Drug Safety

, Volume 25, Issue 1, pp 33–55 | Cite as

Locally Administered Ocular Corticosteroids

Benefits and Risks
  • Charles N. J. McGhee
  • Simon Dean
  • Helen Danesh-Meyer
Review Article

Abstract

Corticosteroids, used prudently, are one of the most potent and effective modalities available in the treatment of ocular inflammation. However, they can produce a plethora of adverse ocular and systemic events. In order to optimise and target drug delivery, whilst minimising systemic adverse effects, a diverse range of local ophthalmic preparations and delivery techniques have been developed. Topical drops and ointments remain the primary methods for administration of ocular corticosteroids. However, ocular penetration of topical corticosteroid drops depends upon drug concentration, chemical formulation of corticosteroid, and composition of the vehicle, therefore, apparently small modifications in preparations can produce a more than 20-fold difference in intraocular drug concentration. Periocular injections of corticosteroids continue to have a useful, but limited, therapeutic role and longer acting, intraocular delayed-release devices are in early clinical studies. Although newer corticosteroids with lesser pressure elevating characteristics have been developed, corticosteroid-induced ocular hypertension and glaucoma continue to be significant risks of local and systemic administration. Posterior subcapsular cataract, observed following as little as 4 months topical corticosteroids use, is thought to be due to covalent binding of corticosteroid to lens protein with subsequent oxidation. Inappropriate use of topical corticosteroid in the presence of corneal infections also continues to be a cause of ocular morbidity. Other risks of locally administered ophthalmic corticosteroids include: tear-film instability, epithelial toxicity, crystalline keratopathy, decreased wound strength, orbital fat atrophy, ptosis, limitation of ocular movement, inadvertent intraocular injection, and reduction in endogenous cortisol. This extensive review assesses the therapeutic benefits of locally administered ocular corticosteroids in the context of the risks of adverse effects.

References

  1. 1.
    Raizman M. Corticosteroid therapy of eye disease. Fifty years later. Arch Ophthalmol 1996; 114(8): 1000–1PubMedCrossRefGoogle Scholar
  2. 2.
    Valerio M. Les dangers de la cortisonothérapie locale prolongée. Bull Mem Soc Fr Ophthalmol 1963; 76: 572–80Google Scholar
  3. 3.
    Black RL, Oglesby RB, von Sallmann L, et al. Posterior subcapsular cataracts induced by corticosteroids in patients with rheumatoid arthritis. JAMA 1960; 174: 166–71PubMedCrossRefGoogle Scholar
  4. 4.
    Covell LL. Glaucoma induced by systemic steroid therapy. Am J Opthalmol 1958; 45: 108Google Scholar
  5. 5.
    Becker B, Mills DW. Elevated intraocular pressure following corticosteroid eye drops. JAMA 1963; 184: 170–2Google Scholar
  6. 6.
    Urban Jr RC, Cotlier E. Corticosteroid-induced cataracts. Surv Ophthalmol 1986; 31(2): 102–10PubMedCrossRefGoogle Scholar
  7. 7.
    McGhee CN. Pharmacokinetics of ophthalmic corticosteroids. Br J Ophthalmol 1992; 76(11): 681–4PubMedCrossRefGoogle Scholar
  8. 8.
    Hill CJ, Rostenberg AJr. Adverse effects from topical steroids. Cutis 1978; 21(5): 624–8PubMedGoogle Scholar
  9. 9.
    Lipworth BJ. Systemic adverse effects of inhaled corticosteroid therapy: a systematic review and meta-analysis. Arch Intern Med 1999; 159(9): 941–55PubMedCrossRefGoogle Scholar
  10. 10.
    Garbe E, Suissa S, LeLorier J. Association of inhaled corticosteroid use with cataract extraction in elderly patients. JAMA 1998; 280(6): 539–43PubMedCrossRefGoogle Scholar
  11. 11.
    Mitchell P, Cumming RG, Mackey DA. Inhaled corticosteroids, family history, and risk of glaucoma. Ophthalmology 1999; 106(12): 2301–6PubMedCrossRefGoogle Scholar
  12. 12.
    Salminen L. Review: systemic absorption of topically applied ocular drugs in humans. J Ocul Pharmacol 1990; 6(3): 243–9PubMedCrossRefGoogle Scholar
  13. 13.
    Carnahan MC, Goldstein DA. Ocular complication of topical, peri-ocular, and systemic corticosteroids. Curr Opin Ophthalmol 2000; 11(6): 478–83PubMedCrossRefGoogle Scholar
  14. 14.
    Flach AJ, Jaffe NS, Akers WA. The effect of ketorolac tromethamine in reducing postoperative inflammation: double-mask parallel comparison with dexamethasone. Ann Ophthalmol 1989; 21(11): 407–11PubMedGoogle Scholar
  15. 15.
    Othenin-Girard P, Tritten JJ, Pittet N, et al. Dexamethasone versus diclofenac sodiumeyedrops to treat inflammation after cataract surgery. J Cataract Refract Surg 1994; 20(1): 9–12PubMedGoogle Scholar
  16. 16.
    Koay P. The emerging roles of topical non-steroidal anti-inflammatory agents in ophthalmology. Br J Ophthalmol 1996; 80(5): 480–5PubMedCrossRefGoogle Scholar
  17. 17.
    Leibowitz HM, Berrospi AR, Kupferman A, et al. Penetration of topically administered prednisolone acetate into the human aqueous humor. Am J Opthalmol 1977; 83(3): 402–6Google Scholar
  18. 18.
    Watson D, Noble MJ, Dutton GN, et al. Penetration of topically applied dexamethasone alcohol into human aqueous humor. Arch Ophthalmol 1988; 106(5): 686–7PubMedCrossRefGoogle Scholar
  19. 19.
    McGhee CN, Noble MJ, Watson DG, et al. Penetration of topically applied prednisolone sodium phosphate into human aqueous humour. Eye 1989; 3(Pt 4): 463–7PubMedCrossRefGoogle Scholar
  20. 20.
    Watson DG, McGhee CN, Midgley JM, et al. Penetration of topically applied betamethasone sodium phosphate into human aqueous humour. Eye 1990; 4(Pt 4): 603–6PubMedCrossRefGoogle Scholar
  21. 21.
    McGhee CN, Watson DG, Midgley JM, et al. Penetration of synthetic corticosteroids into human aqueous humour. Eye 1990; 4(Pt 3): 526–30PubMedCrossRefGoogle Scholar
  22. 22.
    Watson DG, Midgley JM, McGhee CN. The analysis of corticosteroid acetates by gas chromatography/negative ion chemical ionization mass spectrometry. Rapid Commun Mass Spectrom 1989; 3(1): 8–10PubMedCrossRefGoogle Scholar
  23. 23.
    Kristinsson JK, Fridriksdottir H, Thorisdottir S, et al. Dexamethasone-cyclodextrin-polymer co-complexes in aqueous eye drops. Aqueous humor pharmacokinetics in humans. Invest Ophthalmol Vis Sci 1996; 37(6): 1199–203PubMedGoogle Scholar
  24. 24.
    Weijtens O, Feron EJ, Schoemaker RC, et al. High concentration of dexamethasone in aqueous and vitreous after subconjunctival injection. Am J Ophthalmol 1999; 128(2): 192–7PubMedCrossRefGoogle Scholar
  25. 25.
    Weijtens O, Schoemaker RC, Lentjes EG, et al. Dexamethasone concentration in the subretinal fluid after a subconjunctival injection, a peribulbar injection, or an oral dose. Ophthalmology 2000; 107(10): 1932–8PubMedCrossRefGoogle Scholar
  26. 26.
    Sugar J, Burde RM, Sugar A, et al. Tetrahydrotriamcinolone and triamcinolone. I. Ocular penetration. Invest Ophthalmol 1972; 11(11): 890–3PubMedGoogle Scholar
  27. 27.
    Flaxel CJ, Wheeler MJ, Mulholland B, et al. Detection of prednisolone in vitreous following systemic administration. Eye 1998; 12(Pt 6): 1013–4PubMedCrossRefGoogle Scholar
  28. 28.
    Debnath SC, Richards AB. Concentration of clobetasone butyrate in aqueous humour. Br J Ophthalmol 1983; 67(3): 203–5PubMedCrossRefGoogle Scholar
  29. 29.
    Weimar VL, Irving LH. Intraocular penetration of local hydrocortisone and cortisone. Arch Ophthalmol 1954; 52: 769–73CrossRefGoogle Scholar
  30. 30.
    Irving LH, Kroman HS. Methyl and fluoro substituted prednisolones in the blood and aqueous humor of the rabbit. Arch Ophthalmol 1960; 63: 943–7CrossRefGoogle Scholar
  31. 31.
    Janes RG, Stiles JF. The penetration of cortisol into normal and pathologic rabbit eyes. Am J Ophthalmol 1965; 59: 84–90Google Scholar
  32. 32.
    Wine NA, Gornall AG, Basu PK. The ocular uptake of subconjunctivally injected C14 hydrocortisone. Part 1. Time and major route of penetration in a normal eye. Am J Ophthalmol 1964; 58: 362–6PubMedGoogle Scholar
  33. 33.
    McCartney HJ, Drysdale IO, Gornall AG, et al. An autioradiographic study of the penetration of subconjunctivally injected hydrocortisone into the normal and inflamed rabbit eye. Invest Ophthalmol 1965; 4(3): 297–302PubMedGoogle Scholar
  34. 34.
    Murdick PW, Keates RH, Donovan EF, et al. Ocular penetration studies. II. Topical administration of prednisolone. Arch Ophthalmol 1966; 76(4): 602–3PubMedCrossRefGoogle Scholar
  35. 35.
    Short C, Keates RH, Donovan EF, et al. Ocular penetration studies. I. Topical administration of dexamethasone. Arch Ophthalmol 1966; 75(5): 689–92PubMedCrossRefGoogle Scholar
  36. 36.
    McDonald TO, Borgmann AR, Roberts MD, et al. Corneal wound healing. I. Inhibition of stromal healing by three dexamethasone derivatives. Invest Ophthalmol 1970; 9(9): 703–9PubMedGoogle Scholar
  37. 37.
    Cox WV, Kupferman A, Leibowitz HM. Topically applied steroids in corneal disease. I. The role of inflammation in stromal absorption of dexamethasone. Arch Ophthalmol 1972; 88(3): 308–13PubMedCrossRefGoogle Scholar
  38. 38.
    McDonald TO, Kasten K, Hervey R, et al. Comparative toxicity of dexamethasone and its tertiary butyl acetate ester after topical ocular instillation in rabbits. Am J Ophthalmol 1973; 76(1): 117–25Google Scholar
  39. 39.
    Krupin T, Waltman SR, Becker B. Ocular penetration in rabbits of topically applied dexamethasone. Arch Ophthalmol 1974; 92(4): 312–4PubMedCrossRefGoogle Scholar
  40. 40.
    Kupferman A, Pratt MV, Suckewer K, et al. Topically applied steroids in corneal disease. 3. The role of drug derivative in stromal absorption of dexamethasone. Arch Ophthalmol 1974; 91(5): 373–6PubMedCrossRefGoogle Scholar
  41. 41.
    Green K, Downs SJ. Prednisolone phosphate penetration into and through the cornea. Invest Ophthalmol 1974; 13(4): 316–9PubMedGoogle Scholar
  42. 42.
    Kupferman A, Leibowitz HM. Topically applied steroids in corneal disease. IV. The role of drug concentration in stromal absorption of prednisolone acetate. Arch Ophthalmol 1974; 91(5): 377–80PubMedCrossRefGoogle Scholar
  43. 43.
    Kupferman sA, Leibowitz HM. Topically applied steroids in corneal disease. V. Dexamethasone alcohol. Arch Ophthalmol 1974; 92(4): 329–30PubMedCrossRefGoogle Scholar
  44. 44.
    Hull DS, Hine JE, Edelhauser JF, et al. Permeability of the isolated rabbit cornea to corticosteroids. Invest Ophthalmol 1974; 13(6): 457–9PubMedGoogle Scholar
  45. 45.
    Leibowitz HM, Kupferman A. Anti-inflammatory effectiveness in the cornea of topically administered prednisolone. Invest Ophthalmol 1974; 13 (10): 757–63Google Scholar
  46. 46.
    Sieg JW, Robinson JR. Corneal absorption of fluorometholone in rabbits. A comparative evaluation of corneal drug transport characteristics in anesthetized and unanesthetized rabbits. Arch Ophthalmol 1974; 92(3): 240–3PubMedCrossRefGoogle Scholar
  47. 47.
    Yamauchi H, Kito H. Studies on intraocular penetration and metabolism of fluorometholone in rabbits: a comparison between dexamethasone and prednisolone acetate. Jpn J Ophthalmol 1975; 19: 339–47Google Scholar
  48. 48.
    Leibowitz HM, Kupferman A. Kinetics of topically administered prednisolone acetate. Optimal concentration for treatment of inflammatory keratitis. Arch Ophthalmol 1976; 94(8): 1387–9PubMedCrossRefGoogle Scholar
  49. 49.
    Kupferman A, Leibowitz HM. Biological equivalence of ophthalmic prednisolone acetate suspensions. Am J Ophthalmol 1976; 82(1): 109–13PubMedGoogle Scholar
  50. 50.
    Leibowitz HM, Kupferman A. Periocular injection of corticosteroids: an experimental evaluation of its role in the treatment of corneal inflammation. Arch Ophthalmol 1977; 95(2): 311–4PubMedCrossRefGoogle Scholar
  51. 51.
    Leibowitz HM, Kupferman sA. Drug interaction in the eye. Concurrent corticosteroid-antibiotic therapy for inflammatory keratitis. Arch Ophthalmol 1977; 95(4): 682–5PubMedCrossRefGoogle Scholar
  52. 52.
    Schoenwald RD, Boltralik JJ. A bioavailability comparison in rabbits of two steroids formulated as high-viscosity gels and reference aqueous preparations. Invest Ophthalmol Vis Sci 1979; 18(1): 61–6PubMedGoogle Scholar
  53. 53.
    Schoenwald RD, Stewart P. Effect of particle size on ophthalmic bioavailability of dexamethasone suspensions in rabbits. J Pharm Sci 1980; 69(4): 391–4PubMedCrossRefGoogle Scholar
  54. 54.
    Kupferman A, Berrospi AR, Leibowitz HM. Fluorometholone acetate. Anew ophthalmic derivative of fluorometholone. Arch Ophthalmol 1982; 100: 640–1PubMedCrossRefGoogle Scholar
  55. 55.
    Unlu N, Robinson JR. Scleral permeability to hydrocortisone and mannitol in the albino rabbit eye. J Ocul Pharmacol Ther 1998; 14(3): 273–81PubMedCrossRefGoogle Scholar
  56. 56.
    Johansen S, Rask-Pedersen E, Prause JU. A bioavailability comparison in rabbits after a single topical ocular application of prednisolone acetate formulated as a high-viscosity gel and as an aqueous suspension. Acta Ophthalmol Scand 1996; 74(3): 253–8PubMedCrossRefGoogle Scholar
  57. 57.
    Druzgala P, Wu WM, Bodor N. Ocular absorption and distribution of loteprednol etabonate, a soft steroid, in rabbit eyes. Curr Eye Res 1991; 10(10): 933–7PubMedCrossRefGoogle Scholar
  58. 58.
    Smolin G, Hall JM, Okumoto M, et al. High doses of subconjunctival corticosteroid and antibody-forming cells in the eye and draining lymph nodes. Arch Ophthalmol 1977; 95(9): 1631–3PubMedCrossRefGoogle Scholar
  59. 59.
    Sugar J, Chandler JW. Experimental corneal wound strength. Arch Ophthalmol 1974; 92(3): 248–9PubMedCrossRefGoogle Scholar
  60. 60.
    Levine ND, Aronson SB. Orbital infusion of steroids in the rabbit. Arch Ophthalmol 1970; 83(5): 599–607PubMedCrossRefGoogle Scholar
  61. 61.
    Ke TL, Clark AF, Gracy RW. Age-related permeability changes in rabbit corneas. J Ocul Pharmacol Ther 1999; 15(6): 513–23PubMedCrossRefGoogle Scholar
  62. 62.
    Hyndiuk RA, Reagan MG. Radioactive depot-corticosteroid penetration into monkey ocular tissue. I. Retrobulbar and systemic administration. Arch Ophthalmol 1968; 80(4): 499–503PubMedCrossRefGoogle Scholar
  63. 63.
    Hakin KN, Ham J, Lightman SL. Use of orbital floor steroids in the management of patients with uniocular non-necrotising scleritis. Br J Ophthalmol 1991; 75(6): 337–9PubMedCrossRefGoogle Scholar
  64. 64.
    Hill JC, Maske R, Watson P. Corticosteroids in corneal graft rejection. Oral versus single pulse therapy. Ophthalmology 1991; 98(3): 329–33PubMedGoogle Scholar
  65. 65.
    Young S, Larkin G, Branley M, et al. Safety and efficacy of intravitreal triamcinolone for cystoid macular oedema in uveitis. Clin Experiment Ophthalmol 2001; 29(1): 2–6PubMedCrossRefGoogle Scholar
  66. 66.
    Alward WL, Fingert JH, Coote MA, et al. Clinical features associated with mutations in the chromosome 1 open-angle glaucoma gene (GLC1A). N Engl J Med 1998; 338(15): 1022–7PubMedCrossRefGoogle Scholar
  67. 67.
    Kaufman HE, Varnell ED, Centifanto YM, et al. Effect of the herpes simplex virus genome on the response of infection to corticosteroids. Am J Ophthalmol 1985; 100(1): 114–8PubMedGoogle Scholar
  68. 68.
    Rosenblum C, Dengler Jr RE, Geoffroy RF. Ocular absorption of dexamethasone phosphate disodium by the rabbit. Arch Ophthalmol 1967; 77(2): 234–7PubMedCrossRefGoogle Scholar
  69. 69.
    Flint GR, Morton DJ. Effect of derivatization of the bioavailability of ophthalmic steroids. Development of an in vitro method of evaluation. Arch Ophthalmol 1984; 102(12): 1808–9PubMedCrossRefGoogle Scholar
  70. 70.
    Pappa KS. Corticosteroid drugs. In: Mauger TF, Craig EL, editors. Havener’s ocular pharmacology. 6th ed. St Louis: Mosby, 1994: 365–414Google Scholar
  71. 71.
    Haynes RC, Murad F. Adrenocorticotrophic hormone: adrenocortical steroids and their synthetic analogs; inhibitors of the synthesis and actions of adrenocorticoid hormones. In: Hardman JGG, Gillman A, Limbird LL, editors. The pharmacological basis of therapeutics. 9th ed. New York: McGraw-Hill, 1995: 1459–85Google Scholar
  72. 72.
    Baba S, Mishima H, Okimoto M, et al. Plasma steroid levels and clinical effects after topical application of betamethasone. Graefes Arch Clin Exp Ophthalmol 1983; 220(5): 209–14PubMedCrossRefGoogle Scholar
  73. 73.
    Geister U, Guserle R, Bungers E, et al. Bioavailability investigation of two different oral formulations of methylprednisolone. Arzneimittelforschung 2000; 50(3): 286–92PubMedGoogle Scholar
  74. 74.
    Behar-Cohen FF, Gauthier S, El Aouni A, et al. Methylprednisolone concentrations in the vitreous and the serum after pulse therapy. Retina 2001; 21(1): 48–53PubMedCrossRefGoogle Scholar
  75. 75.
    Iqbal Z, Watson DG, Midgley JM, et al. The metabolism of fluorometholone by bovine cornea. J Pharm Biomed Anal 1993; 11(11-12): 1115–20PubMedCrossRefGoogle Scholar
  76. 76.
    Assil KK, Massry G, Lehmann R, et al. Control of ocular inflammation after cataract extraction with rimexolone 1% ophthalmic suspension. J Cataract Refract Surg 1997; 23(5): 750–7PubMedGoogle Scholar
  77. 77.
    Eilon LA, Walker SR. Clinical evaluation of clobetasone butyrate eye drops in the treatment of anterior uveitis and its effects on intraocular pressure. Br J Ophthalmol 1981; 65(9): 644–7PubMedCrossRefGoogle Scholar
  78. 78.
    Desantis LM. β-adrenergic receptor blocking agents. In: Mauger TF, Craig EL, editors. Havener’s ocular pharmacology. 6th ed. St Louis: Mosby, 1994: 84–112Google Scholar
  79. 79.
    Kupferman A, Ryan Jr WJ, Leibowitz HM. Prolongation of anti-inflammatory effect of prednisolone acetate. Influence of formulation in high-viscosity gel. Arch Ophthalmol 1981; 99(11): 2028–9PubMedCrossRefGoogle Scholar
  80. 80.
    Doane MG, Jensen AD, Dohlman CH. Penetration routes of topically applied eye medications. Am J Ophthalmol 1978; 85(3): 383–6PubMedGoogle Scholar
  81. 81.
    Bill A. Movement of albumin and dextran through the sclera. Arch Ophthalmol 1965; 74: 248–52PubMedCrossRefGoogle Scholar
  82. 82.
    Hyndiuk RA. Radioactive depot-corticosteroid penetration into monkey ocular tissue. II. Subconjunctival administration. Arch Ophthalmol 1969; 82(2): 259–63PubMedCrossRefGoogle Scholar
  83. 83.
    Bodker FS, Ticho BH, Feist RM, et al. Intraocular dexamethasone penetration via subconjunctival or retrobulbar injections in rabbits. Ophthalmic Surg 1993; 24(7): 453–7PubMedGoogle Scholar
  84. 84.
    Tsuji A, Tamai I, Sasaki K. Intraocular penetration kinetics of prednisolone after subconjunctival injection in rabbits. Ophthalmic Res 1988; 20(1): 31–43PubMedCrossRefGoogle Scholar
  85. 85.
    Lee VH. Esterase activities in adult rabbit eyes. J Pharm Sci 1983; 72(3): 239–44PubMedCrossRefGoogle Scholar
  86. 86.
    Jennings T, Rusin MM, Tessler HH, et al. Posterior sub-Tenon’s injections of corticosteroids in uveitis patients with cystoid macular edema. Jpn J Ophthalmol 1988; 32(4): 385–91PubMedGoogle Scholar
  87. 87.
    Rojas B, Zafirakis P, Christen W, et al. Medical treatment of macular edema in patients with uveitis. Doc Ophthalmol 1999; 97(3-4): 399–407PubMedCrossRefGoogle Scholar
  88. 88.
    Ben-Nun J, Cooper RL, Cringle SJ, et al. Ocular dialysis. Anew technique for in vivo intraocular pharmacokinetic measurements. Arch Ophthalmol 1988; 106(2): 254–9PubMedCrossRefGoogle Scholar
  89. 89.
    Graham RO, Peyman GA. Intravitreal injection of dexamethasone. Treatment of experimentally induced endophthalmitis. Arch Ophthalmol 1974; 92(2): 149–54PubMedCrossRefGoogle Scholar
  90. 90.
    Waltman SR, Kaufman HE. Use of hydrophilic contact lenses to increase ocular penetration of topical drugs. Invest Ophthalmol 1970; 9(4): 250–5PubMedGoogle Scholar
  91. 91.
    Hull DS, Edelhauser HF, Hyndiuk RA. Ocular penetration of prednisolone and the hydrophilic contact lens. Arch Ophthalmol 1974; 92(5): 413–6PubMedCrossRefGoogle Scholar
  92. 92.
    Quigley HA, Pollack IP, Harbin Jr TS. Pilocarpine ocuserts. Long-term clinical trials and selected pharmacodynamics. Arch Ophthalmol 1975; 93(9): 771–5PubMedCrossRefGoogle Scholar
  93. 93.
    Baeyens V, Kaltsatos V, Boisrame B, et al. Optimized release of dexamethasone and gentamicin from a soluble ocular insert for the treatment of external ophthalmic infections. J Control Release 1998; 52(1-2): 215–20PubMedCrossRefGoogle Scholar
  94. 94.
    Bloomfield SE, Miyata T, Dunn MW, et al. Soluble gentamicin ophthalmic inserts as a drug delivery system. Arch Ophthalmol 1978; 96(5): 885–7PubMedCrossRefGoogle Scholar
  95. 95.
    Poland DE, Kaufman HE. Clinical uses of collagen shields. J Cataract Refract Surg 1988; 14(5): 489–91PubMedGoogle Scholar
  96. 96.
    Unterman SR, Rootman DS, Hill JM, et al. Collagen shield drug delivery: therapeutic concentrations of tobramycin in the rabbit cornea and aqueous humor. J Cataract Refract Surg 1988; 14(5): 500–4PubMedGoogle Scholar
  97. 97.
    Mahlberg K, Uusitalo RJ, Gebhardt B, et al. Prevention of experimental corneal allograft rejection in rabbits using cyclosporin-collagen shields. Graefes Arch Clin Exp Ophthalmol 1991; 229(1): 69–74PubMedCrossRefGoogle Scholar
  98. 98.
    Hwang DG, Stern WH, Hwang PH, et al. Collagen shield enhancement of topical dexamethasone penetration. Arch Ophthalmol 1989; 107(9): 1375–80PubMedCrossRefGoogle Scholar
  99. 99.
    Friedberg ML, Pleyer U, Mondino BJ. Device drug delivery to the eye. Collagen shields, iontophoresis, and pumps. Ophthalmology 1991; 98(5): 725–32PubMedGoogle Scholar
  100. 100.
    Bucolo C, Mangiafico S, Spadaro A. Methylprednisolone delivery by Hyalobend corneal shields and its effects on rabbit ocular inflammation. J Ocul Pharmacol Ther 1996; 12(2): 141–9PubMedCrossRefGoogle Scholar
  101. 101.
    Peters NT, Lingua RW, Kim CH. Topical intrastromal steroid during laser in situ keratomileusis to retard interface keratitis. J Cataract Refract Surg 1999; 25(11): 1437–40PubMedCrossRefGoogle Scholar
  102. 102.
    Schaeffer HE, Krohn DL. Liposomes in topical drug delivery. Invest Ophthalmol Vis Sci 1982; 22(2): 220–7PubMedGoogle Scholar
  103. 103.
    Lam TT, Edward DP, Zhu XA, et al. Transscleral iontophoresis of dexamethasone. Arch Ophthalmol 1989; 107(9): 1368–71PubMedCrossRefGoogle Scholar
  104. 104.
    Zhou T, Lewis H, Foster RE, et al. Development of a multiple-drug delivery implant for intraocular management of proliferative vitreoretinopathy. J Control Release 1998; 55(2-3): 281–95PubMedCrossRefGoogle Scholar
  105. 105.
    Jaffe GJ, Yang CH, Guo H, et al. Safety and pharmacokinetics of an intraocular fluocinolone acetonide sustained delivery device. Invest Ophthalmol Vis Sci 2000; 41(11): 3569–75PubMedGoogle Scholar
  106. 106.
    Chang DF, Garcia IH, Hunkeler JD, et al. Phase II results of an intraocular steroid delivery system for cataract surgery. Ophthalmology 1999; 106(6): 1172–7PubMedCrossRefGoogle Scholar
  107. 107.
    Tan DT, Chee SP, Lim L, et al. Randomized clinical trial of a new dexamethasone delivery system (Surodex) for treatment of post-cataract surgery inflammation. Ophthalmology 1999; 106(2): 223–31PubMedCrossRefGoogle Scholar
  108. 108.
    François J. Cortisone et tension oculaire. Ann Oculist 1954; 187: 805–16Google Scholar
  109. 109.
    Armaly MF. Statistical attributes of the steroid hypertensive response in the clinically normal eye: the demonstration of three levels of response. Invest Ophthalmol 1965; 4: 187–97PubMedGoogle Scholar
  110. 110.
    Bartlett JD, Woolley TW, Adams CM. Identification of high intraocular pressure responders to topical ophthalmic corticosteroids. J Ocul Pharmacol 1993; 9(1): 35–45PubMedCrossRefGoogle Scholar
  111. 111.
    Armaly MF. Effect of corticosteroids on intraocular pressure and fluid dynamics: 1. The effect of dexamethasone in the normal eye. Arch Ophthalmol 1963; 70: 482–91PubMedCrossRefGoogle Scholar
  112. 112.
    Becker B, Mills DW. Corticosteroids and intraocular pressure. Arch Ophthalmol 1963; 70: 500–7PubMedCrossRefGoogle Scholar
  113. 113.
    Fairbairn WD, Thorson JC. Fluorometholone. Anti-inflammatory and intraocular pressure effects. Arch Ophthalmol 1971; 86(2): 138–41PubMedCrossRefGoogle Scholar
  114. 114.
    Spaeth GL. The effect of autonomic agents on the pupil and the intraocular pressure of eyes treated with dexamethasone. Br J Ophthalmol 1980; 64(6): 426–9PubMedCrossRefGoogle Scholar
  115. 115.
    François J. Corticosteroid glaucoma. Ann Ophthalmol 1977; 9(9): 1075–80PubMedGoogle Scholar
  116. 116.
    Weinreb RN, Polansky JR, Kramer SG, et al. Acute effects of dexamethasone on intraocular pressure in glaucoma. Invest Ophthalmol Vis Sci 1985; 26(2): 170–5PubMedGoogle Scholar
  117. 117.
    Foon KA, Yuen K, Ballintine EJ, et al. Analysis of the systemic corticosteroid sensitivity of patients with primary open-angle glaucoma. Am J Opthalmol 1977; 83(2): 167–73Google Scholar
  118. 118.
    Clark AF. Steroids, ocular hypertension, and glaucoma. J Glaucoma 1995; 4: 354–69PubMedGoogle Scholar
  119. 119.
    Becker B, Hahn KA. Topical corticosteroids and hereditary in glaucoma. Am J Ophthalmol 1964; 57: 543–51PubMedGoogle Scholar
  120. 120.
    Armaly MF. Effect of corticosteroids on intraocular pressure and fluid dynamics: 2. The effect of dexamethasone in the glaucomatous eye. Arch Ophthalmol 1963; 70: 492–9PubMedCrossRefGoogle Scholar
  121. 121.
    Armaly MF. Inheritance of dexamethasone hypertension and glaucoma. Arch Ophthalmol 1967; 77(6): 747–51PubMedCrossRefGoogle Scholar
  122. 122.
    Podos SM, Becker B, Morton WR. High myopia and primary open-angle glaucoma. Am J Ophthalmol 1966; 62(6): 1038–43PubMedGoogle Scholar
  123. 123.
    Becker B. Diabetes mellitus and primary open-angle glaucoma. The XXVII Edward Jackson Memorial Lecture. Am J Ophthalmol 1971; 1(1 Part 1): 1–16Google Scholar
  124. 124.
    Gaston H, Absolon MJ, Thurtle OA, et al. Steroid responsiveness in connective tissue diseases. Br J Ophthalmol 1983; 67(7): 487–90PubMedCrossRefGoogle Scholar
  125. 125.
    Lewis JM, Priddy T, Judd J, et al. Intraocular pressure response to topical dexamethasone as a predictor for the development of primary open-angle glaucoma. Am J Ophthalmol 1988; 106(5): 607–12PubMedCrossRefGoogle Scholar
  126. 126.
    Kitazawa Y, Horie T. The prognosis of corticosteroid-responsive individuals. Arch Ophthalmol 1981; 99(5): 819–23PubMedCrossRefGoogle Scholar
  127. 127.
    Biedner BZ, David R, Grudsky A, et al. Intraocular pressure response to corticosteroids in children. Br J Ophthalmol 1980; 64(6): 430–1PubMedCrossRefGoogle Scholar
  128. 128.
    Ohji M, Kinoshita S, Ohmi E, et al. Marked intraocular pressure response to instillation of corticosteroids in children. Am J Ophthalmol 1991; 112(4): 450–4PubMedGoogle Scholar
  129. 129.
    Kwok AK, Lam DS, Ng JS, et al. Ocular-hypertensive response to topical steroids in children. Ophthalmology 1997; 104(12): 2112–6PubMedGoogle Scholar
  130. 130.
    Leibowitz HM, Kupferman A, Stewart RH, et al. Evaluation of dexamethasone acetate as a topical ophthalmic formulation. Am J Ophthalmol 1978; 86(3): 418–23PubMedGoogle Scholar
  131. 131.
    Lafranco Dafflon M, Tran VT, Guex-Crosier Y, et al. Posterior sub-Tenon’s steroid injections for the treatment of posterior ocular inflammation: indications, efficacy and side effects. Graefes Arch Clin Exp Ophthalmol 1999; 237(4): 289–95PubMedCrossRefGoogle Scholar
  132. 132.
    Mueller AJ, Jian G, Banker AS, et al. The effect of deep posterior subtenon injection of corticosteroids on intraocular pressure. Am J Ophthalmol 1998; 125(2): 158–63PubMedCrossRefGoogle Scholar
  133. 133.
    Kalina RE. Increased intraocular pressure following subconjunctival corticosteroid administration. Arch Ophthalmol 1969; 81(6): 788–90PubMedCrossRefGoogle Scholar
  134. 134.
    Challa JK, Gillies MC, Penfold PL, et al. Exudative macular degeneration and intravitreal triamcinolone: 18 month follow up. Aust N Z J Ophthalmol 1998; 26(4): 277–81PubMedCrossRefGoogle Scholar
  135. 135.
    Zamir E, Pe’er J. Necrotizing conjunctival ulceration following subconjunctival depot methylprednisolone injection. Ophthalmic Surg Lasers 1999; 30(7): 565–6PubMedGoogle Scholar
  136. 136.
    Leibowitz HM, Bartlett JD, Rich R, et al. Intraocular pressure-raising potential of 1.0% rimexolone in patients responding to corticosteroids. Arch Ophthalmol 1996; 114(8): 933–7PubMedCrossRefGoogle Scholar
  137. 137.
    Spaeth GL. Hydroxymethylprogesterone. An anti-inflammatory steroid without apparent effect on intraocular pressure. Arch Ophthalmol 1966; 75(6): 783–7PubMedCrossRefGoogle Scholar
  138. 138.
    Leibowitz HM, Ryan WJ, Kupferman A. Comparative anti-inflammatory efficacy of topical corticosteroids with low glaucoma-inducing potential. Arch Ophthalmol 1992; 110(1): 118–20PubMedCrossRefGoogle Scholar
  139. 139.
    Mindel JS, Tavitian HO, Smith H, et al. Comparative ocular pressure elevation by medrysone, fluorometholone, and dexamethasone phosphate. Arch Ophthalmol 1980; 98(9): 1577–8PubMedCrossRefGoogle Scholar
  140. 140.
    Morrison E, Archer DB. Effect of fluorometholone (FML) on the intraocular pressure of corticosteroid responders. Br J Ophthalmol 1984; 68(8): 581–4PubMedCrossRefGoogle Scholar
  141. 141.
    Akingbehin AO. Comparative study of the intraocular pressure effects of fluorometholone 0.1% versus dexamethasone 0.1%. Br J Ophthalmol 1983; 67(10): 661–3PubMedCrossRefGoogle Scholar
  142. 142.
    Kass M, Cheetham J, Duzman E, et al. The ocular hypertensive effect of 0.25% fluorometholone in corticosteroid responders. Am J Ophthalmol 1986; 102(2): 159–63PubMedCrossRefGoogle Scholar
  143. 143.
    Stewart RH, Kimbrough RL. Intraocular pressure response to topically administered fluorometholone. Arch Ophthalmol 1979; 97(11): 2139–40PubMedCrossRefGoogle Scholar
  144. 144.
    Foster CS, Alter G, DeBarge LR, et al. Efficacy and safety of rimexolone 1% ophthalmic suspension vs 1% prednisolone acetate in the treatment of uveitis. Am J Ophthalmol 1996; 122(2): 171–82PubMedGoogle Scholar
  145. 145.
    Williamson J, Eilon LA, Walker SR. Clobetasone butyrate eye drops. Effect on ocular inflammation and intraocular pressure. Trans Ophthalmol Soc U K 1981; 101(1): 27–9PubMedGoogle Scholar
  146. 146.
    Dunne JA, Travers JP. Double-blind clinical trial of topical steroids in anterior uveitis. Br J Ophthalmol 1979; 63(11): 762–7PubMedCrossRefGoogle Scholar
  147. 147.
    Controlled evaluation of loteprednol etabonate and prednisolone acetate in the treatment of acute anterior uveitis. Loteprednol EtabonateUS Uveitis StudyGroup. Am J Ophthalmol 1999; 127 (5): 537–44Google Scholar
  148. 148.
    Bartlett JD, Horwitz B, Laibovitz R, et al. Intraocular pressure response to loteprednol etabonate in known steroid responders. J Ocul Pharmacol 1993; 9(2): 157–65PubMedCrossRefGoogle Scholar
  149. 149.
    Friedlaender MH, Howes J. A double-masked, placebo-controlled evaluation of the efficacy and safety of loteprednol etabonate in the treatment of giant papillary conjunctivitis. The Loteprednol Etabonate Giant Papillary Conjunctivitis Study Group I. Am J Ophthalmol 1997; 123(4): 455–64PubMedGoogle Scholar
  150. 150.
    Stewart R, Horwitz B, Howes J, et al. Double-masked, placebocontrolled evaluation of loteprednol etabonate 0.5% for postoperative inflammation. Loteprednol Etabonate Postoperative Inflammation Study Group 1. J Cataract Refract Surg 1998; 24(11): 1480–9PubMedGoogle Scholar
  151. 151.
    The Loteprednol Etabonate Postoperative Inflammation Study Group 2. A double-masked, placebo-controlled evaluation of 0.5% loteprednol etabonate in the treatment of postoperative inflammation. Ophthalmology 1998; 105 (9): 1780–6Google Scholar
  152. 152.
    Howes J, Novack GD. Failure to detect systemic levels, and effects of loteprednol etabonate and its metabolite, PJ-91, following chronic ocular administration. J Ocul Pharmacol Ther 1998; 14(2): 153–8PubMedCrossRefGoogle Scholar
  153. 153.
    Rodrigues MM, Katz SI, Foidart JM, et al. Collagen, factor VIII antigen, and immunoglobulins in the human aqueous drainage channels. Ophthalmology 1980; 87(4): 337–45PubMedGoogle Scholar
  154. 154.
    Johnson D, Gottanka J, Flugel C, et al. Ultrastructural changes in the trabecular meshwork of human eyes treated with corticosteroids. Arch Ophthalmol 1997; 115(3): 375–83PubMedCrossRefGoogle Scholar
  155. 155.
    Dickerson JE, Steely HT, English-Wright SL, et al. The effect of dexamethasone on integrin and laminin expression in cultured human trabecular meshwork cells. Exp Eye Res 1998; 66(6): 731–8PubMedCrossRefGoogle Scholar
  156. 156.
    Clark AF, Wilson K, de Kater AW, et al. Dexamethasoneinduced ocular hypertension in perfusion-cultured human eyes. Invest Ophthalmol Vis Sci 1995; 36(2): 478–89PubMedGoogle Scholar
  157. 157.
    Fujisawa N. Dexamethasone effects of protein synthesis on organ-cultured human trabecular meshwork — autoradiographical, biochemical, and immunohistochemical study. Nippon Ganka Gakkai Zasshi 1994; 98(1): 31–7PubMedGoogle Scholar
  158. 158.
    Matsumoto Y, Johnson DH. Dexamethasone decreases phagocytosis by human trabecular meshwork cells in situ. Invest Ophthalmol Vis Sci 1997; 38(9): 1902–7PubMedGoogle Scholar
  159. 159.
    Weinreb RN, Bloom E, Baxter JD, et al. Detection of glucocorticoid receptors in cultured human trabecular cells. Invest Ophthalmol Vis Sci 1981; 21(3): 403–7PubMedGoogle Scholar
  160. 160.
    Kupfer C, Ross K. Studies of aqueous humor dynamics in man. I. Measurements in young normal subjects. Invest Ophthalmol 1971; 10(7): 518–22PubMedGoogle Scholar
  161. 161.
    Tamm ER, Russell P, Epstein DL, et al. Modulation of myocilin/TIGR expression in human trabecular meshwork. Invest Ophthalmol Vis Sci 1999; 40(11): 2577–82PubMedGoogle Scholar
  162. 162.
    Stone EM, Fingert JH, Alward WL, et al. Identification of a gene that causes primary open angle glaucoma. Science 1997; 275(5300): 668–70PubMedCrossRefGoogle Scholar
  163. 163.
    Wiggs JL, Allingham RR, Vollrath D, et al. Prevalence of mutations in TIGR/Myocilin in patients with adult and juvenile primary open-angle glaucoma. Am J Hum Genet 1998; 63(5): 1549–52PubMedCrossRefGoogle Scholar
  164. 164.
    Nguyen TD, Chen P, Huang WD, et al. Gene structure and properties of TIGR, an olfactomedin-related glycoprotein cloned from glucocorticoid-induced trabecular meshwork cells. J Biol Chem 1998; 273(11): 6341–50PubMedCrossRefGoogle Scholar
  165. 165.
    Kubota R, Noda S, Wang Y, et al. A novel myosin-like protein (myocilin) expressed in the connecting cilium of the photoreceptor: molecular cloning, tissue expression, and chromosomal mapping. Genomics 1997; 41(3): 360–9PubMedCrossRefGoogle Scholar
  166. 166.
    Alward WL. The genetics of open-angle glaucoma: the story of GLC1A and myocilin. Eye 2000; 14(Pt 3b): 429–36PubMedCrossRefGoogle Scholar
  167. 167.
    Ortego J, Escribano J, Coca-Prados M. Cloning and characterization of subtracted cDNAs from a human ciliary body library encoding TIGR, a protein involved in juvenile open angle glaucoma with homology to myosin and olfactomedin. FEBS Lett 1997; 413(2): 349–53PubMedCrossRefGoogle Scholar
  168. 168.
    Espildora J, Vicuna P, Diaz E. Cortisone-induced glaucoma: a report on 44 affected eyes. J Fr Ophtalmol 1981; 4(6-7): 503–8PubMedGoogle Scholar
  169. 169.
    Halpern MT, Palmer CS, Foster S, et al. A pharmacoeconomic analysis of rimexolone for the treatment of ophthalmic inflammatory conditions. Am J Manag Care 1998; 4(6): 854–62PubMedGoogle Scholar
  170. 170.
    Dickerson Jr JE, Dotzel E, Clark AF. Steroid-induced cataract: new perspective from in vitro and lens culture studies. Exp Eye Res 1997; 65(4): 507–16PubMedCrossRefGoogle Scholar
  171. 171.
    Cenedella RJ, Sexton PS, Zhu XL. Lens epithelia contain a high-affinity,membrane steroid hormone-binding protein. Invest Ophthalmol Vis Sci 1999 1999; 40(7): 1452–9Google Scholar
  172. 172.
    Jacob TJ, Karim AK, Thompson GM. The effects of steroids on the human lens epithelium. Eye 1987; 1(Pt 6): 722–7PubMedCrossRefGoogle Scholar
  173. 173.
    Kojima M, Shui YB, Murano H, et al. Inhibition of steroid-induced cataract in rat eyes by administration of vitamin-E ophthalmic solution. Ophthalmic Res 1996; 28Suppl 2: 64–71PubMedCrossRefGoogle Scholar
  174. 174.
    Ohta Y, Okada H, Majima Y, et al. Anticataract action of vitamin E: its estimation using an in vitro steroid cataract model. Ophthalmic Res 1996; 28Suppl 2: 16–25PubMedCrossRefGoogle Scholar
  175. 175.
    Donshik PC, Cavanaugh HD, Boruchoff SA, et al. Posterior subcapsular cataracts induced by topical corticosteroids following keratoplasty for keratoconus. Ann Ophthalmol 1981; 13(1): 29–32PubMedGoogle Scholar
  176. 176.
    Bilgihan K, Gurelik G, Akata F, et al. Fluorometholone-induced cataract after photorefractive keratectomy. Ophthalmologica 1997; 211(6): 394–6PubMedCrossRefGoogle Scholar
  177. 177.
    Stern GA, Buttross M. Use of corticosteroids in combination with antimicrobial drugs in the treatment of infectious corneal disease. Ophthalmology 1991; 98(6): 847–53PubMedGoogle Scholar
  178. 178.
    Leibowitz HM, Kupferman A. Topically administered corticosteroids: effect on antibiotic-treated bacterial keratitis. Arch Ophthalmol 1980; 98(7): 1287–90PubMedCrossRefGoogle Scholar
  179. 179.
    Hobden JA, Engel LS, Hill JM, et al. Prednisolone acetate or prednisolone phosphate concurrently administered with ciprofloxacin for the therapy of experimental Pseudomonas aeruginosa keratitis. Curr Eye Res 1993; 12(5): 469–73PubMedCrossRefGoogle Scholar
  180. 180.
    Engel LS, Callegan MC, Hobden JA, et al. Effectiveness of specific antibiotic/steroid combinations for therapy of experimental Pseudomonas aeruginosa keratitis. Curr Eye Res 1995; 14(3): 229–34PubMedCrossRefGoogle Scholar
  181. 181.
    Williams HP, Falcon MG, Jones BR. Corticosteroids in the management of herpetic eye disease. Trans Ophthalmol Soc U K 1977; 97(2): 341–4PubMedGoogle Scholar
  182. 182.
    Okuda Y, Ishida K, Hashimoto A, et al. Virus reactivation in bitches with a medical history of herpesvirus infection. Am J Vet Res 1993; 54(4): 551–4PubMedGoogle Scholar
  183. 183.
    Rock D, Lokensgard J, Lewis T, et al. Characterization of dexamethasone-induced reactivation of latent bovine herpesvirus 1. J Virol 1992; 66(4): 2484–90PubMedGoogle Scholar
  184. 184.
    Wilhelmus KR, Gee L, Hauck WW, et al. Herpetic Eye Disease Study. A controlled trial of topical corticosteroids for herpes simplex stromal keratitis. Ophthalmology 1994; 101(12): 1883–96PubMedGoogle Scholar
  185. 185.
    Romanowski EG, Araullo-Cruz T, Gordon YJ. Topical corticosteroids reverse the antiviral effect of topical cidofovir in the Ad5-inoculated New Zealand rabbit ocularmodel. Invest Ophthalmol Vis Sci 1997; 38(1): 253–7PubMedGoogle Scholar
  186. 186.
    Tay-Kearney ML, McGhee CN, Crawford GJ, et al. Acanthamoeba keratitis. A masquerade of presentation in six cases. Aust N Z J Ophthalmol 1993; 21(4): 237–45PubMedCrossRefGoogle Scholar
  187. 187.
    Ormerod LD, Hertzmark E, Gomez DS, et al. Epidemiology of microbial keratitis in southern California. A multivariate analysis. Ophthalmology 1987; 94(10): 1322–33PubMedGoogle Scholar
  188. 188.
    Gebauer A, McGhee CN, Crawford GJ. Severe microbial keratitis in temperate and tropical Western Australia. Eye 1996; 10(Pt 5): 575–80PubMedCrossRefGoogle Scholar
  189. 189.
    Miedziak AI, Miller MR, Rapuano CJ, et al. Risk factors in microbial keratitis leading to penetrating keratoplasty. Ophthalmology 1999; 106(6): 1166–70; discussion 71PubMedCrossRefGoogle Scholar
  190. 190.
    Scott IU, Flynn Jr HW, Feuer W, et al. Endophthalmitis associated with microbial keratitis. Ophthalmology 1996; 103(11): 1864–70PubMedGoogle Scholar
  191. 191.
    Meredith TA, Aguilar HE, Drews C, et al. Intraocular dexamethasone produces a harmful effect on treatment of experimental Staphylococcus aureus endophthalmitis. Trans Am Ophthalmol Soc 1996; 94: 241–52; discussion 52-7PubMedGoogle Scholar
  192. 192.
    Yoshizumi MO, Lee GC, Equi RA, et al. Timing of dexamethasone treatment in experimental Staphylococcus aureus endophthalmitis. Retina 1998; 18(2): 130–5PubMedCrossRefGoogle Scholar
  193. 193.
    Das T, Jalali S, Gothwal VK, et al. Intravitreal dexamethasone in exogenous bacterial endophthalmitis: results of a prospective randomised study. Br J Ophthalmol 1999; 83(9): 1050–5PubMedCrossRefGoogle Scholar
  194. 194.
    Shah GK, Stein JD, Sharma S, et al. Visual outcomes following the use of intravitreal steroids in the treatment of postoperative endophthalmitis. Ophthalmology 2000; 107(3): 486–9PubMedCrossRefGoogle Scholar
  195. 195.
    van Endt JJ, Veraart HG, Kramer R, et al. Acomparison of two ophthalmic steroid-antibiotic combinations after cataract surgery. Eur J Ophthalmol 1997; 7(2): 144–8PubMedGoogle Scholar
  196. 196.
    Sutphin JE, Kantor AL, Mathers WD, et al. Evaluation of infectious crystalline keratitis with confocal microscopy in a case series. Cornea 1997; 16(1): 21–6PubMedCrossRefGoogle Scholar
  197. 197.
    Apel A, Campbell I, Rootman DS. Infectious crystalline keratopathy following trabeculectomy and low-dose topical steroids. Cornea 1995; 14(3): 321–3PubMedCrossRefGoogle Scholar
  198. 198.
    Srinivasan BD, Kulkarni PS. The effect of steroidal and nonsteroidal anti-inflammatory agents on corneal re-epithelialization. Invest Ophthalmol Vis Sci 1981; 20(5): 688–91PubMedGoogle Scholar
  199. 199.
    Takashima R. Corticosteroid effects on the corneal surface of rabbits studied by scanning electron microscopy. Jpn J Ophthalmol 1975; 19: 393–400Google Scholar
  200. 200.
    Olsen EG, Davanger M. The effect of steroids on the healing of the corneal endothelium. An in vivo and in vitro study in rabbits. Acta Ophthalmologica 1984; 62(6): 893–9PubMedCrossRefGoogle Scholar
  201. 201.
    Barba KR, Samy A, Lai C, et al. Effect of topical anti-inflammatory drugs on corneal and limbal wound healing. J Cataract Refract Surg 2000; 26(6): 893–7PubMedCrossRefGoogle Scholar
  202. 202.
    Rask R, Jensen PK, Ehlers N. Healing velocity of corneal epithelium evaluated by computer. The effect of topical steroid. Acta Ophthalmol Scand 1995; 73(2): 162–5PubMedCrossRefGoogle Scholar
  203. 203.
    You X, Bergmanson JP, Zheng XM, et al. Effect of corticosteroids on rabbits corneal keratocytes after photorefractive keratectomy. J Refract Surg 1995; 11(6): 460–7PubMedGoogle Scholar
  204. 204.
    Bourcier T, Borderie V, Forgez P, et al. In vitro effects of dexamethasone on human corneal keratocytes. Invest Ophthalmol Vis Sci 1999; 40(6): 1061–70PubMedGoogle Scholar
  205. 205.
    Loftfield K, Ball SF. Filtering bleb encapsulation increased by steroid injection. Ophthalmic Surg 1990; 21(4): 282–7PubMedGoogle Scholar
  206. 206.
    Bilgihan K, Ozdek S, Ozogul C, et al. Topical vitamin E and hydrocortisone acetate treatment after photorefractive keratectomy. Eye 2000; 14(Pt 2): 231–7PubMedCrossRefGoogle Scholar
  207. 207.
    Woost PG, Brightwell J, Eiferman RA, et al. Effect of growth factors with dexamethasone on healing of rabbit corneal stromal incisions. Exp Eye Res 1985; 40(1): 47–60PubMedCrossRefGoogle Scholar
  208. 208.
    Saragas S, Arffa R, Rabin B, et al. Reversal of wound strength retardation by addition of insulin to corticosteroid therapy. Ann Ophthalmol 1985; 17(7): 428–30PubMedGoogle Scholar
  209. 209.
    Bonini S, Lambiase A, Rama P, et al. Topical treatment with nerve growth factor for neurotrophic keratitis. Ophthalmology 2000; 107(7): 1347–51; discussion 51-2PubMedCrossRefGoogle Scholar
  210. 210.
    McCarey BE, Napalkov JA, Pippen PA, et al. Corneal wound healing strength with topical antiinflammatory drugs. Cornea 1995; 14(3): 290–4PubMedCrossRefGoogle Scholar
  211. 211.
    Flach AJ, Kraff MC, Sanders DR, et al. The quantitative effect of 0.5% ketorolac tromethamine solution and 0.1% dexamethasone sodium phosphate solution on postsurgical blood-aqueous barrier. Arch Ophthalmol 1988; 106(4): 480–3PubMedCrossRefGoogle Scholar
  212. 212.
    Geerling G, Neppert B, Wirbelauer C, et al. Relative mydriasis after photorefractive keratectomy. J Refract Surg 2000; 16(1): 69–74PubMedGoogle Scholar
  213. 213.
    O’Brart DP, Lohmann CP, Klonos G, et al. The effects of topical corticosteroids and plasmin inhibitors on refractive outcome, haze, and visual performance after photorefractive keratectomy. A prospective, randomized, observer-masked study. Ophthalmology 1994; 101(9): 1565–74PubMedGoogle Scholar
  214. 214.
    Aras C, Ozdamar A, Aktunc R, et al. The effects of topical steroids on refractive outcome and corneal haze, thickness, and curvature after photorefractive keratectomy with a 6.0-mm ablation diameter. Ophthalmic Surg Lasers 1998; 29(8): 621–7PubMedGoogle Scholar
  215. 215.
    McGhee CN, Koay P. Essential pharmacology for photorefractive surgery. In: McGhee CN, Taylor HR, Gartry DS, et al., editors. Excimer lasers in ophthalmology, principles and practice. London: Martin Dunitz, 1997: 421–38Google Scholar
  216. 216.
    Chung JH, Kang YG, Kim HJ. Effect of 0.1% dexamethasone on epithelial healing in experimental corneal alkali wounds: morphological changes during the repair process. Graefes Arch Clin Exp Ophthalmol 1998; 236(7): 537–45PubMedCrossRefGoogle Scholar
  217. 217.
    Chung JH, Paek SM, Choi JJ, et al. Effect of topically applied 0.1% dexamethasone on endothelial healing and aqueous composition during the repair process of rabbit corneal alkali wounds. Curr Eye Res 1999; 18(2): 110–6PubMedCrossRefGoogle Scholar
  218. 218.
    Davis AR, Ali QK, Aclimandos WA, et al. Topical steroid use in the treatment of ocular alkali burns. Br J Ophthalmol 1997; 81(9): 732–4PubMedCrossRefGoogle Scholar
  219. 219.
    Roberts SM, Lavach JD, Macy DW, et al. Effect of ophthalmic prednisolone acetate on the canine adrenal gland and hepatic function. Am J Vet Res 1984; 45(9): 1711–4PubMedGoogle Scholar
  220. 220.
    Eichenbaum JD, Macey DW, Severin GA. Effect in large dogs of ophthalmic prednisolone acetate on adrenal gland and hepatic function. J Am Anim Hosp Assoc 1988; 24: 705–9Google Scholar
  221. 221.
    Spiess BM, Nyikos S, Stummer E, et al. Systemic dexamethasone concentration in horses after continued topical treatment with an ophthalmic preparation of dexamethasone. Am J Vet Res 1999; 60(5): 571–6PubMedGoogle Scholar
  222. 222.
    Miyachi Y. Adrenal axis suppression caused by a small dose of a potent topical corticosteroid. Arch Dermatol 1982; 118(7): 451–2PubMedCrossRefGoogle Scholar
  223. 223.
    Allenby CF, Main RA, Marsden RA, et al. Effect on adrenal function of topically applied clobetasol propionate (Dermovate). BMJ 1975; 4(5997): 619–21PubMedCrossRefGoogle Scholar
  224. 224.
    Burch PG, Migeon CJ. Systemic absorption of topical steroids. Arch Ophthalmol 1968; 79(2): 174–6PubMedCrossRefGoogle Scholar
  225. 225.
    Krupin T, Mandell AI, Podos SM, et al. Topical corticosteroid therapy and pituitary-adrenal function. Arch Ophthalmol 1976; 94(6): 919–20PubMedCrossRefGoogle Scholar
  226. 226.
    Roters S, Aspacher F, Diestelhorst M. The influence of dexamethasone 0.1% eye drops on plasma cortisol and ACTH concentrations after cataract surgery. Ophthalmologica 1996; 210(4): 211–4PubMedCrossRefGoogle Scholar
  227. 227.
    Reiss GR, Campbell RJ, Bourne WM. Infectious crystalline keratopathy. Surv Ophthalmol 1986; 31(1): 69–72PubMedCrossRefGoogle Scholar
  228. 228.
    Schlotzer-Schrehardt U, Zagorski Z, Holbach LM, et al. Corneal stromal calcification after topical steroid-phosphate therapy. Arch Ophthalmol 1999; 117(10): 1414–8PubMedGoogle Scholar
  229. 229.
    Huige WM, Beekhuis WH, Rijneveld WJ, et al. Unusual deposits in the superficial corneal stroma following combined use of topical corticosteroid and beta-blocking medication. Doc Ophthalmol 1991; 78(3-4): 169–75PubMedCrossRefGoogle Scholar
  230. 230.
    Singh G, Kaur J. Iatrogenic dry eye: late effect of topical steroid formulations. J Indian Med Assoc 1992; 90(9): 235–7PubMedGoogle Scholar
  231. 231.
    Nozik RA. Orbital rim fat atrophy after repository periocular corticosteroid injection. Am J Ophthalmol 1976; 82(6): 928–30PubMedGoogle Scholar
  232. 232.
    Raab EL. Limitation of motility after periocular corticosteroid injection. Am J Ophthalmol 1974; 78(6): 996–8PubMedGoogle Scholar
  233. 233.
    Thomas EL, Laborde RP. Retinal and choroidal vascular occlusion following intralesional corticosteroid injection of a chalazion. Ophthalmology 1986; 93(3): 405–7PubMedGoogle Scholar
  234. 234.
    Egbert JE, Schwartz GS, Walsh AW. Diagnosis and treatment of an ophthalmic artery occlusion during an intralesional injection of corticosteroid into an eyelid capillary hemangioma. Am J Ophthalmol 1996; 121(6): 638–42PubMedGoogle Scholar
  235. 235.
    McGhee CN, Ellerton CR. Complications of excimer laser photorefractive surgery. In: McGhee CN, Taylor HR, Gartry DS, et al., editors. Excimer lasers in ophthalmology, principles and practice. London: Martin Dunitz, 1997: 380–402Google Scholar
  236. 236.
    Loewenstein A, Lipshitz I, Varssano D, et al. Complications of excimer laser photorefractive keratectomy for myopia. J Cataract Refract Surg 1997; 23(8): 1174–6PubMedGoogle Scholar
  237. 237.
    Newsome DA, Wong VG, Cameron TP, et al. ‘Steroid-induced’ mydriasis and ptosis. Invest Ophthalmol 1971; 10(6): 424–9PubMedGoogle Scholar
  238. 238.
    Corbett MC, Hingorani M, Boulton JE, et al. Subconjunctival betamethasone is of benefit after cataract surgery. Eye 1993; 7(Pt 6): 744–8PubMedCrossRefGoogle Scholar
  239. 239.
    Sanders R, MacEwen CJ, Haining WM. A comparison of prophylactic, topical and subconjunctival treatment in cataract surgery. Eye 1992; 6(Pt 1): 105–10PubMedCrossRefGoogle Scholar
  240. 240.
    Ellis PP. Occlusion of the central retinal artery after retrobulbar corticosteroid injection. Am J Ophthalmol 1978; 85(3): 352–6PubMedGoogle Scholar
  241. 241.
    Gopal L, Bhende M, Sharma T. Vitrectomy for accidental intraocular steroid injection. Retina 1995; 15(4): 295–9PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 2002

Authors and Affiliations

  • Charles N. J. McGhee
    • 1
  • Simon Dean
    • 1
  • Helen Danesh-Meyer
    • 1
  1. 1.Discipline of Ophthalmology, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand

Personalised recommendations