff AP, Hasselstrom L, Kerkkamp HE, et al. Extradural ropivacaine and bupivacaine in hip surgery. Br J Anaesth 1995; 74: 458–60PubMedGoogle Scholar
  123. 123.
    Morrison LM, Emanuelsson BM, McClure JH, et al. Efficacy and kinetics of extradural ropivacaine: comparison with bupivacaine. Br J Anaesth 1994; 72: 164–9PubMedGoogle Scholar
  124. 124.
    Griffin RP, Reynolds F. Extradural anaesthesia for caesarean section: a double-blind comparison of 0.5% ropivacaine with 0.5% bupivacaine. Br J Anaesth 1995; 74: 512–6PubMedGoogle Scholar
  125. 125.
    Crosby E, Sandler A, Finucane B, et al. Comparison of epidural anaesthesia with ropivacaine 0.5% and bupivacaine 0.5% for caesarean section. Can J Anaesth 1998; 45: 1066–71PubMedGoogle Scholar
  126. 126.
    Datta S, Camann W, Bader A, et al. Clinical effects and maternal and fetal plasma concentrations of epidural ropivacaine versus bupivacaine for cesarean section. Anesthesiology 1995; 82: 1346–52PubMedGoogle Scholar
  127. 127.
    Muldoon T, Milligan K, Quinn P, et al. Comparison between extradural infusion of ropivacaine or bupivacaine for the prevention of postoperative pain after total knee arthroplasty. Br J Anaesth 1998; 80: 680–1PubMedGoogle Scholar
  128. 128.
    Badner NH, Reid D, Sullivan P, et al. Continuous epidural infusion of ropivacaine for the prevention of postoperative pain after major orthopaedic surgery: a dose-finding study. Can J Anaesth 1996; 43: 17–22PubMedGoogle Scholar
  129. 129.
    Schug SA, Scott DA, Payne J, et al. Postoperative analgesia by continuous extradural infusion of ropivacaine after upper abdominal surgery. Br J Anaesth 1996; 76: 487–91PubMedGoogle Scholar
  130. 130.
    Scott DA, Chamley DM, Mooney PH, et al. Epidural ropivacaine infusion for postoperative analgesia after major lower abdominal surgery: a dose finding study. Anesth Analg 1995; 81: 982–6PubMedGoogle Scholar
  131. 131.
    Turner G, Blake D, Buckland M, et al. Continuous extradural infusion of ropivacaine for prevention of postoperative pain after major orthopaedic surgery. Br J Anaesth 1996; 76: 606–10PubMedGoogle Scholar
  132. 132.
    Etches RC, Writer WD, Ansley D, et al. Continuous epidural ropivacaine 0.2% for analgesia after lower abdominal surgery. Anesth Analg 1997; 84: 784–90PubMedGoogle Scholar
  133. 133.
    Bertini L, Mancini S, Di-Benedetto P, et al. Postoperative analgesia by combined continuous infusion and patient-controlled epidural analgesia (PCEA) following hip replacement: ropivacaine versus bupivacaine. Acta Anaesthesiol Scand 2001; 45: 782–5PubMedGoogle Scholar
  134. 134.
    Scott DA, Blake D, Buckland M, et al. A comparison of epidural ropivacaine infusion alone and in combination with 1, 2, and 4 microg/mL fentanyl for seventy-two hours of postoperative analgesia after major abdominal surgery. Anesth Analg 1999; 88: 857–64PubMedGoogle Scholar
  135. 135.
    Kampe S, Weigand C, Kaufmann J, et al. Postoperative analgesia with no motor block by continuous epidural infusion of ropivacaine 0.1% and sufentanil after total hip replacement. Anesth Analg 1999; 89: 395–8PubMedGoogle Scholar
  136. 136.
    Lorenzini C, Moreira LB, Ferreira MB. Efficacy of ropivacaine compared with ropivacaine plus sufentanil for postoperative analgesia after major knee surgery. Anaesthesia 2002; 57: 424–8PubMedGoogle Scholar
  137. 137.
    Brodner G, Mertes N, Van Aken H, et al. What concentration of sufentanil should be combined with ropivacaine 0.2% wt/vol for postoperative patient-controlled epidural analgesia? Anesth Analg 2000; 90: 649–57PubMedGoogle Scholar
  138. 138.
    Finucane BT, Ganapathy S, Carli F, et al. Prolonged epidural infusions of ropivacaine (2 mg/ml) after colonic surgery: the impact of adding fentanyl. Anesth Analg 2001; 92: 1276–85PubMedGoogle Scholar
  139. 139.
    Berti M, Fanelli G, Casati A, et al. Patient supplemented epidural analgesia after major abdominal surgery with bupivacaine/fentanyl or ropivacaine/fentanyl. Can J Anaesth 2000; 47: 27–32PubMedGoogle Scholar
  140. 140.
    Senard M, Joris JL, Ledoux D, et al. A comparison of 0.1% and 0.2% ropivacaine and bupivacaine combined with morphine for postoperative patient-controlled epidural analgesia after major abdominal surgery. Anesth Analg 2002; 95: 444–9PubMedGoogle Scholar
  141. 141.
    Brodner G, Mertes N, Van Aken H, et al. Epidural analgesia with local anesthetics after abdominal surgery: earlier motor recovery with 0.2% ropivacaine than 0.175% bupivacaine. Anesth Analg 1999; 88: 128–33PubMedGoogle Scholar
  142. 142.
    Hubler M, Litz RJ, Sengebusch KH, et al. A comparison of five solutions of local anaesthetics and/or sufentanil for continuous, postoperative epidural analgesia after major urological surgery. Eur J Anaesthesiol 2001; 18: 450–7PubMedGoogle Scholar
  143. 143.
    Pouzeratte Y, Delay JM, Brunat G, et al. Patient-controlled epidural analgesia after abdominal surgery: ropivacaine versus bupivacaine. Anesth Analg 2001; 93: 1587–92PubMedGoogle Scholar
  144. 144.
    Jayr C, Beaussier M, Gustafsson U, et al. Continuous epidural infusion of ropivacaine for postoperative analgesia after major abdominal surgery: comparative study with i.v. PCA morphine. Br J Anaesth 1998; 81: 887–92PubMedGoogle Scholar
  145. 145.
    Wulf H, Worthmann F, Behnke H, et al. Pharmacokinetics and pharmacodynamics of ropivacaine 2 mg/ml, 5 mg/ml, or 7.5 mg/mL after ilioinguinal blockade for inguinal hernia repair in adults. Anesth Analg 1999; 89: 1471–4PubMedGoogle Scholar
  146. 146.
    Kampe S, Randebrock G, Kiencke P, et al. Comparison of continuous epidural infusion of ropivacaine and sufentanil with intravenous patient-controlled analgesia after total hip replacement. Anaesthesia 2001; 56: 1189–93PubMedGoogle Scholar
  147. 147.
    Ivani G, De Negri P, Conio A, et al. Ropivacaine-clonidine combination for caudal blockade in children. Acta Anaesthesiol Scand 2000; 44: 446–9PubMedGoogle Scholar
  148. 148.
    Ivani G, Lampugnani E, Torre M, et al. Comparison of ropivacaine with bupivacaine for paediatric caudal block. Br J Anaesth 1998; 81: 247–8PubMedGoogle Scholar
  149. 149.
    Ivani G, Mazzarello G, Lampugnani E, et al. Ropivacaine for central blocks in children. Anaesthesia 1998; 53Suppl. 2: 74–6PubMedGoogle Scholar
  150. 150.
    Khalil S, Campos C, Farag AM, et al. Caudal block in children: ropivacaine compared with bupivacaine. Anesthesiology 1999; 91: 1279–84PubMedGoogle Scholar
  151. 151.
    Da Conceicao MJ, Coelho L, Khalil M. Ropivacaine 0.25% compared with bupivacaine 0.25% by the caudal route. Paediatr Anaesth 1999; 9: 229–33PubMedGoogle Scholar
  152. 152.
    Koinig H, Krenn CG, Glaser C, et al. The dose-response of caudal ropivacaine in children. Anesthesiology 1999; 90: 1339–44PubMedGoogle Scholar
  153. 153.
    Luz G, Innerhofer P, Haussler B, et al. Comparison of ropivacaine 0.1% and 0.2% with bupivacaine 0.2% for single-shot caudal anaesthesia in children. Paediatr Anaesth 2000; 10: 499–504PubMedGoogle Scholar
  154. 154.
    Bosenberg A, Thomas J, Lopez T, et al. The efficacy of caudal ropivacaine 1, 2 and 3mg x l(-1) for postoperative analgesia in children. Paediatr Anaesth 2002; 12: 53–8PubMedGoogle Scholar
  155. 155.
    De Negri P, Ivani G, Visconti C, et al. The dose-response relationship for clonidine added to a postoperative continuous epidural infusion of ropivacaine in children. Anesth Analg 2001; 93: 71–6PubMedGoogle Scholar
  156. 156.
    Lee HM, Sanders GM. Caudal ropivacaine and ketamine for postoperative analgesia in children. Anaesthesia 2000; 55: 806–10PubMedGoogle Scholar
  157. 157.
    De Negri P, Ivani G, Visconti C, et al. How to prolong postoperative analgesia after caudal anaesthesia with ropivacaine in children: S-ketamine versus clonidine. Paediatr Anaesth 2001; 11: 679–83PubMedGoogle Scholar
  158. 158.
    Kokki H, Ruuskanen A, Karvinen M. Comparison of epidural pain treatment with sufentanil-ropivacaine infusion with and without epinephrine in children. Acta Anaesthesiol Scand 2002; 46: 647–53PubMedGoogle Scholar
  159. 159.
    Capogna G. Ropivacaine and bupivacaine in obstetric analgesia. Eur J Anaesthesiol 2002; 19: 237–9PubMedGoogle Scholar
  160. 160.
    Lyons G, Columb M, Wilson RC, et al. Epidural pain relief in labour: potencies of levobupivacaine and racemic bupivacaine. Br J Anaesth 1998; 81: 899–901PubMedGoogle Scholar
  161. 161.
    Lacassie HJ, Columb MO, Lacassie HP, et al. The relative motor blocking potencies of epidural bupivacaine and ropivacaine in labor. Anesth Analg 2002; 95: 204–8PubMedGoogle Scholar
  162. 162.
    McClellan KJ, Faulds D. Ropivacaine: an update of its use in regional anaesthesia. Drugs 2000; 60: 1065–93PubMedGoogle Scholar
  163. 163.
    D’Angelo R, James RL. Is ropivacaine less potent than bupivacaine? Anesthesiology 1999; 90: 941–3PubMedGoogle Scholar
  164. 164.
    Stienstra R. A closer look at the new local anesthetics. Acta Anaesthesiol Belg 1999; 50: 211–6PubMedGoogle Scholar
  165. 165.
    Wildsmith JA. New local anaesthetics: how much is improved safety worth? Acta Anaesthesiol Scand 2001; 45: 652–3PubMedGoogle Scholar
  166. 166.
    Pasqualucci A, Contardo R, Da Broi U, et al. The effects of intraperitoneal local anesthetic on analgesic requirements and endocrine response after laparoscopic cholecystectomy: a randomized double-blind controlled study. J Laparoendosc Surg 1994; 4: 405–12PubMedGoogle Scholar
  167. 167.
    Chundrigar T, Hedges A, Morris R, et al. Intraperitoneal bupivacaine for effective pain relief after laparoscopic cholecystectomy. Ann R Coll Surg Engl 1993; 75: 473–39Google Scholar
  168. 168.
    Bisgaard T, Klarskov B, Kristiansen VB, et al. Multi-regional local anesthetic infiltration during laparoscopic cholecystectomy in patients receiving prophylactic multi-modal analgesia: a randomized, double-blinded, placebo-controlled study. Anesth Analg 1999; 89: 1017–24PubMedGoogle Scholar
  169. 169.
    Dreher JK, Nemeth D, Limb R. Pain relief following day case laparoscopic tubal ligation with intra-peritoneal ropivacaine: a randomised double blind control study. Aust N Z J Obstet Gynaecol 2000; 40(4): 434–7PubMedGoogle Scholar
  170. 170.
    Goldstein A, Grimault P, Henique A, et al. Preventing postoperative pain by local anesthetic instillation after laparoscopic gynecologic surgery: a placebo-controlled comparison of bupivacaine and ropivacaine. Anesth Analg 2000; 91: 403–7PubMedGoogle Scholar
  171. 171.
    Labaille T, Mazoit JX, Paqueron X, et al. The clinical efficacy and pharmacokinetics of intraperitoneal ropivacaine for laparoscopic cholecystectomy. Anesth Analg 2002; 94: 100–5PubMedGoogle Scholar
  172. 172.
    Gupta A, Thorn SE, Axelsson K, et al. Postoperative pain relief using intermittent injections of 0.5% ropivacaine through a catheter after laparoscopic cholecystectomy. Anesth Analg 2002; 95: 450–6PubMedGoogle Scholar
  173. 173.
    Rautoma P, Santanen U, Avela R, et al. Diclofenac premedication but not intra-articular ropivacaine alleviates pain following day-case knee arthroscopy. Can J Anaesth 2000; 47: 220–4PubMedGoogle Scholar
  174. 174.
    Muller M, Burkhardt J, Borchardt E, et al. Postoperative analgesic effect after intra-articular morphine or ropivacaine following knee arthroscopy: a prospective randomized, doubleblinded study [in German]. Schmerz 2001; 15: 3–9PubMedGoogle Scholar
  175. 175.
    Klein SM, Nielsen KC, Martin A, et al. Interscalene brachial plexus block with continuous intraarticular infusion of ropivacaine. Anesth Analg 2001; 93: 601–5PubMedGoogle Scholar
  176. 176.
    Scott D, Lee A, Fagan D, et al. Acute toxicity of ropivacaine compared with that of bupivacaine. Anesth Analg 1989; 69: 563–9PubMedGoogle Scholar
  177. 177.
    Knudsen K, Beckman M, Blomberg S. Central nervous and cardiovascular effects during intravenous infusions of ropivacaine, bupivacaine and placebo in volunteers. Br J Anaesth 1997; 78: 507–14PubMedGoogle Scholar
  178. 178.
    Voulgaropoulos D, Johnson M, Covino B. Local Anesthetic Toxicity. Semin in Anesth 1990; 9: 8–15Google Scholar
  179. 179.
    Rowlingson JC. Toxicity of local anesthetic additives. Reg Anesth 1993; 18: 453–60PubMedGoogle Scholar
  180. 180.
    McCaughey W. Adverse effects of local anaesthetics. Drug Saf 1992; 7: 178–89PubMedGoogle Scholar
  181. 181.
    Reiz S, Nath S. Cardiotoxicity of local anaesthetic agents. Br J Anaesth 1986; 58: 736–46PubMedGoogle Scholar
  182. 182.
    Vladimirov M, Nau C, Mok W, et al. Potency of bupivacaine stereoisomers tested in vitro and in vivo: biochemical, electrophysiological, and neurobehavioral studies. Anesthesiology 2000; 93: 744–55PubMedGoogle Scholar
  183. 183.
    Graf BM, Abraham I, Eberbach N, et al. Differences in cardiotoxicity of bupivacaine and ropivacaine are the result of physicochemical and stereoselective properties. Anesthesiology 2002; 96: 1427–34PubMedGoogle Scholar
  184. 184.
    Reiz S, Haggmark S, Johansson G, et al. Cardiotoxicity of ropivacaine: a new amide local anaesthetic agent. Acta Anaesthesiol Scand 1989; 33: 93–8PubMedGoogle Scholar
  185. 185.
    Brun A. Effect of procaine, carbocaine and xylocaine on cutaneous muscle in rabbits and mice. Acta Anaesthesiol Scand 1959; 3: 59–73PubMedGoogle Scholar
  186. 186.
    Foster AH, Carlson BM. Myotoxicity of local anesthetics and regeneration of the damaged muscle fibers. Anesth Analg 1980; 59: 727–36PubMedGoogle Scholar
  187. 187.
    Hogan Q, Dotson R, Erickson S, et al. Local anesthetic myotoxicity: a case and review. Anesthesiology 1994; 80: 942–7PubMedGoogle Scholar
  188. 188.
    Sadeh M, Czyewski K, Stern LZ. Chronic myopathy induced by repeated bupivacaine injections. J Neurol Sci 1985; 67: 229–38PubMedGoogle Scholar
  189. 189.
    Parris WC, Dettbarn WD. Muscle atrophy following nerve block therapy [letter]. Anesthesiology 1988; 69: 289PubMedGoogle Scholar
  190. 190.
    Parris WCV, Dettbarn WD. Muscle atrophy following bupivacaine trigger point injection. Anesthesiol Rev 1989; 16: 50–3Google Scholar
  191. 191.
    Komorowski TE, Shepard B, Okland S, et al. An electron microscopic study of local anesthetic-induced skeletal muscle fiber degeneration and regeneration in the monkey. J Orthop Res 1990; 8: 495–503PubMedGoogle Scholar
  192. 192.
    Carlson BM, Shepard B, Komorowski TE. A histological study of local anesthetic-induced muscle degeneration and regeneration in the monkey. J Orthop Res 1990; 8: 485–94PubMedGoogle Scholar
  193. 193.
    Hall-Craggs EC. Early ultrastructural changes in skeletal muscle exposed to the local anaesthetic bupivacaine (Marcaine). Br J Exp Pathol 1980; 61: 139–49PubMedGoogle Scholar
  194. 194.
    Benoit PW, Belt WD. Destruction and regeneration of skeletal muscle after treatment with a local anaesthetic, bupivacaine (Marcaine). J Anat 1970; 107: 547–56PubMedGoogle Scholar
  195. 195.
    Benoit PW. Reversible skeletal muscle damage after administration of local anesthetics with and without epinephrine. J Oral Surg 1978; 36: 198–201PubMedGoogle Scholar
  196. 196.
    Pere P, Watanabe H, Pitkanen M, et al. Local myotoxicity of bupivacaine in rabbits after continuous supraclavicular brachial plexus block. Reg Anesth 1993; 18: 304–7PubMedGoogle Scholar
  197. 197.
    Kytta J, Heinonen E, Rosenberg PH, et al. Effects of repeated bupivacaine administration on sciatic nerve and surrounding muscle tissue in rats. Acta Anaesthesiol Scand 1986; 30: 625–9PubMedGoogle Scholar
  198. 198.
    Benoit PW, Yagiela A, Fort NF. Pharmacologic correlation between local anesthetic-induced myotoxicity and disturbances of intracellular calcium distribution. Toxicol Appl Pharmacol 1980; 52: 187–98PubMedGoogle Scholar
  199. 199.
    Brodner G, Mertes N, Buerkle H, et al. Acute pain management: analysis, implications and consequences after prospective experience with 6349 surgical patients. Eur J Anaesthesiol 2000; 17: 566–75PubMedGoogle Scholar
  200. 200.
    Macaire P, Gaertner E, Capdevila X. Continuous post-operative regional analgesia at home. Minerva Anestesiol 2001; 67: 109–16PubMedGoogle Scholar

Copyright information

© Adis Data Information BV 2004

Authors and Affiliations

  1. 1.Department of AnesthesiologyUniversity of HeidelbergHeidelbergGermany

Personalised recommendations