Drug Safety

, Volume 25, Issue 2, pp 111–113 | Cite as

Clinically Significant Interactions with Drugs Used in the Treatment of Tuberculosis

Review Article

Abstract

Clinically significant interactions occurring during antituberculous chemotherapy principally involve rifampicin (rifampin), isoniazid and the fluoroquinolones. Such interactions between the antituberculous drugs and coadministered agents are definitely much more important than among antituberculous drugs themselves. These can be associated with consequences even amounting to therapeutic failure or toxicity. Most of the interactions are pharmacokinetic rather than pharmacodynamic in nature. The cytochrome P450 isoform enzymes are responsible for many interactions (especially those involving rifampicin and isoniazid) during drug biotransformation (metabolism) in the liver and/or intestine. Generally, rifampicin is an enzyme inducer and isoniazid acts as an inhibitor. The agents interacting significantly with rifampicin include anticoagulants, anticonvulsants, anti-infectives, cardiovascular therapeutics, contraceptives, glucocorticoids, immunosuppressants, psychotropics, sulphonylureas and theophyllines. Isoniazid interacts principally with anticonvulsants, theophylline, benzodiapines, paracetamol (acetaminophen) and some food. Fluoroquinolones can have absorption disturbance due to a variety of agents, especially the metal cations. Other important interactions of fluoroquinolones result from their enzyme inhibiting potential or pharmacodynamic mechanisms. Geriatric and immunocompromised patients are particularly at risk of drug interactions during treatment of their tuberculosis. Among the latter, patients who are HIV infected constitute the most important group. This is largely because of the advent of new antiretroviral agents such as the HIV protease inhibitors and the non-nucleoside reverse transcriptase inhibitors in the armamenterium of therapy. Compounding the complexity of drug interactions, underlying medical diseases per se may also contribute to or aggravate the scenario. It is imperative for clinicians to be on the alert when treating tuberculosis in patients with difficult co-morbidity requiring polypharmacy. With advancement of knowledge and expertise, it is hoped that therapeutic drug monitoring as a new paradigm of care can enable better management of these drug interactions.

References

  1. 1.
    Dye C, Scheele S, Dolin P, et al. Global burden of tuberculosis: estimated incidence, prevalence and mortality by country. JAMA 1999; 282: 677–86PubMedCrossRefGoogle Scholar
  2. 2.
    Teale C, Goldman JM, Pearson SB. The association of age with the presentation and outcome of tuberculosis: a five-year survey. Age Ageing 1993; 22: 289–93PubMedCrossRefGoogle Scholar
  3. 3.
    Davies PD. Tuberculosis in the elderly. J Antimicrob Chemother 1994; 34Suppl. A: S93–100CrossRefGoogle Scholar
  4. 4.
    Maher D, Chaulet P, Spinaci S, et al. for the Global Tuberculosis Programme, World Health Organization. Treatment of tuberculosis: guidelines for national programmes. Geneva: World Health Organization, 1997Google Scholar
  5. 5.
    Grange JM, Winstanley PA, Davies PD. Clinically significant drug interactions with anti-tuberculosis agents. Drug Saf 1994; 11: 242–51PubMedCrossRefGoogle Scholar
  6. 6.
    Burman WJ, Gallicano K, Peloquin C. Therapeutic implications of drug interactions in the treatment of human immunodeficiency virus-related tuberculosis. Clin Infect Dis 1999; 28: 419–30PubMedCrossRefGoogle Scholar
  7. 7.
    Rolan PE. Plasma protein binding displacement interactions: why are they still regarded as clinically important? Br J Clin Pharmacol 1994; 37: 125–8PubMedCrossRefGoogle Scholar
  8. 8.
    Klotz U, Ammon E. Clinical and toxicological consequences of the inductive potential of ethanol. Eur J Clin Pharmacol 1998; 54: 7–12PubMedCrossRefGoogle Scholar
  9. 9.
    Zevin S, Benowitz NL. Drug interactions with tobacco smoking: an update. Clin Pharmacokinet 1999; 36: 425–38PubMedCrossRefGoogle Scholar
  10. 10.
    Cheung WC, Lo CY, Lo WK, et al. Isoniazid induced encephalopathy in dialysis patients. Tuber Lung Dis 1993; 74: 136–9PubMedCrossRefGoogle Scholar
  11. 11.
    Baciewicz AM, Self TH, Bekemeyer WB. Update on rifampin drug interactions. Arch Intern Med 1987; 147: 565–8PubMedCrossRefGoogle Scholar
  12. 12.
    Borcherding SM, Baciewicz AM, Self TH. Update on rifampin drug interactions II. Arch Intern Med 1992; 152: 711–6PubMedCrossRefGoogle Scholar
  13. 13.
    Strayhorn VA, Baciewicz AM, Self TH. Update on rifampin drug interactions III. Arch Intern Med 1997; 157: 2453–8PubMedCrossRefGoogle Scholar
  14. 14.
    Tseng AL, Foisy MM. Management of drug interactions in patients with HIV. Ann Pharmacother 1997; 31: 1040–58PubMedGoogle Scholar
  15. 15.
    Gubser VL. Tuberculosis and the elderly: a community health perspective. J Gerontol Nurs 1998; 24(5): 36–41PubMedGoogle Scholar
  16. 16.
    Sinnott JT 4th, Emmanuel PJ. Mycobacterial infections in the transplant patient. Semin Respir Infect 1990; 5: 65–73PubMedGoogle Scholar
  17. 17.
    Nemeroff CB, Lindsay DeVane C, Pollock BG. Newer antidepressants and the cytochrome P450 system. Am J Psychiatry 1996; 153: 311–20PubMedGoogle Scholar
  18. 18.
    Park BK, Kitteringham NR, Pirmohamed M. Relevance of induction of human drug-metabolizing enzymes: pharmacological and toxicological implications. Br J Clin Pharmacol 1996; 41: 477–91PubMedCrossRefGoogle Scholar
  19. 19.
    Ito K, Iwatsubo T, Kanamitsu S, et al. Prediction of pharmacokinetic alterations caused by drug-drug interactions: metabolic interaction in the liver. Pharmacol Rev 1998; 50: 387–412PubMedGoogle Scholar
  20. 20.
    Lin JH, Lu AY. Inhibition and induction of cytochrome P450 and the clinical implications. Clin Pharmacokinet 1998; 35: 361–90PubMedCrossRefGoogle Scholar
  21. 21.
    Pelkonen O, Maenpaa J, Taavitsainen P, et al. Inhibition and induction of human cytochrome P450 (CYP) enzymes. Xenobiotica 1998; 28: 1203–53PubMedCrossRefGoogle Scholar
  22. 22.
    Fuhr V. Induction of drug metabolizing enzymes: pharmacokinetic and toxicological consequences in humans. Clin Pharmacokinet 2000; 38: 493–504PubMedCrossRefGoogle Scholar
  23. 23.
    Dresser GK, Spence JD, Bailey DG. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet 2000; 38: 41–57PubMedCrossRefGoogle Scholar
  24. 24.
    Bertz RJ, Granneman GR. Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin Pharmacokinet 1997; 32: 210–58PubMedCrossRefGoogle Scholar
  25. 25.
    Juliano R, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 1976; 455: 152–62PubMedCrossRefGoogle Scholar
  26. 26.
    Smit JJ, Schinkel AH, Oude Elferink RP, et al. Homozygous disruption of the murine mdr P-glycoprotein gene leads to a complete absence of phospholipid from bile to liver disease. Cell 1993; 75: 451–62PubMedCrossRefGoogle Scholar
  27. 27.
    Smit JJ, Schinkel AH, Mol CA, et al. Tissue distribution of the human MDR3 P-glycoprotein. Lab Invest 1994; 71: 638–49PubMedGoogle Scholar
  28. 28.
    Kim RB, Wandel C, Leake B, et al. Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm Res 1999; 16: 408–14PubMedCrossRefGoogle Scholar
  29. 29.
    Schuetz EG, Schinkel AH, Relling MV, et al. P-glycoprotein: a major determinant of rifampicin-inducible expression of cytochrome P4503A in mice and humans. Proc Natl Acad Sci U S A 1996; 93: 4001–5PubMedCrossRefGoogle Scholar
  30. 30.
    Westphal K, Weinbrenner A, Zschiesche M, et al. Induction of P-glycoprotein by rifampin increases intestinal secretion of talinolol in human beings: a new type of drug/drug interaction. Clin Pharmacol Ther 2000; 68: 345–55PubMedCrossRefGoogle Scholar
  31. 31.
    Greiner B, Eichelbaum M, Fritz P, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Invest 1999; 104: 147–53PubMedCrossRefGoogle Scholar
  32. 32.
    Holdiness MR. Clinical pharmacokinetics of antituberculosis drugs. Clin Pharmacokinet 1984; 9: 511–44PubMedCrossRefGoogle Scholar
  33. 33.
    Boman G. Serum concentrations and half-life of rifampicin after simultaneous oral administration of aminosalicylic acid or isoniazid. Eur J Clin Pharmacol 1974; 7: 217–25PubMedCrossRefGoogle Scholar
  34. 34.
    Jain A, Mehta VL, Kulshrestha S. Effect of pyrazinamide on rifampicin kinetics in patients with tuberculosis. Tuber Lung Dis 1993; 74: 87–90PubMedCrossRefGoogle Scholar
  35. 35.
    Tiitinen H. Isoniazid and ethionamide serum levels in Finnish subjects. Scand J Respir Dis 1969; 50: 110–5PubMedGoogle Scholar
  36. 36.
    Fox W. Drug combinations and the bioavailability of rifampicin. Tubercle 1990; 71: 241–5PubMedCrossRefGoogle Scholar
  37. 37.
    International Union Against Tuberculosis and Lung Disease/World Health Organization. The promise and reality of fixeddose combinations with rifampicin. Tuber Lung Dis 1994; 75: 180–1Google Scholar
  38. 38.
    International Union Against Tuberculosis and Lung Disease/World Health Organization. Assessing bioavailability of fixeddose combinations of anti-tuberculosis medications. Int J Tuberc Lung Dis 1999; 3: S282–3Google Scholar
  39. 39.
    Ellard GA, Fourie PB. Rifampicin bioavailability: a review of its pharmacology and the chemotherapeutic necessity for ensuring optimal absorption. Int J Tuberc Lung Dis 1999; 3: S301–8PubMedGoogle Scholar
  40. 40.
    Steele MA, Burk RF, Des Prez RM. Toxic hepatitis with isoniazid and rifampin: a meta-analysis. Chest 1991; 99: 465–71PubMedCrossRefGoogle Scholar
  41. 41.
    Sarma GR, Immanuel C, Kailasam S, et al. Rifampin-induced release of hydrazine from isoniazid: a possible cause of hepatitis during treatment of tuberculosis with regimens containing isoniazid and rifampin. Am Rev Respir Dis 1986; 133: 1072–5PubMedGoogle Scholar
  42. 42.
    Pande JN, Singh SPN, Khilnani GC, et al. Risk factors for hepatotoxicity from anti-tuberculosis drugs: a case-control study. Thorax 1996; 51: 132–6PubMedCrossRefGoogle Scholar
  43. 43.
    Shafran SD, Singer J, Zarowny DP, et al. A comparison of two regimens for the treatment of Mycobacteirum avium complex bacteremia in AIDS: rifabutin, ethambutol and clarithromycin versus rifampin, ethambutol, clofazimine and ciprofloxacin. N Engl J Med 1996; 335: 377–83PubMedCrossRefGoogle Scholar
  44. 44.
    Kuper JI, D’Aprile M. Drug-drug interactions of clinical significance in the treatment of patients with Mycobacterium avium complex disease. Clin Pharmacokinet 2000; 39: 203–14PubMedCrossRefGoogle Scholar
  45. 45.
    Blaschke TF, Skinner MH. The clinical pharmacokinetics of rifabutin. Clin Infect Dis 1996; 22Suppl. 1: S15–22PubMedCrossRefGoogle Scholar
  46. 46.
    Self TH, Chrisman CR, Baciewicz AM, et al. Isoniazid drug and food interactions. Am J Med Sci 1999; 317: 304–11PubMedCrossRefGoogle Scholar
  47. 47.
    Murray FJ. Outbreak of unexpected reactions among epileptics taking isoniazid. Am Rev Respir Dis 1962; 86: 729–32PubMedGoogle Scholar
  48. 48.
    Kutt H, Winters W, McDowell FJ. Depression of parahydroxylation of diphenylhydantoin by antituberculosis chemotherapy. Neurology 1966; 16: 594–602PubMedCrossRefGoogle Scholar
  49. 49.
    Kutt H, Verebely K, McDowell F. Inhibition of diphenylhydantoin metabolism in rats and in rat liver microsomes by antitubercular drugs. Neurology 1968; 18: 706–10PubMedCrossRefGoogle Scholar
  50. 50.
    Kutt H, Brennan R, Dehejia H, et al. Diphenylhydantoin intoxication: a complication of isoniazid therapy. Am Rev Respir Dis 1970; 101: 377–84PubMedGoogle Scholar
  51. 51.
    Miller RR, Porter J, Greenblatt DJ. Clinical importance of the interaction of phenytoin and isoniazid. Chest 1979; 75: 356–8PubMedCrossRefGoogle Scholar
  52. 52.
    Johnson J, Freeman HL. Death due to isoniazid and phenytoin. Br J Psychiatry 1976; 129: 511PubMedGoogle Scholar
  53. 53.
    Yew WW, Lau KS, Ling MH. Phenytoin toxicity in a patient with isonaizid-induced hepatitis. Tubercle 1991; 72: 309–10PubMedCrossRefGoogle Scholar
  54. 54.
    Kay L, Kampmann JP, Svendsen TL, et al. Influence of rifampicin and isoniazid on the kinetics of phenytoin. Br J Clin Pharmacol 1985; 20: 323–6PubMedCrossRefGoogle Scholar
  55. 55.
    Valsalan VC, Cooper GL. Carbamazepine intoxication caused by interaction with isoniazid. BMJ (Clin Res Ed) 1982; 285: 261–2CrossRefGoogle Scholar
  56. 56.
    Wright JM, Stokes EF, Sweeney VP. Isoniazid-induced carbamazepine toxicity and vice versa: a double drug interaction. N Engl J Med 1982; 30: 1325–7CrossRefGoogle Scholar
  57. 57.
    Fleenor ME, Harden JW, Curtis G. Interaction between carbamazepine and antituberculosis agents. Chest 1991; 99: 1554PubMedCrossRefGoogle Scholar
  58. 58.
    Berkowitz FE, Henderson SL, Fajman N, et al. Acute liver failure caused by isoniazid in a child receiving carbamazepine. Int J Tuberc Lung Dis 1998; 2: 603–6PubMedGoogle Scholar
  59. 59.
    Dockweiler U. Isoniazid-induced valproic-acid toxicity, or vice versa. Lancet 1987; 2: 152PubMedCrossRefGoogle Scholar
  60. 60.
    Jonville AP, Gauchez AS, Autret E. Interaction between isoniazid and valproate: a case of valproate overdosage. Eur J Clin Pharmacol 1991; 40: 197–8PubMedGoogle Scholar
  61. 61.
    Wenning GK, O’Connell MT, Patsalos PN, et al. A clinical and pharmacokinetic case study of an interaction of levodopa and antituberculous therapy in Parkinson’s disease. Mov Disord 1995; 10: 664–7PubMedCrossRefGoogle Scholar
  62. 62.
    Hoglund P, Nilsson LG, Paulsen O. Interaction between isoniazid and theophylline. Eur J Respir Dis 1987; 70: 110–6PubMedGoogle Scholar
  63. 63.
    Samigun M, Santoso B. Lowering of theophylline clearance by isoniazid in slow and rapid acetylators. Br J Clin Pharmacol 1990; 29: 570–3PubMedCrossRefGoogle Scholar
  64. 64.
    Torrent J, Izquierdo I, Cabezas R, et al. Theophylline-isoniazid interaction. DICP 1989; 23: 143–5PubMedGoogle Scholar
  65. 65.
    Dal Negro R, Turco P, Trevisan F, et al. Rifampicin-isoniazid and delayed elimination of theophylline: a case report. Int J Clin Pharmacol Res 1988; 8: 275–7Google Scholar
  66. 66.
    Ahn HC, Yang JH, Lee HB, et al. Effect of combined therapy of oral anti-tubercular agents on theophylline pharmacokinetics. Int J Tuberc Lung Dis 2000; 4: 784–7PubMedGoogle Scholar
  67. 67.
    Murphy R, Swartz R, Watkins PB. Severe acetaminophen toxicity in a patient receiving isoniazid. Ann Intern Med 1990; 113: 799–800PubMedGoogle Scholar
  68. 68.
    Moulding TS, Redeker AG, Kanel GC. Acetaminophen, isoniazid and hepatic toxicity. Ann Intern Med 1991; 114: 431PubMedGoogle Scholar
  69. 69.
    Nolan CM, Sandblom R, Thummel KE, et al. Hepatotoxicity associated with acetaminophen usage in patients receiving multiple drug therapy for tuberculosis. Chest 1994; 105: 408–11PubMedCrossRefGoogle Scholar
  70. 70.
    Crippin JS. Acetaminophen hepatotoxicity: potentiation by isoniazid. Am J Gastroenterol 1993; 88: 590–2PubMedGoogle Scholar
  71. 71.
    Zand R, Nelson SD, Slattery JT, et al. Inhibition and induction of cytochrome P4502E1-catalyzed oxidation by isoniazid in humans. Clin Pharmacol Ther 1993; 54: 142–9PubMedCrossRefGoogle Scholar
  72. 72.
    Chien JY, Peter RM, Nolan CM, et al. Influence of polymorphic N-acetyl transferase phenotype on the inhibition and induction of acetaminophen bioactivation with long-term isoniazid. Clin Pharmacol Ther 1997; 61: 24–34PubMedCrossRefGoogle Scholar
  73. 73.
    Rosenthal AR, Self TH, Baker ED, et al. Interaction of isoniazid and warfarin. JAMA 1977; 238: 2177PubMedCrossRefGoogle Scholar
  74. 74.
    Eade NR, Mc Leod PJ, Mac Leod SM. Potentiation of bishydroxycoumarin in dogs by isoniazid and p-aminosalicylic acid. Am Rev Respir Dis 1971; 103: 792–9PubMedGoogle Scholar
  75. 75.
    Ochs HR, Greenblatt DJ, Roberts GM, et al. Diazepam interaction with anti-tuberculosis drugs. Clin Pharmacol Ther 1981; 29: 671–8PubMedCrossRefGoogle Scholar
  76. 76.
    Ochs HR, Greenblatt DJ, Knuchel M. Differential effect of isoniazid on triazolam oxidation and oxazepam conjugation. Br J Clin Pharmacol 1983; 16: 743–6PubMedCrossRefGoogle Scholar
  77. 77.
    Hurwitz A, Schlozman DL. Effects of antacids on gastrointestinal absorption of isoniazid in rat and man. Am Rev Respir Dis 1974; 109: 41–7PubMedGoogle Scholar
  78. 78.
    Paulsen O, Hoglund L, Nilsson LG, et al. No interaction between H2 blockers and isoniazid. Eur J Respir Dis 1986; 68: 286–90PubMedGoogle Scholar
  79. 79.
    Gallicano K, Sahai J, Zaror-Behrens G, et al. Effect of antacids in didanosine tablet on bioavailability of isoniazid. Antimicrob Agents Chemother 1994; 38: 894–7PubMedCrossRefGoogle Scholar
  80. 80.
    Peloquin CA, Namdar R, Dodge AA, et al. Pharmacokinetics of isoniazid under fasting conditions, with food, and with antacids. Int J Tuberc Lung Dis 1999; 3: 703–10PubMedGoogle Scholar
  81. 81.
    Sarma GR, Kailasam S, Nair NG, et al. Effect of prednisolone and rifampicin on isoniazid metabolism in slow and rapid inactivators of isoniazid. Antimicrob Agents Chemother 1980; 18: 661–6PubMedCrossRefGoogle Scholar
  82. 82.
    Mazze RI, Woodruff RE, Heerdt ME. Isoniazid-induced enflurane delfuorination in humans. Anesthesiology 1982; 57: 5–8PubMedCrossRefGoogle Scholar
  83. 83.
    Williams SE, Wardman AG, Taylor GA, et al. Long term study of the effect of rifampicin and isoniazid on vitamin D metabolism. Tubercle 1985; 66: 49–54PubMedCrossRefGoogle Scholar
  84. 84.
    Brodie MJ, Boobis AR, Hillyard CJ, et al. Effect of isoniazid on vitamin D metabolism and hepatic monooxygenase activity. Clin Pharmacol Ther 1981; 30: 363–7PubMedCrossRefGoogle Scholar
  85. 85.
    Judd FK, Mijch AM, Cockram A, et al. Isoniazid and antidepressants: is there cause for concern? Int Clin Psychopharmacol 1994; 9: 123–5PubMedCrossRefGoogle Scholar
  86. 86.
    Malek-Ahmadi P, Chavez M, Contreras SA. Coadministration of isoniazid and antidepressant drugs. J Clin Psychiatry 1996; 57: 550PubMedCrossRefGoogle Scholar
  87. 87.
    de los Angeles Sánchez-Salvatori M, Ríos C, Vidrio H. Interaction between isoniazid and diverse vasodilators: role of decreased cerebral GABA. Cardiovasc Res 1998; 37: 748–55PubMedCrossRefGoogle Scholar
  88. 88.
    Mannisto P, Mantyla R, Klinge E, et al. Influence of various diets on the bioavailability of isoniazid. J Antimicrob Chemother 1982; 10: 427–34PubMedCrossRefGoogle Scholar
  89. 89.
    Smith CK, Durack DT. Isoniazid and reaction to cheese. Ann Intern Med 1978; 88: 520–1PubMedGoogle Scholar
  90. 90.
    Hauser MJ, Baier H. Interactions of isoniazid with foods. Drug Intell Clin Pharm 1982; 16: 617–8PubMedGoogle Scholar
  91. 91.
    Baciewicz AM, Self TH. Isoniazid interactions. South Med J 1985; 78: 714–8PubMedCrossRefGoogle Scholar
  92. 92.
    Morinaga S, Kawasaki A, Hirata H, et al. Histamine poisoning after ingestion of spoiled raw tuna in a patient taking isoniazid. Intern Med 1997; 36: 198–200PubMedCrossRefGoogle Scholar
  93. 93.
    Peloquin CA, Namdar R, Singleton MD, et al. Pharmacokinetics of rifampin under fasting conditions, with food, and with antacids. Chest 1999; 115: 12–8PubMedCrossRefGoogle Scholar
  94. 94.
    Fromm MF, Eckhardt K, Li S, et al. Loss of analgesic effect of morphine due to coadministration of rifampin. Pain 1997; 72: 261–7PubMedCrossRefGoogle Scholar
  95. 95.
    Gupta PR, Mehta YR, Gupta ML, et al. Rifampicin-aluminum antacid interaction. J Assoc Physicians India 1988; 36: 363–4PubMedGoogle Scholar
  96. 96.
    O’Reilly RA. Interactions of chronic daily warfarin therapy and rifampin. Ann Intern Med 1975; 83: 506–8PubMedGoogle Scholar
  97. 97.
    O’Reilly RA. Interactions of sodium warfarin and rifampin: studies in man. Ann Intern Med 1974; 81: 337–40PubMedGoogle Scholar
  98. 98.
    Heimark LD, Gibaldi M, Trager WF, et al. The mechanism of the warfarin-rifampin drug interactions in humans. Clin Pharmacol Ther 1987; 42: 388–94PubMedCrossRefGoogle Scholar
  99. 99.
    Breimer DD, Zilly W, Richter E. Influence of rifampicin on drug metabolism: difference between hexobarbital and antipyrine. Clin Pharmacol Ther 1977; 21: 470–81PubMedGoogle Scholar
  100. 100.
    Smith DA, Chandler MHH, Shedlofsky SI, et al. Age-dependent stereoselective increase in the oral clearance of hexobarbitone isomers caused by rifampicin. Br J Clin Pharmacol 1991; 32: 735–9PubMedGoogle Scholar
  101. 101.
    Depacon™, valproate sodium injection [product information]. North Chicago (IL): Abbott Laboratories, 1998Google Scholar
  102. 102.
    Mepron®, atovaquone [product information]. Research Triangle Park (NC): Glaxo Wellcome, Inc, 1999Google Scholar
  103. 103.
    Wallace RJ, Brown BA, Griffith DE, et al. Reduced serum levels of clarithromycin in patients treated with multidrug regimens including rifampin or rifabutin for Mycobacterium avium-M intracellulare infection. J Infect Dis 1995; 171: 747–50PubMedCrossRefGoogle Scholar
  104. 104.
    Prober CG. Effect of rifampin on chloramphenicol levels. N Engl J Med 1985; 312: 788–9PubMedCrossRefGoogle Scholar
  105. 105.
    Kelly HW, Couch RC, Davis RL, et al. Interaction of chloramphenicol and rifampin. J Pediatr 1988; 112: 817–20PubMedCrossRefGoogle Scholar
  106. 106.
    George J, Balakrishnan S, Bhatia VN. Drug interaction during multidrug regimens for treatment of leprosy. Indian J Med Res 1988; 87: 151–6PubMedGoogle Scholar
  107. 107.
    Pieters FA, Woonink F, Zuidema J. Influence of once-monthly rifampicin and daily clofazimine on the pharmacokinetics of dapsone in leprosy patients in Nigeria. Eur J Clin Pharmacol 1988; 34: 73–6PubMedCrossRefGoogle Scholar
  108. 108.
    Horowitz HW, Jorde UP, Wormser GP. Drug interactions in use of dapsone for Pneumocystis carinii prophylaxis. Lancet 1992; 339: 747PubMedCrossRefGoogle Scholar
  109. 109.
    Colmenero JD, Fernandez-Gallardo LC, Agundez JA, et al. Possible implications of doxycycline-rifampin interaction for treatment of brucellosis. Antimicrob Agents Chemother 1994; 38: 2798–802PubMedCrossRefGoogle Scholar
  110. 110.
    Coker RJ, Tomlinson DR, Parkin J, et al. Interaction between fluconazole and rifampicin. BMJ 1990; 301: 818PubMedCrossRefGoogle Scholar
  111. 111.
    Tucker RM, Denning DW, Hanson LH, et al. Interaction of azoles with rifampicin, phenytoin, and carbamazepine: in vitro and clinical observations. Clin Infect Dis 1992; 14: 165–74PubMedCrossRefGoogle Scholar
  112. 112.
    Nicolau DP, Crowe HM, Nightingale CH, et al. Rifampinfluoconazole interaction in critically ill patients. Ann Pharmacother 1995; 29: 994–6PubMedGoogle Scholar
  113. 113.
    Blomley M, Teare EL, de Belder A, et al. Itraconazole and antituberculosis drugs. Lancet 1990; 336: 1255PubMedCrossRefGoogle Scholar
  114. 114.
    Jaruratanasirikul S, Sriwiriyajan S. Effect of rifampicin on the pharmacokinetics of itraconazole in normal volunteers and AIDS patients. Eur J Clin Pharmacol 1998; 54: 155–8PubMedCrossRefGoogle Scholar
  115. 115.
    Engelhard D, Stutman HR, Marks MI. Interaction of ketoconazole and rifampin and isoniazid. N Engl J Med 1984; 311: 1681–3PubMedCrossRefGoogle Scholar
  116. 116.
    Meunier F. Serum fungistatic and fungicidal activity in volunteers receiving antifungal agents. Eur J Clin Microbiol Infect Dis 1986; 5: 103–9CrossRefGoogle Scholar
  117. 117.
    Abadie-Kemmerley S, Pankey GA, Dalovisio JR. Failure of ketoconazole treatment of Blastomyces dermatitis due to interaction of isoniazid and rifampin. Ann Intern Med 1988; 109: 844–5Google Scholar
  118. 118.
    Zarembski DG, Fischer SA, Santucci PA, et al. Impact of rifampin on serum amiodarone concentrations in a patient with congenital heart disease. Pharmacotherapy 1999; 19: 249–51PubMedCrossRefGoogle Scholar
  119. 119.
    Kirch W, Rose I, Klingmann I, et al. Interaction of bisoprolol with cimetidine and rifampicin. Eur J Clin Pharmacol 1986; 31: 59–62PubMedCrossRefGoogle Scholar
  120. 120.
    Fachinformation: Andante®, bunazosin [product information]. Boehringer-Ingelheim KG. Ingelheim am Rhein. Germany 1994Google Scholar
  121. 121.
    Coreg®, carvedilol [product information]. Philadelphia (PA): SmithKline Beecham Pharmaceuticals, 1996Google Scholar
  122. 122.
    Houin G, Tillement JP. Clofibrate and enzymatic induction in man. Int J Clin Pharmacol 1978; 16: 150–4Google Scholar
  123. 123.
    Zilly W, Breimer DD, Richter E. Pharmacokinetic interactions with rifampin. Clin Pharmacokinet 1977; 2: 61–70PubMedCrossRefGoogle Scholar
  124. 124.
    Boman G, Eliasson K, Odar-Cederlof I. Acute cardiac failure during treatment with digitoxin - an interaction with rifampicin. Br J Clin Pharmacol 1980; 10: 89–90PubMedCrossRefGoogle Scholar
  125. 125.
    Poor DM, Self TH, Davis HL. Interaction of rifampin and digitoxin. Arch Intern Med 1983; 143: 599PubMedCrossRefGoogle Scholar
  126. 126.
    Novi C, Bissoli F, Simonati V, et al. Rifampin and digoxin: Possible drug interaction in a dialysis patient. JAMA 1980; 244: 2521–2PubMedCrossRefGoogle Scholar
  127. 127.
    Gault H, Longerich L, Dawe M, et al. Digoxin-rifampin interaction. Clin Pharmacol Ther 1984; 35: 750–4PubMedCrossRefGoogle Scholar
  128. 128.
    Bussey HI, Merritt GJ, Hill EG. The influence of rifampin on quinidine and digoxin. Arch Intern Med 1984; 144: 1021–3PubMedCrossRefGoogle Scholar
  129. 129.
    Pichard L, Gillet G, Fabre I, et al. Identification of the rabbit and human cytochromes P450 IIIA as the major enzymes involved in the N-demethylation of diltiazem. Drug Metab Dispos 1990; 18: 711–9PubMedGoogle Scholar
  130. 130.
    Drda KD, Bastian TL, Self TH, et al. Effects of debrisoquine hydroxylation phenotype and enzyme induction with rifampin on diltiazem pharmacokinetics and pharmacodynamics. Pharmacotherapy 1991; 11: 278Google Scholar
  131. 131.
    Adebayo GI, Akintonwa A, Mabadeje AF. Attenuation of rifampicin-induced theophylline metabolism by diltiazem/rifampicin coadministration in healthy volunteers. Eur J Clin Pharmacol 1989; 37: 127–31PubMedCrossRefGoogle Scholar
  132. 132.
    Aitio ML, Mansury L, Tala E, et al. The effect of enzyme induction on the metabolism of disopyramide in man. Br J Clin Pharmacol 1981; 11: 279–85PubMedCrossRefGoogle Scholar
  133. 133.
    Staum JM. Enzyme induction: rifampin-disopyramide interaction. DICP 1990; 24: 701–3PubMedGoogle Scholar
  134. 134.
    Kandiah D, Penny WJ, Fraser AG, et al. A possible drug interaction between rifampicin and enalapril. Eur J Clin Pharmacol 1988; 35: 431–2PubMedCrossRefGoogle Scholar
  135. 135.
    Lescol®, fluvastatin [product information]. East Hanover (NJ): Novartis Pharmaceuticals Corporation, 1999Google Scholar
  136. 136.
    Mauro VF, Somani P, Temesy-Armos PN. Drug interaction between lorcainide and rifampicin. Eur J Clin Pharmacol 1987; 31: 737–8PubMedCrossRefGoogle Scholar
  137. 137.
    Williamson KM, Patterson HP, McQueen RH, et al. Effects of erythromycin or rifampin on losartan pharmacokinetics in healthy volunteers. Clin Pharmacol Ther 1998; 63: 316–23PubMedCrossRefGoogle Scholar
  138. 138.
    Bennett PN, John VA, Whitmarsh VB. Effect of rifampicin on metoprolol and antipyrine kinetics. Br J Clin Pharmcol 1982; 13: 387–91CrossRefGoogle Scholar
  139. 139.
    Pentikainen PJ, Koivula IH, Hiltunen HA. Effect of rifampicin treatment on the kinetics of mexiletine. Eur J Clin Pharmacol 1982; 23: 261–6PubMedCrossRefGoogle Scholar
  140. 140.
    Woosley RL, Wang T, Stone W, et al. Pharmacology, electrophysiology and pharmacokinetics of mexiletine. Am Heart J 1984; 107: 1058–65PubMedCrossRefGoogle Scholar
  141. 141.
    Tsuchihashi K, Fukami K, Kishimoto H, et al. A case of variant angina exacerbated by administration of rifampicin. Heart Vessels 1987; 3: 214–7PubMedCrossRefGoogle Scholar
  142. 142.
    Tada Y, Tsuda Y, Otsuda T, et al. Case report: nifedipinerifampin interaction attenuates the effect on blood pressure in a patient with essential hypertension. Am J Med Sci 1992; 303: 25–7PubMedCrossRefGoogle Scholar
  143. 143.
    Castel JM, Cappiello E, Leopaldi D, et al. Rifampicin lowers plasma concentrations of propafenone and its antiarrhythmic effect. Br J Clin Pharmacol 1990; 30: 155–6PubMedCrossRefGoogle Scholar
  144. 144.
    Dilger K, Hofmann U, Klotz U. Enzyme induction in the elderly: effect of rifampin on the pharmacokinetics and pharmacodynamics of propafenone. Clin Pharmacol Ther 2000; 67: 512–20PubMedCrossRefGoogle Scholar
  145. 145.
    Dilger K, Greiner B, Fromm MF, et al. Consequences of rifampicin treatment on propafenone disposition in extensive and poor metabolizers of CYP2D6. Pharmacogenetics 1999; 9: 551–9PubMedCrossRefGoogle Scholar
  146. 146.
    Herman RJ, Nakamura K, Wilkinson GR, et al. Induction of propanolol metabolism by rifampin. Br J Clin Pharmacol 1983; 16: 565–9PubMedCrossRefGoogle Scholar
  147. 147.
    Twum-Barima Y, Carruthers SG. Quinidine-rifampin interaction. N Engl J Med 1981; 304: 1466–9PubMedCrossRefGoogle Scholar
  148. 148.
    Schwartz A, Brown JR. Quinidine-rifampin interaction. Am Heart J 1984; 107: 789–90PubMedCrossRefGoogle Scholar
  149. 149.
    Kirch W, Milferstadt S, Halabi A, et al. Interaction of tertatolol with rifampicin and ranitidine pharmacokinetics and antihypertensive activity. Cardiovasc Drugs Ther 1990; 4: 487–92PubMedCrossRefGoogle Scholar
  150. 150.
    Rice TL, Patterson JH, Celestin C, et al. Influence of rifampin on tocainide pharmacokinetics in humans. Clin Pharmacokinet 1989; 8: 200–5Google Scholar
  151. 151.
    Rahn KH, Mooy J, Bohm R. Reduction of bioavailability of verapamil by rifampin. N Engl J Med 1985; 312: 920–1PubMedGoogle Scholar
  152. 152.
    Mooy J, Bohm R, van Baak M, et al. The influence of antituberculosis drugs on the plasma level of verapamil. Eur J Clin Pharmacol 1987; 32: 107–9PubMedCrossRefGoogle Scholar
  153. 153.
    Barbarash RA, Bauman JL, Fischer JH, et al. Near-total reduction in verapamil bioavailability by rifampin: electrocardiographic correlates. Chest 1988; 94: 954–9PubMedCrossRefGoogle Scholar
  154. 154.
    Fromm MF, Busse D, Kroemer HK, et al. Differential induction of prehepatic and hepatic metabolism of verapamil by rifampin. Hepatology 1996; 24: 796–801PubMedCrossRefGoogle Scholar
  155. 155.
    Fromm MF, Dilger K, Busse D, et al. Gut wall metabolism of verapamil in older people: Effects of rifampicin-mediated enzyme induction. Br J Clin Pharmacol 1998; 45: 247–55PubMedCrossRefGoogle Scholar
  156. 156.
    Baciewicz AM, Self TH. Rifampin drug interactions. Arch Intern Med 1984; 144: 1667–71PubMedCrossRefGoogle Scholar
  157. 157.
    LeBel M, Masson E, Guilbert E, et al. Effects of rifabutin and rifampicin on the pharmacokinetics of ethinylestradiol and norethindrone. J Clin Pharmacol 1998; 38: 1042–50PubMedCrossRefGoogle Scholar
  158. 158.
    Barditch-Crovo P, Trapnell CB, Ette E, et al. The effects of rifampin and rifabutin on the pharmacokinetics and pharmacodynamics of a combination oral contraceptive. Clin Pharmacol Ther 1999; 65: 428–38PubMedCrossRefGoogle Scholar
  159. 159.
    Edwards OM, Courtenay-Evans RJ, Galley JM, et al. Changes in cortisol metabolism following rifampicin therapy. Lancet 1974; 2: 548–51PubMedGoogle Scholar
  160. 160.
    Maisey DM, Brown RC, Day JL. Rifampicin and cortisone replacement therapy. Lancet 1974; 2: 896–7PubMedCrossRefGoogle Scholar
  161. 161.
    Kyriazopoulou V, Parparousi O, Vagenakis AG. Rifampicininduced adrenal crisis in Addisonian patients receiving corticosteroid replacement therapy. J Clin Endocrinol Metab 1984; 59: 1204–6PubMedCrossRefGoogle Scholar
  162. 162.
    Lin F. Rifampin-induced deterioration in steroid-dependent asthma. J Allergy Clin Immunol 1996; 98: 1125PubMedCrossRefGoogle Scholar
  163. 163.
    Buffington GA, Dominguez JH, Piering WF, et al. Interaction of rifampin and glucocorticoids: Adverse effects on renal allograft function. JAMA 1976; 236: 1958–60PubMedCrossRefGoogle Scholar
  164. 164.
    McAllister WA, Thompson PJ, Al-Habet SM, et al. Rifampicin reduces effectiveness and bioavailability of prednisolone. BMJ 1983; 286: 923–5PubMedCrossRefGoogle Scholar
  165. 165.
    Coward RA, Raftery AT, Brown CB. Cyclosporin and antituberculosis therapy. Lancet 1985; 1: 1343Google Scholar
  166. 166.
    Roberts JP, Gambertoglio JC, Benet LZ. The effects of rifampin on cyclosporine pharmacokinetics. Clin Pharmacol Ther 1991; 49: 129Google Scholar
  167. 167.
    Hebert MF, Roberts JP, Prueksaritanont R, et al. Bioavailability of cyclosporine with concomitant rifampin administration is markedly less than predicted by hepatic enzyme induction. Clin Pharmacol Ther 1992; 52: 453–7PubMedCrossRefGoogle Scholar
  168. 168.
    Peschke B, Ernst W, Gossman J, et al. Antituberculous drugs in kidney transplant recipients treated with cyclosporine. Transplantation 1993; 56: 236–8PubMedCrossRefGoogle Scholar
  169. 169.
    Koselj M, Bren A, Kandus A, et al. Drug interactions between cyclosporine and rifampicin, erythromycin and azoles in kidney recipients with opportunistic infections. Transplant Proc 1994; 26: 2823–4PubMedGoogle Scholar
  170. 170.
    Freitag VL, Skifton RD, Lake KD. Effect of short-term rifampin on stable cyclosporine concentrations. Ann Pharmacother 1999; 33: 871–2PubMedCrossRefGoogle Scholar
  171. 171.
    Kim YH, Yoon YR, Kim YW, et al. Effects of rifampin on cyclosporine disposition in kidney recipients with tuberculosis. Transplant Proc 1999; 30: 3570–2CrossRefGoogle Scholar
  172. 172.
    Rapamune®, sirolimus [product information]. Philadelphia (PA): Wyeth Laboratories, 1999Google Scholar
  173. 173.
    Hebert MF, Fisher RM, Marsh CL, et al. Effects of rifampin on tacrolimus pharmacokinetics in healthy volunteers. J Clin Pharmacol 1999; 39: 91–6PubMedCrossRefGoogle Scholar
  174. 174.
    Kiuchi T, Tanaka K, Inomata Y, et al. Experience of tacrolimusbased immunosuppression in living-related liver transplantation complicated with graft tuberculosis: interaction with rifampicin and side effects. Transplant Proc 1996; 28: 3171–2PubMedGoogle Scholar
  175. 175.
    Chenhsu RY, Loong CC, Chou MH, et al. Renal allograft dysfunction associated with rifampin-tacrolimus interaction. Ann Pharmacother 2000; 34: 27–31PubMedCrossRefGoogle Scholar
  176. 176.
    Arava™, leflunomide [product information]. Kansas City (MO): Hoechst Marion Roussel Inc, 1998Google Scholar
  177. 177.
    Isley WL. Effect of rifampin therapy on thyroid function tests in a hypothyroid patient on replacement L-thyroxine. Ann Intern Med 1987; 107: 517–8PubMedGoogle Scholar
  178. 178.
    Nolan SR, Self TH, Norwood JM. Interaction between rifampin and levothyroxine. South Med J 1999; 92: 529–31PubMedCrossRefGoogle Scholar
  179. 179.
    Singulair®, montelukast sodium [product information]. West Point (PA): Merck & Co, Inc, 2000Google Scholar
  180. 180.
    Kreek MJ, Garfield JW, Gutjahr CL, et al. Rifampin-induced methadone withdrawal. N Engl J Med 1976; 294: 1104–6PubMedCrossRefGoogle Scholar
  181. 181.
    Bending MR, Skacel PO. Rifampicin and methadone withdrawal. Lancet 1977; 1: 1211PubMedCrossRefGoogle Scholar
  182. 182.
    Ohnhaus EE, Brockmeyer N, Dylewicz P, et al. The effect of antipyrine and rifampin on the metabolism of diazepam. Clin Pharmacol Ther 1987; 42: 148–56PubMedCrossRefGoogle Scholar
  183. 183.
    Sonne J, Dossing M, Loft S, et al. Single dose pharmacokinetics and pharmacodynamics of oral oxazepam during concomitant administration of propanolol and labetolol. Br J Clin Pharmacol 1990; 29: 33–7PubMedCrossRefGoogle Scholar
  184. 184.
    Backman JT, Olkkola KT, Neuvonen PJ. Rifampicin drastically reduces plasma concentrations and effects of oral midazolam. Clin Pharmacol Ther 1996; 59: 7–13PubMedCrossRefGoogle Scholar
  185. 185.
    Brockmeyer NH, Mertins L, Klimek K, et al. Comparative effects of rifampin and/or probenecid on the pharmacokinetics of temazepam and nitrazepam. Int J Clin Pharmacol Ther Toxicol 1990; 28: 387–93PubMedGoogle Scholar
  186. 186.
    Villikka K, Kivisto KT, Backman JT, et al. Triazolam is ineffective in patients taking rifampin. Clin Pharmacol Ther 1997; 61: 8–14PubMedCrossRefGoogle Scholar
  187. 187.
    Takeda M, Nishinuma K, Yamashita S, et al. Serum haloperidol levels of schizophrenics receiving treatment for tuberculosis. Clin Neuropharmacol 1986; 9: 386–97PubMedCrossRefGoogle Scholar
  188. 188.
    Kim YH, Cha IJ, Shim JC, et al. Effect of rifampin on the plasma concentration and the clinical effect of haloperidol concomitantly administered to schizophrenic patients. J Clin Psychopharmacol 1996; 16: 247–52PubMedCrossRefGoogle Scholar
  189. 189.
    Bebchuk JM, Stewart DE. Drug interaction between rifampin and nortriptyline: a case report. Int J Pschiatry Med 1991; 21: 183–7CrossRefGoogle Scholar
  190. 190.
    Self TH, Corley CR, Nabhan S, et al. Interaction of rifampin and nortriptyline. Am J Med Sci 1996; 311: 80–1PubMedCrossRefGoogle Scholar
  191. 191.
    Markowitz JS, De Vane CL. Rifampin-induced selective serotonin reuptake inhibitor withdrawal syndrome in a patient treated with sertraline. J Clin Psychopharmacol 2000; 20: 109–10PubMedCrossRefGoogle Scholar
  192. 192.
    Villikka K, Kivisto KT, Lamberg TS, et al. Concentrations and effects of zopiclone are greatly reduced by rifampicin. Br J Clin Pharmacol 1997; 43: 471–4PubMedCrossRefGoogle Scholar
  193. 193.
    Villikka K, Kivisto KT, Luurila H. Rifampin reduces plasma concentrations and effects of zolpidem. Clin Pharmacol Ther 1997; 62: 629–34PubMedCrossRefGoogle Scholar
  194. 194.
    Vioxx®, rofecoxib [product information]. West Point (PA): Merck & Co, Inc. 1999Google Scholar
  195. 195.
    Shaffer JL, Houston JB. The effect of rifampicin on sulphapyridine plasma concentrations following sulphasalazine administration. Br J Clin Pharmacol 1985; 19: 526–8PubMedCrossRefGoogle Scholar
  196. 196.
    Self TH, Morris T. Interaction of rifampin and chlorpropamide. Chest 1980; 77: 800–1PubMedCrossRefGoogle Scholar
  197. 197.
    Sartor G, Melander A, Schersten B, et al. Serum glibenclamide in diabetic patients, and influence of food on the kinetics and effects of glibenclamide. Diabetologia 1980; 18: 17–22PubMedCrossRefGoogle Scholar
  198. 198.
    Surekha V, Peter JV, Jeyaseelan L, et al. Drug interaction: rifampicin and glibenclamide. Natl Med J India 1997; 10: 11–2PubMedGoogle Scholar
  199. 199.
    Self TH, Tsui SJ, Fowler JW. Interaction of rifampin and glyburide. Chest 1989; 96: 1443–4PubMedCrossRefGoogle Scholar
  200. 200.
    Straughn AB, Henderson RP, Lieberman PL, et al. Effect of rifampin on theophylline disposition. Ther Drug Monit 1984; 6: 153–6PubMedCrossRefGoogle Scholar
  201. 201.
    Powell-Jackson PR, Jamieson AP, Gray BJ, et al. Effect of rifampin administration on theophylline pharmacokinetics in humans. Am Rev Respir Dis 1985; 131: 939–40PubMedGoogle Scholar
  202. 202.
    Robson RA, Miners JO, Wing LM, et al. Theophylline-rifampin interactions: non-selective induction of theophylline metabolic pathways. Br J Clin Pharmacol 1984; 18: 445–8PubMedCrossRefGoogle Scholar
  203. 203.
    Kolars JC, Schmiedlin-Ren P, Schuetz JD, et al. Identification of rifampin-inducible P450 IIIA4 (CYP3A4) in human small bowel enterocytes. J Clin Invest 1992; 90: 1871–8PubMedCrossRefGoogle Scholar
  204. 204.
    Almog S, Martinowitz V, Halkin H, et al. Complex interaction of rifampin and warfarin. South Med J 1988; 81: 1304–6PubMedCrossRefGoogle Scholar
  205. 205.
    Bhatia RS, Uppal R, Malhi R, et al. Drug interaction between rifampicin and cotrimoxazole in patients with tuberculosis. Hum Exp Toxicol 1991; 10: 419–21PubMedCrossRefGoogle Scholar
  206. 206.
    Perez-Gallardo L, Blanco ML, Soria H, et al. Displacement of rifampicin bound to serum proteins by addition of levamisole. Biomed Pharmacother 1992; 46: 173–4PubMedCrossRefGoogle Scholar
  207. 207.
    Crofton J, Chaulet P, Maher D. Guidelines for the management of drug-resistant tuberculosis. WHO/TB/96.210 (Rev 1). Geneva: World Health Organization, 1997Google Scholar
  208. 208.
    Fuhr U, Anders E-M, Mahr G. Inhibitory potency of quinolone antibacterial agents against cytochrome P-4501A2 activity in vivo and in vitro. Antimicrob Agents Chemother 1992; 36: 942–8PubMedCrossRefGoogle Scholar
  209. 209.
    Fuhr U, Strobl G, Manaut F. Quinolone antibacterial agents: relationship between structure and in vitro inhibition of the human cytochrome P450 isoform CYP1A2. Mol Pharmacol 1993; 43: 191–9PubMedGoogle Scholar
  210. 210.
    Frost RW, Carlson JD, Dietz Jr AJ, et al. Ciprofloxacin pharamcokinetics after a standard or high-fat/high-calcium breakfast. J Clin Pharmacol 1989; 29: 953–5PubMedGoogle Scholar
  211. 211.
    Kalager T, Digranes A, Bergan T, et al. Ofloxacin: serum and skin blister fluid pharmacokinetics in the fasting and nonfasting state. J Antimicrob Chemother 1986; 17: 795–800PubMedCrossRefGoogle Scholar
  212. 212.
    Lee LJ, Hafkin B, Lee ID, et al. Effects of food and sucralfate on a single oral dose of 500 milligrams of levofloxacin in healthy subjects. Antimicrob Agents Chemother 1997; 41: 2196–200PubMedGoogle Scholar
  213. 213.
    Nix DE, Watson WA, Lener ME, et al. Effects of aluminum and magnesium antacids and ranitidine on the absorption of ciprofloxacin. Clin Pharmacol Ther 1989; 46: 700–5PubMedCrossRefGoogle Scholar
  214. 214.
    Flor S, Guay D, Opsahl J, et al. Effects of magnesium-aluminum hydroxide and calcium carbonate antacids on bioavailability of ofloxacin. Antimicrob Agents Chemother 1990; 34: 2436–8PubMedCrossRefGoogle Scholar
  215. 215.
    Shiba K, Sakai O, Shimada J, et al. Effects of antacids, ferrous sulfate, and ranitidine on absorption of DR-3355 in humans. Antimicrob Agents Chemother 1992; 36: 2270–4PubMedCrossRefGoogle Scholar
  216. 216.
    Hoffken G, Lode H, Wiley R. Pharmacokinetics and bioavailability of ciprofloxacin and ofloxacin: effect of food and antacid intake. Rev Infect Dis 1988; 10Suppl. 1: S138–9Google Scholar
  217. 217.
    Nix DE, Watson WA, Handy L, et al. The effect of sucralfate pretreatment on the pharmacokinetics of ciprofloxacin. Pharmacotherapy 1989; 9: 377–80PubMedGoogle Scholar
  218. 218.
    Lehto O, Kivisto KT. Effect of sucralfate on absorption of norfloxacin and ofloxacin. Antimicrob Agents Chemother 1994; 38: 248–51PubMedCrossRefGoogle Scholar
  219. 219.
    Polk RE, Healy DP, Sahai J, et al. Effect of ferrous sulfate and multivitamins with zinc on absorption of ciprofloxacin in normal volunteers. Antimicrob Agents Chemother 1989; 33: 1841–4PubMedCrossRefGoogle Scholar
  220. 220.
    Sahai J, Gallicano K, Oliveras L, et al. Cations in the didanosine tablet reduce ciprofloxacin bioavailability. Clin Pharmacol Ther 1993; 53: 292–7PubMedCrossRefGoogle Scholar
  221. 221.
    Knupp CA, Barbhaiya RH. A multiple-dose pharmacokinetic interaction study between didanosine and ciprofloxacin in male subjects seropositive for HIV but asymptomatic. Biopharm Drug Dispos 1997; 18: 65–77PubMedCrossRefGoogle Scholar
  222. 222.
    Mueller BA, Brierton DG, Abel SR, et al. Effect of enteral feeding with ensure on oral bioavailabilities of ofloxacin and ciprofloxacin. Antimicrob Agents Chemother 1994; 38: 2101–5PubMedCrossRefGoogle Scholar
  223. 223.
    Yuk JH, Nightingale CH, Sweeney KR, et al. Relative bioavailability in healthy volunteers of ciprofloxacin administered through a nasogastric tube with and without enteral feeding. Antimicrob Agents Chemother 1989; 33: 1118–20PubMedCrossRefGoogle Scholar
  224. 224.
    Edwards DJ, Bowles SK, Svensson CK, et al. Inhibition of drug metabolism by quinolone antibiotics. Clin Pharmacokinet 1988; 15: 194–204PubMedCrossRefGoogle Scholar
  225. 225.
    Schwartz J, Jauregui L, Lettieri J, et al. Impact of ciprofloxacin on theophylline clearance and steady-state concentrations in serum. Antimicrob Agents Chemother 1988; 32: 75–7PubMedCrossRefGoogle Scholar
  226. 226.
    Parent M, Le Bel M. Meta-analysis of quinolone-theophylline interactions. DICP 1991; 25: 191–4PubMedGoogle Scholar
  227. 227.
    Radandt JM, Marchbanks CR, Dudley MN. Interactions of fluoroquinolones with other drugs: mechanisms, variability, clinical significance and management. Clin Infect Dis 1992; 14: 272–84PubMedCrossRefGoogle Scholar
  228. 228.
    Karki SD, Bentley DW, Raghavan M. Seizure with ciprofloxacin and theophylline combined therapy. DICP 1990; 24: 595–6PubMedGoogle Scholar
  229. 229.
    Okimoto N, Niki Y, Soejima R. Effect of levofloxacin on serum concentration of theophylline. Chemotherapy 1992; 40Suppl. 3: S68–74Google Scholar
  230. 230.
    Gisclon LG, Curtin CR, Fowler CL, et al. Absence of a pharmacokinetic interaction between intravenous theophylline and orally administered levofloxacin. J Clin Pharmacol 1997; 37: 744–50PubMedGoogle Scholar
  231. 231.
    Gregoire SL, Grasela Jr TH, Freer JP, et al. Inhibition of theophylline clearance by coadministered ofloxacin without alteration of theophylline effects. Antimicrob Agents Chemother 1987; 31: 375–8PubMedCrossRefGoogle Scholar
  232. 232.
    Leor J, Matetzki S. Ofloxacin and warfarin. Ann Intern Med 1988; 109: 761PubMedGoogle Scholar
  233. 233.
    Linville D II, Emory C, Graves L III. Ciprofloxacin and warfarin interaction. Am J Med 1991; 90: 765PubMedGoogle Scholar
  234. 234.
    Jolson HM, Tanner LA, Green L, et al. Adverse reaction reporting of interaction between warfarin and fluoroquinolones. Arch Intern Med 1991; 151: 1003–4PubMedCrossRefGoogle Scholar
  235. 235.
    Toon S, Hopkins KJ, Garstang FM, et al. Enoxacin-warfarin interaction: pharmacokinetic and stereochemical aspects. Clin Pharmacol Ther 1987; 42: 33–41PubMedCrossRefGoogle Scholar
  236. 236.
    Rocci ML Jr, Vlasses PH, Distlerath LM, et al. Norfloxacin does not alter warfarin’s disposition or anticoagulant effect. J Clin Pharmacol 1990; 30: 728–32PubMedGoogle Scholar
  237. 237.
    Liao S, Palmer M, Fowler C, et al. Absence of an effect of levofloxacin on warfarin pharmacokinetics and anticoagulation in male volunteers. J Clin Pharmacol 1996; 36: 1072–7PubMedCrossRefGoogle Scholar
  238. 238.
    Thomson DJ, Menkis AH, McKenzie FN. Norfloxacin-cyclosporine interaction. Transplantation 1988; 46: 312–3PubMedCrossRefGoogle Scholar
  239. 239.
    McLellan RA, Drobitch RK, McLellan H, et al. Norfloxacin interferes with cyclosporine disposition in pediatric patients undergoing renal transplantation. Clin Pharmacol Ther 1995; 58: 322–7PubMedCrossRefGoogle Scholar
  240. 240.
    Elston RA, Taylor J. Possible interaction of ciprofloxacin with cyclosporin A. J Antimicrob Chemother 1988; 21: 679–80PubMedCrossRefGoogle Scholar
  241. 241.
    Avent CK, Krinsky D, Kirklin JK, et al. Synergistic nephrotoxicity due to ciprofloxacin and cyclosporine. Am J Med 1988; 85: 452–3PubMedCrossRefGoogle Scholar
  242. 242.
    Lang J, Fianz de Villaine J, Garraffo R, et al. Cyclosporine (cyclosporine A) pharmacokinetics in renal transplant patients receiving ciprofloxacin. Am J Med 1989; 87Suppl 5A: S82–5CrossRefGoogle Scholar
  243. 243.
    Tan KK, Trull AK, Shawket S. Co-administration of ciprofloxacin and cyclosporine: lack of evidence for a pharmacokinetic interaction. Br J Clin Pharmacol 1989; 28: 185–7PubMedCrossRefGoogle Scholar
  244. 244.
    Kruger HU, Schuler U, Proksch B, et al. Investigation of a potential interaction of ciprofloxacin with cyclosporine in bone marrow transplant recipients. Antimicrob Agents Chemother 1990; 34: 1048–52PubMedCrossRefGoogle Scholar
  245. 245.
    Van Buren DH, Koestner J, Adedoyin A, et al. Effect of ciprofloxacin on cyclosporine pharmacokinetics. Transplantation 1990; 50: 888–9PubMedGoogle Scholar
  246. 246.
    Doose DR, Walker SA, Chien SC, et al. Levofloxacin does not alter cyclosporine disposition. J Clin Pharmacol 1998; 38: 90–3PubMedGoogle Scholar
  247. 247.
    Schroeder D, Frye J, Alldredge B, et al. Effect of ciprofloxacin on serum phenytoin concentrations in epileptic patients. Pharmacotherapy 1991; 11: 275Google Scholar
  248. 248.
    Dillard ML, Fink RM, Parkerson R. Ciprofloxacin phenytoin interaction. Ann Pharmacother 1992; 26: 263PubMedGoogle Scholar
  249. 249.
    Hull RL, Bartel L. Possible phenytoin-ciprofloxacin interaction. Ann Pharmacother 1993; 27: 1283PubMedGoogle Scholar
  250. 250.
    Job ML, Arn SK, Strom JG, et al. Effect of ciprofloxacin on the pharmacokinetics of multiple-dose phenytoin serum concentrations. Ther Drug Monit 1994; 16: 427–31PubMedCrossRefGoogle Scholar
  251. 251.
    Pollak PT, Slayter KL. Ciprofloxacin-phenytoin interaction. Ann Pharmacother 1997; 31: 1549–50PubMedGoogle Scholar
  252. 252.
    Otero MJ, Moran D, Valverde MP. Interaction between phenytoin and ciprofloxacin. Ann Pharmacother 1999; 33: 251–2PubMedCrossRefGoogle Scholar
  253. 253.
    Shiba K, Yoshida M, Kachi M, et al. Effects of peptic-ulcerhealing drugs on the pharmacokinetics of new quinolone (OFL) [abstract no. A415]. 17th International Congress of Chemotherapy; 1991 Jun 27; Berlin, GermanyGoogle Scholar
  254. 254.
    Flor S. Pharmacokinetics of ofloxacin: an overview. Am J Med 1989; 87Suppl. 6C: S24–30Google Scholar
  255. 255.
    Gaitonade MD, Mendes P, House ESA. The effects of cimetidine and probenecid on the pharmacokinetics of levofloxacin [abstract no. A-13]. 35th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1995 Sep 17-20; San Francisco, USAGoogle Scholar
  256. 256.
    Davies BI, Maesen FP. Drug interactions with quinolones. Rev Infect Dis 1989; 11Suppl. 5: S1083–90PubMedCrossRefGoogle Scholar
  257. 257.
    Tsuji A, Sato H, Kume Y, et al. Inhibitory effects of quinolone antibacterial agents on gamma-aminobutyric acid binding to receptor sites in rat brain membranes. Antimicrob Agents Chemother 1988; 32: 190–4PubMedCrossRefGoogle Scholar
  258. 258.
    Tsuji A, Sato H, Okezaki E, et al. Effect of the anti-inflammatory agent fenbufen on the quinolone-induced inhibition of γ-aminobutyric acid binding to rat brain membrances in vitro. Biochem Pharmacol 1988; 37: 4408–11PubMedCrossRefGoogle Scholar
  259. 259.
    Halliwell RF, Davey PG, Lambert JJ. The effects of quinolones and NSAIDs upon GABA-evoked currents recorded from rat dorsal root ganglion neurones. J Antimicrob Chemother 1991; 27: 209–18PubMedCrossRefGoogle Scholar
  260. 260.
    Christ W, Gindler K, Gruene S, et al. Interactions of quinolones with opioids and fenbufen, a nonsteroidal anti-inflammatory drug: involvement of dopaminergic neurotransmission. Rev Infect Dis 1989; 11Suppl. 5: 1393–4Google Scholar
  261. 261.
    Akahane K, Sekiguchi M, Une T, et al. Structure-epileptogenicity relationship of quinolones with special reference to their interaction with γ-aminobutyric acid receptor sites. Antimicrob Agents Chemother 1989; 33: 1704–8PubMedCrossRefGoogle Scholar
  262. 262.
    Kohno K, Nozaki M, Takeda N, et al. Neuroexcitable effects of levofloxacin, a novel quinolone antibacterial, in concomitant use of non-steroidal anti-inflammatory drugs. Jpn Pharmacol Ther 1994; 22: 187–97Google Scholar
  263. 263.
    Raoof S, Wollschlager C, Khan FA. Ciprofloxacin increases serum levels of theophylline. Am J Med 1987; 82Suppl. 4A: S115–8Google Scholar
  264. 264.
    Stein GE. Drug interactions with fluoroquinolones. Am J Med 1991; 91Suppl. 6A: S81–6CrossRefGoogle Scholar
  265. 265.
    Baciewicz AM, Ashar BH, Locke TW. Interaction of ofloxacin and warfarin. Ann Intern Med 1993; 119: 1223PubMedGoogle Scholar
  266. 266.
    Yew WW, Wong CF, Wong PC, et al. Adverse neurological reactions in patients with multidrug-resistant pulmonary tuberculosis after co-administration of cycloserine and ofloxacin. Clin Infect Dis 1993; 17: 288–9PubMedCrossRefGoogle Scholar
  267. 267.
    Yew WW, Au KF, Lee J, et al. Levofloxacin in the treatment of drug-resistant tuberculosis. Int J Tuberc Lung Dis 1997; 1: 89PubMedGoogle Scholar
  268. 268.
    Yew WW, Cheung SW, Chau CH, et al. Serum pharmacokinetics of antimycobacterial drugs in patients with multidrug-resistant tuberculosis during therapy. Int J Clin Pharm Res 1999; XIX: 65–71Google Scholar
  269. 269.
    Lucet J-C, Tilly H, Lerebours G, et al. Neurological toxicity related to pefloxacin. J Antimicrob Chemother 1988; 21: 811–2PubMedCrossRefGoogle Scholar
  270. 270.
    Lacroix C, Guyonnaud C, Chaou M, et al. Interaction between allopurinol and pyrazinamide. Eur Respir J 1988; 1: 807–11PubMedGoogle Scholar
  271. 271.
    Jimenez del Cerro LA. Effect of pyrazinamide on ciclosporin levels. Nephron 1992; 62: 113CrossRefGoogle Scholar
  272. 272.
    Mattila MJ, Linnoila M, Seppälä T, et al. Effect of aluminum hydroxide and glycopyrronium on the absorption of ethambutol and alcohol in man. Br J Clin Pharm 1978; 5: 161–6CrossRefGoogle Scholar
  273. 273.
    Peloquin CA, Bulpitt AE, Jaresko GS. Pharmacokinetics of ethambutol under fasting conditions, with food, and with antacids. Antimicrob Agents Chemother 1999; 43: 568–72PubMedGoogle Scholar
  274. 274.
    Peloquin CA, Nitta AT, Burman WJ, et al. Low antituberculosis drug concentrations in patients with AIDS. Ann Pharmacother 1996; 30: 919–25PubMedGoogle Scholar
  275. 275.
    Sahai J, Gallicano K, Swick L, et al. Reduced plasma concentrations of antituberculous drugs in patients with HIV infection. Ann Intern Med 1997; 127: 289–93PubMedGoogle Scholar
  276. 276.
    Schwander S, Rusch-Gerdes S, Mateega A, et al. A pilot study of antituberculosis combinations comparing rifabutin with rifampicin in the treatment of HIV-associated tuberculosis. Tuber Lung Dis 1995; 76: 210–8PubMedCrossRefGoogle Scholar
  277. 277.
    Colborn D, Lewis R, Narang P. HIV disease severity does not influence rifabutin absorption [abstract no. A-42]. Program and abstracts of the 34th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1994 Oct 4-7; Washington, DC, USAGoogle Scholar
  278. 278.
    Keung AC, Owens Jr RC, Eller MG, et al. Pharmacokinetics of rifapentine in subjects seropositive for the human immunodeficiency virus: a phase I study. Antimicrob Agents Chemother 1999; 43: 1230–3PubMedGoogle Scholar
  279. 279.
    Owens RC Jr, Patel KB, Benevicius MA, et al. Oral bioavailability and pharmacokinetics of ciprofloxacin in patients with AIDS. Antimicrob Agents Chemother 1997; 41: 1508–11PubMedGoogle Scholar
  280. 280.
    Stretcher BN, Pesce AJ, Frame PT, et al. Correlates of zidovudine phosphorylation with markers of HIV disease progression and drug toxicity. AIDS 1994; 8: 763–9PubMedCrossRefGoogle Scholar
  281. 281.
    Barry MG, Khoo SH, Veal GJ, et al. The effect of zidovudine dose on the formation of intracellular phosphorylated metabolites. AIDS 1996; 10: 1361–7PubMedCrossRefGoogle Scholar
  282. 282.
    Barry M, Mulcahy F, Merry C, et al. Pharmacokinetics and potential interactions amongst antiretroviral agents used to treat patients with HIV infection. Clin Pharmacokinet 1999; 36: 289–304PubMedCrossRefGoogle Scholar
  283. 283.
    Haumont M, Magdalou J, Lafaurie C, et al. Phenobarbital inducible UDP-glucuronosyl transferase is responsible for glucuronidation of 3’-azido-3’- deoxythymidine: characterization of the enzyme in human and rat liver microsomes. Arch Biochem Biophys 1990; 281: 264–70PubMedCrossRefGoogle Scholar
  284. 284.
    Burger DM, Meenhorst PL, Koks CH, et al. Pharmacokinetic interaction between rifampin and zidovudine. Antimicrob Agents Chemother 1993; 37: 1426–31PubMedCrossRefGoogle Scholar
  285. 285.
    Torseth J, Bhatia G, Harkonen S, et al. Evaluation of the antiviral effect of rifabutin in AIDS-related complex. J Infect Dis 1989; 159: 1115–8PubMedCrossRefGoogle Scholar
  286. 286.
    Norvir®, ritonavir [product information]. Chicago (IL): Abbot Laboratories, 1997Google Scholar
  287. 287.
    Cato A 3rd, Cavanaugh J, Shi H, et al. The effect of multiple doses of ritonavir on the pharmacokinetics of rifabutin. Clin Pharmacol Ther 1998; 63: 414–21PubMedCrossRefGoogle Scholar
  288. 288.
    Crixivan®, indinavir sulfate [product information]. West Point (PA): Merck & Co., 1998Google Scholar
  289. 289.
    Kerr B, Lee C, Yuen G, et al. Overview of in-vitro and in-vivo drug interaction studies of nelfinavir mesylate, a new HIV-protease inhibitor [Abstract No. A-373]. 4th National Conference on Retrovirus and Opportunistic Infections; 1997 Jan 22-26; Washington, DC, USAGoogle Scholar
  290. 290.
    Centers for Disease Control and Prevention. Updated guidelines for the use of rifabutin or rifampin for the treatment and prevention of tuberculosis among HIV-infected patients taking protease inhibitors or non-nucleoside reverse transcriptase inhibitors. MMWR Morb Mort Wkly Rep 2000; 49 (9): 185–9Google Scholar
  291. 291.
    Veldkamp AI, Hoetelmans RM, Beijnen JH, et al. Ritonavir enables combined therapy with rifampin and saquinavir. Clin Infect Dis 1999; 29: 1586PubMedCrossRefGoogle Scholar
  292. 292.
    Borin MT, Chambers JH, Carel BJ, et al. Pharmacokinetic study of the interaction between rifampin and delavirdine mesylate. Clin Pharmacol Ther 1997; 61: 544–53PubMedCrossRefGoogle Scholar
  293. 293.
    Borin MT, Chambers JH, Carel BJ, et al. Pharmacokinetic study of the interaction between rifabutin and delavirdine mesylate in HIV-1 infected patients. Antiviral Res 1997; 35: 53–63PubMedCrossRefGoogle Scholar
  294. 294.
    Cox SR, Herman BD, Batta DH, et al. Delavirdine and rifabutin: pharmacokinetic evaluation in HIV-1 patients with concentration-targeting of delavirdine [Abstract No. A-344]. 5th Conference on Retroviruses and Opportunistic Infections; 1998 Feb 1-5; Alexandria (VA), USAGoogle Scholar
  295. 295.
    Dean GL, Back DJ, de Ruiter A. Effect of tuberculosis therapy on nevirapine trough plasma concentrations. AIDS 1999; 13: 2489–90PubMedCrossRefGoogle Scholar
  296. 296.
    Breen RA, Lipman MC, Johnson MA. Increased incidence of peripheral neuropathy with co-administration of stavudine and isoniazid in HIV-infected individuals. AIDS 2000; 14: 615PubMedCrossRefGoogle Scholar
  297. 297.
    Jenner PJ, Ellard GA. High performance liquid chromatography determination of ethionamide and prothionamide in body fluids. J Chromatogr B Biomed Appl 1981; 225: 245–5CrossRefGoogle Scholar

Copyright information

© Adis International Limited 2002

Authors and Affiliations

  1. 1.Tuberculosis & Chest UnitGrantham HospitalAberdeenChina

Personalised recommendations