Drug Safety

, Volume 25, Issue 8, pp 561–582

Comparative Tolerability of Therapies for Ulcerative Colitis

Review Article

Abstract

This article reviews the clinical pharmacology, adverse events, and comparative tolerability of the drugs commonly available for treating ulcerative colitis.

Synthetic glucocorticoids are the most commonly used conventional corticosteroids in the treatment of ulcerative colitis. Corticosteroids can be expected to impact on every organ system and most metabolic activities of the body. Suppression of the hypothalamic-pituitary-adrenal axis is common, but reversible, with conventional corticosteroids, but not with newer topically-acting corticosteroids. A serious complication of corticosteroids in children is growth retardation.

The frequent adverse effects associated with the use of corticosteroids have prompted the development of a new group of rectal agents with equivalent efficacy and a more benign adverse event profile such as prednisolone metasulfobenzoate, fluticasone propionate, tixocortol pivalate, beclomethasone dipropionate and budesonide.

The incidence of adverse effects related to the use of sulfasalazine (5-aminosalicylic acid plus sulfapyridine) is high and is dose related. The most frequently reported adverse effect is intolerance, not allergy, and relates to the sulfapyridine moiety correlating with the acetylator phenotype.

Tolerance to 5-aminosalicylic acid by 80 to 90% of those patients allergic to, or intolerant of, sulfasalazine has given further evidence suggesting that the sulfa moiety is responsible for much of the toxicity of sulfasalazine. However, 10 to 20% of patients who are sulfasalazine intolerant have similar reactions to 5-aminosalicylic acid formulations, indicating that the 5-aminosalicylic acid moiety is responsible for adverse events in some patients taking sulfasalazine.

Adverse effects resulting from treatment with azathioprine and mercaptopurine can be divided into two categories: allergic-type reactions that appear to be dose-independent and nonallergic-type reactions that are probably dose- and metabolism-dependent. It is well established now that genotype and thiopurine methyltransferase activity have an important impact on the rate of adverse effects during azathioprine or mercaptopurine therapy.

Adverse effects resulting from high dose cyclosporin therapy for inflammatory bowel disease include: renal insufficiency, hypertension, opportunistic infections, seizures, paresthesias, tremor, headache, gingival hyperplasia, hypertrichosis, and anaphylaxis with intravenous cyclosporin. In contrast, the incidence of adverse events was relatively low when low-dose oral cyclosporin was used.

The incidence of adverse events associated with any of the medications used in the treatment of ulcerative colitis is difficult to assess and it is therefore hard to make a comparative evaluation. The broadening of the drug regimen available to the clinician has advanced our knowledge about the disease, and further development of more effective, less toxic agents can be anticipated in the future.

References

  1. 1.
    Singleton JW. Clinical features, course, and laboratory findings in ulcerative colitis. In: Kirsner JB, Shorter RG, editors. Inflammatory bowel disease. 4th ed. Baltimore (ML): Williams & Wilkins, 1995: 335–43Google Scholar
  2. 2.
    Truelove SC, Witts LJ. Cortisone in ulcerative colitis: a final report on a therapeutic trial. BMJ 1955; 2: 1041–8PubMedCrossRefGoogle Scholar
  3. 3.
    Powell-Tuck J, Day DW, Buckell NA, et al. Correlation between defined sigmoidoscopic appearances and other measures of disease activity in ulcerative colitis. Dig Dis Sci 1982 Jun; 27(6): 533–7PubMedCrossRefGoogle Scholar
  4. 4.
    Sutherland LR, Martin F, Greer S, et al. 5-Aminosalicylic acid enema in the treatment of distal ulcerative colitis, proctosigmoiditis and proctitis. Gastroenterology 1987; 92: 1894–8PubMedGoogle Scholar
  5. 5.
    Edwards FC, Truelove SC. The course and prognosis of ulcerative colitis. Part I: short-term prognosis. Part II: long-term prognosis. Gut 1963; 4: 299–315PubMedCrossRefGoogle Scholar
  6. 6.
    Kornbluth A, Sachar DB. Ulcerative colitis practice guidelines in adults. Am J Gastroenterol 1997; 92: 204–11PubMedGoogle Scholar
  7. 7.
    Swartz SL, Dluhy RG. Corticosteroids: clinical pharmacology and therapeutic use. Drugs 1978; 16(3): 238–55PubMedCrossRefGoogle Scholar
  8. 8.
    Lewis GP, Jusko WJ, Burke CW, et al. Prednisone side effects and serum protein levels. Lancet 1971; II: 778–80CrossRefGoogle Scholar
  9. 9.
    Rose JQ, Yurchack AM, Jusko WJ. Dose dependent pharmacokinetics of prednisone and prednisolone in man. J Pharmacokinet Biopharm 1981; 9: 389–417PubMedGoogle Scholar
  10. 10.
    Farmer RG, Schumacher OP. Treatment of ulcerative colitis with hydrocortisone enemas: relationship of hydrocortisone absorption, adrenal suppression, and clinical response. Dis Colon Rectum 1970; 13: 355–61PubMedCrossRefGoogle Scholar
  11. 11.
    Lima JJ, Giller J, Makichan JJ, et al. Bioavailability of hydrocortisone retention enemas in normal subjects. Am J Gastroenterol 1980; 73: 232–7PubMedGoogle Scholar
  12. 12.
    Meyers S. Oral and parenteral corticosteroids. In: Peppercorn MA, editor. Therapy of inflammatory bowel disease: new medical and surgical approaches. New York: Marcel Dekker, 1990: 19–23Google Scholar
  13. 13.
    Hanauer SB, Stathoupoulos G. Risk-benefit assessment of drugs used in the treatment of inflammatory bowel disease. Drug Saf 1991; 6: 192–219PubMedCrossRefGoogle Scholar
  14. 14.
    Enns R, Sutherland L. Adverse events of medical therapy for treatment for inflammatory bowel disease. In: Campieri M, Bianchi Porro G, Fiochi C, et al., editors. Clinical challenges in inflammatory bowel diseases: diagnosis, prognosis and treatment. Falk Symposium 97. Dordrecht: Kluwer Academic Publishers, 1998: 113–23Google Scholar
  15. 15.
    Stein R, Hanauer SB. Comparative tolerability of treatments for inflammatory bowel disease. Drug Saf 2000; 23: 429–48PubMedCrossRefGoogle Scholar
  16. 16.
    Ardizzone S, Bollani S, Molteni P, et al. Bone metabolism in inflammatory bowel disease. In: Campieri M, Bianchi Porro G, Fiochi C, et al., editors. Clinical challenges in inflammatory bowel diseases: diagnosis, prognosis and treatment. Falk Symposium 97. Dordrecht: Kluwer Academic Publishers, 1998: 100–5Google Scholar
  17. 17.
    Ardizzone S, Bollani S, Bettica P, et al. Altered bone metabolism in inflammatory bowel disease: there is a difference between Crohn’s disease and ulcerative colitis. J Intern Med 2000; 247: 63–70PubMedCrossRefGoogle Scholar
  18. 18.
    Issenman RM. Bone mineral metabolism in pediatric inflammatory bowel disease. Inflamm Bowel Dis 1999; 5: 192–9PubMedCrossRefGoogle Scholar
  19. 19.
    Sadeghi-Nejad A, Senoir B. The treatment of ulcerative colitis in children with alternate-day corticosteroids. Pediatrics 1968; 43: 840–4Google Scholar
  20. 20.
    Stuck AE, Minder CE, Frey FJ. Risk of infectious complications in patients taking glucocorticoids. Rev Infect Dis 1989; 11: 954–63PubMedCrossRefGoogle Scholar
  21. 21.
    Mulder CJJ, Tytgatt GN. Review article: topical corticosteroids in inflammatory bowel disease. Aliment Pharmacol Ther 1993; 7: 125–30PubMedCrossRefGoogle Scholar
  22. 22.
    Thiesen A, Thomson ABR. Review article: older systemic and newer topical glucocorticosteroids and the gastrointestinal tract. Aliment Pharmacol Ther 1996; 10: 487–96PubMedCrossRefGoogle Scholar
  23. 23.
    Ardizzone S, Bianchi Porro G. The topical treatment of distal ulcerative colitis. Eur J Gastroenterol Hepatol 1996; 8: 599–602PubMedCrossRefGoogle Scholar
  24. 24.
    Ardizzone S, Bianchi Porro G. A practical guide to the management of distal ulcerative colitis. Drugs 1998; 55: 519–42PubMedCrossRefGoogle Scholar
  25. 25.
    Svartz N. Salazopyrin, a new sulfanilamide preparation. Acta Med Scand 1942; 110: 557–90Google Scholar
  26. 26.
    Schroder H, Campbell DE. Absorption, metabolism, and excretion of salicylazosulfapyridine in man. Clin Pharmacol Ther 1972; 13: 539–551PubMedGoogle Scholar
  27. 27.
    Khan AK, Guthrie G, Johnston HH, et al. Tissue and bacterial splitting of sulphasalazine. Clin Sci 1983; 64: 349–54Google Scholar
  28. 28.
    Malchow K, Ewew JW, Brandes H, et al. European Cooperative Crohn’s Disease Study (ECCDS): results of drug treatment. Gastroenetrology 1984; 86: 246–66Google Scholar
  29. 29.
    Summers RW, Switz DM, Sessions JT, et al. National cooperative Crohn’s disease study: results of drug treatment. Gastroenterology 1979; 77: 847–69PubMedGoogle Scholar
  30. 30.
    Van Hees PAM, Tuinte JHM, Van Rossum JM, et al. Influence of intestinal transit time on azo-reduction of salicylazosulphapyridine (Salazopyrin). Gut 1 1979; 20: 300–4CrossRefGoogle Scholar
  31. 31.
    Das KM, Eastwood MA, McManus JPA, et al. The metabolism of of salicylazosulfapyridine in ulcerative colitis. Gut 1973; 14: 631–6PubMedCrossRefGoogle Scholar
  32. 32.
    Das KM, Sternlieb I. Salicylazosulfapyridine in inflammatory bowel disease. Am J Dig Dis 1975; 20: 971–6PubMedCrossRefGoogle Scholar
  33. 33.
    Shafii A, Chowdhury JR, Das KM, et al. Absorption, enterohepatic circulation and excretion of 5-aminosalicylic acid in rats. Am J Gastroenterol 1982; 77: 297–9PubMedGoogle Scholar
  34. 34.
    Das KM, Eastwood MA, McManus JP, et al. The metabolism of salicylazosulphapyridine ulcerative colitis: I. The ralationship between metabolites and the response to treatment in inpatients. Gut 1973; 14: 631–6PubMedCrossRefGoogle Scholar
  35. 35.
    Das KM, Eastwood MA, McManus JP, et al. Adverse reactions during salicylazosulfapyridine therapy and the relation with drug metabolism and acetylator phenotype. N Engl J Med 1973; 289: 491–5PubMedCrossRefGoogle Scholar
  36. 36.
    Taffet SL, Das KM. Sulfasalazine: adverse effects and desensitization. Dig Dis Sci 1983; 28: 833–42PubMedCrossRefGoogle Scholar
  37. 37.
    Reichheld JH, Peppercorn MA. Agents commonly used in the treatment of inflammatory bowel disease. In. Friedman G, Jacobson ED, McCallum RW, editors. Gastrointestinal pharmacology and therapeutics. Philadelphia (PA): Lippincott-Raven, 1997: 327–47Google Scholar
  38. 38.
    Davies GE, Pabek J. Selective erythroid and megakaryocytic aplasia after sulfasalazine administration [letter]. Arch Intern Med 1980; 140: 1122PubMedCrossRefGoogle Scholar
  39. 39.
    Gabor EP. Hemolytic anemia as adverse reaction to salicylazosulfapyridine [letter]. N Engl J Med 1973; 289: 1372PubMedGoogle Scholar
  40. 40.
    Goodacre RL, Ali MA, Vanderlinden B, et al. Hemolytic anemia in patients receiving sulfasalazine. Digestion 1978; 17: 503–8PubMedCrossRefGoogle Scholar
  41. 41.
    Franklin JL, Rosenberg IH. Impaired folic acid absorption in inflammatory bowel diasease: effects of salycilazosulphapyridine (Azulfidine). Gastroenterology 1973; 64: 517–25PubMedGoogle Scholar
  42. 42.
    Halsted CH, Gandhi G, Tamura T. Sulfasalazine inhibits the absorption of folates in ulcerative colitis. N Engl J Med 1981; 305: 1513–7PubMedCrossRefGoogle Scholar
  43. 43.
    Sandberg-Gertzen H, Jarnerot G, Kraaz W. Azodisal sodium in the treatment of ulcerative colitis: a study of tolerance and relapse-prevention properties. Gastroenterology 1986; 90: 1024–30PubMedGoogle Scholar
  44. 44.
    Ring FA, Hershfield NB, Machin GA, et al. Sulfalazine-induced colitis complicating idiopathic ulcerative colitis. Can Med Assoc J 1984; 131: 43–5PubMedGoogle Scholar
  45. 45.
    Ruppin H, Domschke S. Acute ulcerative colitis: a rare complication of sulfasalazine therapy. Hepatogastroenterology 1984; 31: 192–3PubMedGoogle Scholar
  46. 46.
    Shanahan F, Targan S. Sulfasalazine and salicylate-induced exacerbation of ulcerative colitis [letter]. N Engl J Med 1987; 317: 455PubMedGoogle Scholar
  47. 47.
    Das KM. Sulfasalazine therapy in inflammatory bowel disease. Gastroeneterol Clin North Am 1989; 18: 1–20Google Scholar
  48. 48.
    Azad Khan AK, Piris J, Truelove SC, et al. An experiment to determine the active therapeutic moiety of sulphasalazine. Lancet 1977; II: 892–5CrossRefGoogle Scholar
  49. 49.
    Klotz U. Clinical pharmacokinetics of sulfasalazine, its metabolites, and other prodrugs of 5-aminosalicylic acid. Clin Pharmacokinet 1985; 10: 285–302PubMedCrossRefGoogle Scholar
  50. 50.
    Rasmussen SN, Bondesen S, Huidberg EF, et al. 5-Aminosalicylic acid in a slow-release preparation: bioavailability, plasma levels, and excretion in humans. Gastroenterology 1982; 83: 1062–70PubMedGoogle Scholar
  51. 51.
    Agnholt J, Sorensen HT, Rasmusen SN, et al. Cardiac sensitivity to 5-aminoslaicylic acid [letter]. Lancet, 1989; I: 1135CrossRefGoogle Scholar
  52. 52.
    Waanders H, Thompson J. Kawasaki-like syndrome after treatment with mesalamine. Am J Gastroenterol 1991; 86: 219–22PubMedGoogle Scholar
  53. 53.
    Poldermans D, van Blankenstein M. Pancreatitis induced by disodium azodisalicylate. Am J Gastroenterol 1988; 83: 578–80PubMedGoogle Scholar
  54. 54.
    Sachedina B, Saibil F, Cohen LB, et al. Acute pancreatitis due to 5-aminosalicylate. Ann Intern Med 1989; 110: 490–2PubMedGoogle Scholar
  55. 55.
    Austin CA, Cann PA, Jones TH, et al. Exacerbation of diarrhoea and pain in patients treated with 5-aminosalicylic acid for ulcerative colitis [letter]. Lancet 1984; I: 917–8CrossRefGoogle Scholar
  56. 56.
    Chakraborty TK, Bhatia D, Heading RC, et al. Salicylate induced exacerbation of ulcerative colitis. Gut 1987; 28: 613–5PubMedCrossRefGoogle Scholar
  57. 57.
    Kutty K, Raman KR, Hawken K, et al. Hair loss and 5-aminosalicylic acid enemas. Ann Intern Med 1982; 97: 785–6PubMedGoogle Scholar
  58. 58.
    Corrigan G, Stevens PE. Review article: interstitial nephritis associated with the use of mesalazine in inflammatory bowel disease. Aliment Pharmacol Ther 2000; 14: 1–6PubMedCrossRefGoogle Scholar
  59. 59.
    Pamukcu R, Hanauer SB, Chang EB. Effect of disodium azodisalicylate on electrolyte transport in rabbit ileum and colon in vitro comparison with sulfasalazine and 5-aminosalicylic acid. Gastroenterology 1988; 95: 975–81PubMedGoogle Scholar
  60. 60.
    Sanborn WJ. A review of immune modifier therapy for inflammatory bowel disease: azathioprine, 6-mercaptopurine, cyclosporine, and methotrexate. Am J Gastroenterol 1996; 91: 423–33Google Scholar
  61. 61.
    Sandborn WJ. Azathioprine: state of the art in inflammatory bowel disease. Scand J Gastroenterol 1998; 33Suppl. 25: 92–9CrossRefGoogle Scholar
  62. 62.
    Lamers CBHW, Griffioen G, van Hogenzand RA, et al. Azathioprine: an update on clinical efficacy and safety in inflammatory bowel disease. Scand J Gastroenterol 1999; 34Suppl. 230: 111–5Google Scholar
  63. 63.
    Su CG, Stein RB, Lewis JD, et al. Azathioprine or 6-mercaptopurine for inflammatory bowel disease: do risks outweigh benefits? Dig Liver Dis 2000; 32: 518–31PubMedCrossRefGoogle Scholar
  64. 64.
    Ardizzone S, Molteni P, Imbesi V, et al. Azathioprine in steroid-resistant and steroid-dependent ulcerative colitis. J Clin Gastroenterol 1997; 25: 330–3PubMedCrossRefGoogle Scholar
  65. 65.
    Ardizzone S, Samolvico F, Bollani S, et al. Azathioprine is more effective than oral 5-ASA in the treatment of steroid-dependent ulcerative colitis [abstract]. Gastroenterology 2001; 120: A127Google Scholar
  66. 66.
    De Miranda P, Beacham LM, Creagh TH, et al. The metabolic fate of the methylnitroimidazole moiety of azathioprine in the rat. J Pharmacol Exp Ther 1973; 187: 588–601PubMedGoogle Scholar
  67. 67.
    Lennard L. The clinical pharmacology of 6-mercaptopurine. Eur J Clin Pharmacol 1992; 43: 329–39PubMedCrossRefGoogle Scholar
  68. 68.
    Weinshilboum RN, Sladek SL. Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase acitivty. Am J Hum Genet 1980; 32: 651–62PubMedGoogle Scholar
  69. 69.
    Dubinsky MC, Lamothe S, Ying Yang H, et al. Pharmacogenomics and metabolite measurement for 6-mercaptopurine therapy in inflammatory bowel disease. Gastroenterology 2000; 118: 705–13PubMedCrossRefGoogle Scholar
  70. 70.
    Lennard L, Van Loon JA, Weinshilboum RM. Pharmacogenetics of acuteazathioprine toxicity: relationship to thiopurine methyltransferase genetic polymorphism. Clin Pharmacol Ther 1989; 46: 149–54PubMedCrossRefGoogle Scholar
  71. 71.
    Present DH, Meltzer SJ, Krumholz MP, et al. 6-mercaptopurine in the management of inflammatory bowel disease: short- and long-term toxicity. Ann Intern Med 1989; 111: 641–9PubMedGoogle Scholar
  72. 72.
    Asten P, Marrett J, Symmons D. Risk of developing certain malignacies is related to duration of immunosuppressive drug exposure in patients with rheumatic disease. J Rheumatol 1999; 26: 1705–14PubMedGoogle Scholar
  73. 73.
    Opelz G, Henderson R. Incidence of non-Hodgkin lymphoma in kidney and heart transplant recipients. Lancet 1993; 342: 1514–6PubMedCrossRefGoogle Scholar
  74. 74.
    Greenstein AJ, Gennuso R, Sachar DB, et al. Extraintestinal cancers in inflammatory bowel disease. Cancer 1985; 56: 2914–21PubMedCrossRefGoogle Scholar
  75. 75.
    Farrell RJ, Ang Y, Kileen P, et al. Increased incidence of non-Hodgkin’s lymphoma in inflammatory bowel disease patients on immunosuppresive therapy but overall risk is low. Gut 2000; 47: 514–9PubMedCrossRefGoogle Scholar
  76. 76.
    Palli D, Trallori G, Bagnoli S, et al. Hodgkin’s disease risk is increased in patients with ulcerative colitis. Gastroenterology 2000; 19: 647–53CrossRefGoogle Scholar
  77. 77.
    Connell WR, Kamm MA, Dickson M, et al. Long-term neoplasia risk after azathiprine treatment in inflammatory bowel disease. Lancet 1994; 343: 1249–52PubMedCrossRefGoogle Scholar
  78. 78.
    Korelitz BI, Mirsky FJ, Fleisher MR, et al. Malignant neoplasm subsequent to treatment of inflammatory bowel disease with 6-mercaptopurine. Am J Gastroenterol 1999; 94: 3248–53PubMedCrossRefGoogle Scholar
  79. 79.
    Lewis LD, Benin A, Szumlanski CL, et al. Olsalazine and 6-mercaptopurine-related bone marrow suppression: a possible drug-drug interaction. Clin Pharmacol Ther 1997; 62: 464–75PubMedCrossRefGoogle Scholar
  80. 80.
    Lowry PW, Szumlaski CL, Weinshilboum RM, et al. Balsalazide and azathioprine or 6-mercaptopurine: evidence for a potentially serious drug interaction. Gastroenterology 1999; 116: 1505–6PubMedCrossRefGoogle Scholar
  81. 81.
    Hess AD, Tutschka PJ, Santos GW. Effect of cyclosporin A on human lymphocyte response in vitro. III. CsA inhibits the production of T lymphocyte growth factors in secondary mixed lymphocyte responses but does not inhibit the response of primed lymphocytes to TCGF. J Immunol 1982; 128: 355–9PubMedGoogle Scholar
  82. 82.
    Bianchi Porro G, Ardizone S, Bollani S, et al. Fertility and pregnancy in female patients with inflammatory bowel disease. In: Campieri M, Bianchi Porro G, Fiochi C, editors. Clinical challanges in inflammatory bowel diseases: diagnosis, prognosis and treatment. Falk Symposium 97. Dordrecht: Kluwer Academic Publishers, 1998: 95–9Google Scholar
  83. 83.
    Mueller EA, Kovarik JM, Van Bree JB, et al. Improved dose linearity of cyclosporine pharmacokinetics from a microemulsion ormulation. Pharm Res 1994; 11: 301–4PubMedCrossRefGoogle Scholar
  84. 84.
    Sandborn WJ. A critical review of cyclosporine therapy in inflammatory bowel disease. Inflamm Bowel Dis 1995; 1: 48–63CrossRefGoogle Scholar
  85. 85.
    Connell WR. Safety of drug therapy for inflammatory bowel disease in pregnant and nursing women. Inflamm Bowel Dis 1996; 2: 33–47CrossRefGoogle Scholar
  86. 86.
    Katz JA, Pore G. Inflammatory bowel disease and pregnancy. Inflamm Bowel Dis 2001; 7: 146–57PubMedCrossRefGoogle Scholar
  87. 87.
    Mogadam M, Dobbins WO, Korelitz BI, et al. Pregnancy in inflammatory bowel disease: effect of sulfasalazine and corticosteroids on fetal outcome. Gastroenterology 1981; 80: 72–6PubMedGoogle Scholar
  88. 88.
    Korelitz BI. Inflammatory bowel disease and pregnancy. Gastro Clin North Am 1998; 27: 213–24CrossRefGoogle Scholar
  89. 89.
    Habal FM, Hui G, Greenberg GR. Oral 5-aminosalicylic acid or inflammatory bowel disease in pregnancy: safety and clinical course. Gastroenterology 1993; 105: 1057–60PubMedGoogle Scholar
  90. 90.
    Trallori G, d’Albasio G, Bardazzi G, et al. 5-aminosalicylic acid in pregnancy: clinical report. Ital J Gastroenterol 1994; 26: 75–8PubMedGoogle Scholar
  91. 91.
    Diav-Citrin O, Park YH, Verasuntharam G, et al. The safety of mesalamine in human pregnancy: a prospective controlled cohort study. Gastroenterology 1998; 114: 23–8PubMedCrossRefGoogle Scholar
  92. 92.
    Marteau P, Tennenbaum R, Elefant E, et al. Foetal outcome in women with inflammatory bowel disease treated during pregnancy with oral mesalazine microgranules. Aliment Pharmacol Ther 1998; 12: 1101–8PubMedCrossRefGoogle Scholar
  93. 93.
    Bell CM, Habal FM. Safety of topical 5-aminosalicylic acid in pregnancy. Am J Gastroenterol 1997; 92: 201–2Google Scholar
  94. 94.
    Colombel J-F, Brabant G, Gubler MC, et al. Renal insufficiency in infant: side-effect of prenatal exposure to mesalazine [letter]. Lancet 1994; 344: 620–1PubMedCrossRefGoogle Scholar
  95. 95.
    Marteau P, Devaux CB. Mesalazine during pregnancy [letter]. Lancet 1994; 344: 1708–9PubMedCrossRefGoogle Scholar
  96. 96.
    Alstead EM, Ritchie JK, Lennard-Jones JE, et al. Safety of azathioprine in pregnancy in inflammatory bowel disease. Gastroenterology 1990; 99: 443–6PubMedGoogle Scholar
  97. 97.
    Francella A, Dayan A, Rubin P, et al. 6-Mercaptopurine (6-MP) is safe therapy for child bearing patients with inflammatory bowel disease (IBD): a case controlled study [abstract]. Gastroenterology 1996; 110: A909Google Scholar
  98. 98.
    Marion JF, Rubin PH, Lichtiger S, et al. Cyclosporine is safe for severe colitis complicating pregnancy [abstract]. Am J Gastroenterol 1996; 91: A1975Google Scholar
  99. 99.
    Truelove SC, Witts LJ. Cortisone and corticotropin in acute ulcerative colitis. BMJ 1959; 2: 387–94CrossRefGoogle Scholar
  100. 100.
    Lennard-Jones JE, Misiewicz JJ, Connell AM, et al. Prednisone as maintenance treatment for ulcerative colitis in remission. Lancet 1965; I: 188–9CrossRefGoogle Scholar
  101. 101.
    Baron JH, Connell AM, Kanaghinis TG, et al. Out-patient treatment of ulcerative colitis. BMJ 1962; 2: 441–3PubMedCrossRefGoogle Scholar
  102. 102.
    Lennard-Jones JE, Longmore AJ, Newell C, et al. An asessment of prednisone, slazopyrin, and topical hydrocortisone hemjsuccinate used as out-patient treatment for ulcerative colitis. Gut 1960; 1: 217–22PubMedCrossRefGoogle Scholar
  103. 103.
    Powell-Tuck J, Brown RL, Lennard-Jones JE. A comparison of oral prednisone given as a single or multiple daily doses for active proctitis. Scand J Gastroenterol 1978; 13: 833–7PubMedCrossRefGoogle Scholar
  104. 104.
    Truelove SC, Lee EG, Willoughby CP, et al. Further experience in the treatment of severe attacks of ulcerative colitis. Lancet 1978; II: 1086–8CrossRefGoogle Scholar
  105. 105.
    McIntyre PB, Macrea FA, Berghouse L, et al. Therapeutic benefits from a poorly absorbed prednisolone enema in distal colitis. Gut 1985; 26: 822–4PubMedCrossRefGoogle Scholar
  106. 106.
    Hay DJ. Spreading characteristics of proprietary rectal steroid preparation. In: Hardy JG, Frier M, Davis SS, editors. Radionuclide imaging in drug research. London: Crrom Helm, 1982: 171–80CrossRefGoogle Scholar
  107. 107.
    Ruddell WSJ, Dickinson RJ, Dixon MF, et al. Treatment of ditsal ulcerative colitis (proctosigmoiditis) in relapse: comparison of hydrocortisone enemas and rectal hydrocortisone foam. Gut 1980; 21: 885–9PubMedCrossRefGoogle Scholar
  108. 108.
    Marshall JK, Irvine EJ. Rectal corticosteroids versus alternative treatments in ulcerative colitis: a meta-analysis. Gut 1997; 40: 775–81PubMedCrossRefGoogle Scholar
  109. 109.
    Bianchi Porro G, Prantera C, Campieri M, et al. Comparative trial of methylprednisolone and budesonide enemas in the treatment of active distal ulcerative colitis. Eur J Gastroenterol Hepatol 1994; 6: 125–30CrossRefGoogle Scholar
  110. 110.
    Danielsson A, Hellers G, Lyrenas E, et al. A controlled randomized trial of budesonide versus prednisolone retention enemas in active distal ulcerative colitis. Scand J Gastroenterol 1987; 22: 987–92PubMedCrossRefGoogle Scholar
  111. 111.
    Tarpila S, Turunen U, Seppala K, et al. Budesonide enema in active haemorragic proctitis: a controlled trial against hydrocortisone foam enema. Aliment Pharmacol Ther 1994; 8: 591–5PubMedCrossRefGoogle Scholar
  112. 112.
    Sutherland L, Roth D, Beck P, et al. Oral 5-aminosalicylic acid for inducing remission in ulcerative colitis (Cochrane Review). In: The Cochrane database of systematic reviews. Available in The Cochrane Library [database on disk and CD ROM]. Updated quarterly. The Cochrane Collaboration; issue 4. Oxford: Update Software, 2000Google Scholar
  113. 113.
    Sutherland L, Roth D, Beck P, et al. Oral 5-aminosalicylic acid for maintaining remission in ulcerative colitis (Cochrane Review). In: The Cochrane database of systematic reviews. Available in The Cochrane Library [database on disk and CD ROM]. Updated quarterly. The Cochrane Collaboration; issue 4. Oxford: Update Software, 2000Google Scholar
  114. 114.
    Marshall JK, Irvine EJ. Putting rectal 5-aminosalicylic acid in its place: the role in distal ulcerative colitis. Am J Gastroentrol 2000; 95: 1628–36CrossRefGoogle Scholar
  115. 115.
    Kam L, Cohen H, Dooley C, et al. A comparison of mesalamine suspension enema and oral sulfasalazine for treatment of active distal ulcerative colitis in adults. Am J Gastroenterol 1996; 91: 138–42Google Scholar
  116. 116.
    Safdi M, DeMicco M, Sninsky C, et al. A double-blind comparison of oral versus rectal mesalamine versus combination therapy in the treatment of distal ulcerative colitis. Am J Gastroenterol 1997; 92: 1867–71PubMedGoogle Scholar
  117. 117.
    Gionchetti P, Rizello F, Venturi A, et al. Comparison of oral with rectal mesalazine in the treatment of ulcerative proctitis. Dis Colon Rectum 1998; 41: 93–7PubMedCrossRefGoogle Scholar
  118. 118.
    Marshall JK, Ivine EJ. Rectal aminosalicylate therapy or distal ulcerative colitis: a meta-analysis. Aliment Pharmacol Ther 1995; 9: 293–300PubMedCrossRefGoogle Scholar
  119. 119.
    Gionchetti P, Ardizzone S, Benvenuti ME, et al. A new mesalazine gel enema in the treatment of left-sided ulcerative colitis: a randomized controlled multicentre trial. Aliment Pharmacol Ther 1999; 13: 381–8PubMedCrossRefGoogle Scholar
  120. 120.
    Ardizzone S, Bollani S, Colombo E, et al. Efficacy, tolerance, and acceptance of the 5-ASA foam in the treatment of distal ulcerative colitis. In: Fruhmorgen P, Brugh H-P, editors. Nonneoplastic disease of the anorectum. Falk Symposium 118. Dordrecht; Kluwer Academic Publishers, 2001: 86–92Google Scholar
  121. 121.
    Campieri M, Paoluzi P, d’Albasio G, et al. Better quality of therapy with 5-ASA colonic foam inactive ulcerative colitis: a multicenter comparative trial with 5-ASA enema. Dig Dis Sci 1993; 38: 1843–50PubMedCrossRefGoogle Scholar
  122. 122.
    Campieri M, Gionchetti P, Belluzi A, et al. 5-Aminoslaicylic acid as enema or suppositories in distal ulcerative colitis. J Clin Gastroenterol 1988; 10: 406–9PubMedCrossRefGoogle Scholar
  123. 123.
    Ardizzone S, Doldo P, Ranzi T, et al. Mesalazine foam (Salofalk foam) in the treatment of active distal ulcerative colitis: a comparative trial vs Salofalk enema. Ital J Gastroenterol Hepatol 1999; 31: 677–84PubMedGoogle Scholar
  124. 124.
    Jewell DP, Truelove SC. Azathioprine in ulcerative colitis: final report on controlled therapeutic trial. BMJ 1974; 4: 627–30PubMedCrossRefGoogle Scholar
  125. 125.
    Caprilli R, Carratù R, Babbini M. A double-blind comparison of the effectiveness of azathioprine and sulfasalazine in idiopathic proctocolitis: prelimary report. Dig Dis 1975; 20: 115–20CrossRefGoogle Scholar
  126. 126.
    Rosemberg JL, Wall AJ, Levin B, et al. A controlled trial of azathioprine in the management of chronic ulcerative colitis. Gastroenterology 1975; 69: 96–9Google Scholar
  127. 127.
    Kirk AP, Lennard-Jones JE. Controlled trial of azathioprine in chronic ulcerative colitis. BMJ 1982; 284: 1291–2PubMedCrossRefGoogle Scholar
  128. 128.
    Hawthorne AB, Logan RFA, Hawkey CJ, et al. Randomised controlled trial of azathioprine withdrawal in ulcerative colitis. BMJ 1992; 305: 20–2PubMedCrossRefGoogle Scholar
  129. 129.
    Sandborn WJ. Azathioprine/6-mercaptopurine: mechanism of action, pharmacology and toxicity. In: Fellerman K, Jewell DP, Sandborn WJ, editors. Immunosuppression in inflammatory bowel diseases: standards, new developments, future trends. Falk Symposium 119. Dordrecht: Kluwer Academic Publishers, 2001: 91–100Google Scholar
  130. 130.
    Cuffari C, Hunt S, Bayless T. Utilisation of erythrocyte 6-thioguanine metabolite levels to optimise azathioprine therapy in patients with inflammatory bowel disease. Gut 2001; 48: 642–6PubMedCrossRefGoogle Scholar
  131. 131.
    D’Haens G, Lemmens L, Geboes K, et al. Intravenous cyclosporine versus intravenous corticosteroids as single therapy for severe attacks of ulcerative colitis. Gastroenterology 2001; 120: 1323–9PubMedCrossRefGoogle Scholar
  132. 132.
    Actis GC, Aimo G, Priolo G, et al. Efficacy and efficiency of oral microemulsion cyclosporin versus intravenous and soft gelatin capsule cyclosporin in the treatment of severe steroid-refractory ulcerative colitis: an open-label retrospective trial. Inflamm Bowel Dis 1998; 4: 276–9PubMedCrossRefGoogle Scholar
  133. 133.
    Lichtiger S, Present DH, Kornbluth A, et al. Cyclosporine in severe ulcerative colitis refractory to steroid therapy. N Engl J Med 1994; 30: 1841–5CrossRefGoogle Scholar
  134. 134.
    Cohen RD, Brodsky AL, Hanauer SB. A comparison of the quality of life in patients with severe ulcerative colitis after total colectomy versus medical treatment with intravenous cyclosporine. Inflamm Bowel Dis 1999; 5: 1–10PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 2002

Authors and Affiliations

  1. 1.Department of Gastroenterology‘L. Sacco’ University HospitalMilanItaly

Personalised recommendations