Drug Safety

, Volume 24, Issue 12, pp 903–920 | Cite as

A Comparison of Liposomal Formulations of Doxorubicin with Drug Administered in Free Form

Changing Toxicity Profiles
  • Dawn N. Waterhouse
  • Paul G. Tardi
  • Lawrence D. Mayer
  • Marcel B. Bally
Review Article


The anthracycline antibiotic doxorubicin has wide activity against a number of human neoplasms and is used extensively both as a single agent and in combination regimens. In addition to the use of free, unencapsulated doxorubicin, there are two US Food and Drug Administration approved liposomal formulations of doxorubicin currently available, with several additional liposomal formulations being researched either in the laboratory or in clinical trials. The two approved liposomal formulations of doxorubicin have significantly different lipid compositions and loading techniques, which lead to both unique pharmacokinetic and toxicity profiles, distinct from those of the unencapsulated form.

This article discusses the toxicities associated with the free form of doxorubicin, as well as those associated with the two most common liposomal formulations, namely Doxil®1 and Myocet™. One of the key toxicity issues linked to the use of free doxorubicin is that of both an acute and a chronic form of cardiomyopathy. This is circumvented by the use of liposomal formulations, as these systems tend to sequester the drug away from organs such as the heart, with greater accumulation in liver, spleen and tumours. However, as will be discussed, the liposomal formulations of doxorubicin are not without their own related toxicities, and, in the case of Doxil®, may be associated with the unique toxicity of palmar-plantar erythrodysaesthesia. Overall, the use of liposomal doxorubicin allows for a greater lifetime cumulative dose of doxorubicin to be administered, however acute maximal tolerated doses differ significantly, with that of Myocet™ being essentially equivalent to free doxorubicin, while higher doses of Doxil® may be safely administered.



This paper was supported by funding from The Canadian Institutes of Health Research and the The National Cancer Institute of Canada.


  1. 1.
    Forssen EA, Tokes ZA. In vitro and in vivo studies with adriamycin liposomes. Biochem Biophys Res Commun 1979 Dec; 91(4): 1295–301PubMedCrossRefGoogle Scholar
  2. 2.
    Rahman A, Kessler A, More N, et al. Liposomal protection of adriamycin-induced cardiotoxicity in mice. Cancer Res 1980 May; 40(5): 1532–7PubMedGoogle Scholar
  3. 3.
    Hortobagyi GN. Anthracyclines in the treatment of cancer: an overview. Drugs 1997; 54(S4): 1–7PubMedCrossRefGoogle Scholar
  4. 4.
    Ferrans VJ, Clark JR, Zhang J, et al. Pathogenesis and prevention of doxorubicin cardiomyopathy. Tsitologiia 1997; 39(10): 928–37PubMedGoogle Scholar
  5. 5.
    Müller I, Niethammer D, Bruchelt G. Anthracycline-derived chemotherapeutics in apoptosis and free radical cytotoxicity. Int J Mol Med 1998; 1(2): 491–4PubMedGoogle Scholar
  6. 6.
    Speyer J, Wasserheit C. Strategies for reduction of anthracycline cardiac toxicity. Semin Oncol 1998; 25(5): 525–37PubMedGoogle Scholar
  7. 7.
    Lipshultz SE, Lipsitz SR, Mone SM, et al. Female sex and drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. N Engl J Med 1995; 332: 1738–43PubMedCrossRefGoogle Scholar
  8. 8.
    Wiseman LR, Spencer CM. Dexrazoxane. A review of its use as a cardioprotective agent in patients receiving anthracycline-based chemotherapy. Drugs 1998; 56: 385–403PubMedCrossRefGoogle Scholar
  9. 9.
    Dunn J. Doxorubicin-induced cardiomyopathy. J Pediatr Oncol Nursing 1994; 11(4): 152–60CrossRefGoogle Scholar
  10. 10.
    Pho KH, editor. Cancer care handbook. 6th ed. Kingston (ON): Kingston Regional Cancer Centre, 1999: 50–1Google Scholar
  11. 11.
    Gabizon A, Catane R, Uziely B, et al. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res 1994; 54: 987–92PubMedGoogle Scholar
  12. 12.
    Drug data sheets, doxorubicin. In: Dorr R, Fritz W. Cancer chemotherapy handbook. New York (NY): Elsevier Science, 1980: 388–401Google Scholar
  13. 13.
    Cummings J, Smyth JF. Pharmacology of adriamycin: the message to the clinician. Eur J Cancer Clin Oncol 1988; 24(4): 579–82PubMedCrossRefGoogle Scholar
  14. 14.
    Gabizon A, Goren D, Cohen R, et al. Development of liposomal anthracyclines: from basics to clinical applications. J Control Release 1998; 53(1-3): 275–9PubMedCrossRefGoogle Scholar
  15. 15.
    Tardi PG, Boman NL, Cullis PR. Liposomal Doxorubicin. J Drug Target 1996; 4(3): 129–40PubMedCrossRefGoogle Scholar
  16. 16.
    Scherphof G, Roerdink F, Waite M, et al. Disintegration of phosphatidylcholine liposomes in plasma as a result of interaction with high-density lipoproteins. Biochem Biophys Acta 1978 Aug; 542(2): 296–307PubMedCrossRefGoogle Scholar
  17. 17.
    Kirby C, Clark J, Gregoriadis G. Cholesterol content of small unilamellar liposomes controls phospholipid loss to high density lipoprotein. FEBS Lett 1980; 111: 324–8PubMedCrossRefGoogle Scholar
  18. 18.
    Schroit AJ, Madsen JW, Tanka Y. In vivo recognition and clearance of red blood cells containing phosphatidlyserine in their plasma membranes. J Biol Chem 1985; 260: 5131–8PubMedGoogle Scholar
  19. 19.
    Rahman A, Treat J, Roh K, et al. A phase I clinical trial and pharmacokinetic evaluation of liposome-encapsulated doxorubicin. J Clin Oncol 1990; 8: 1093–100PubMedGoogle Scholar
  20. 20.
    Daemen T, Hofstede G, Ten Kate MT, et al. Liposomal doxorubicin-induced toxicity: depletion and impairment of phagocytic activity of liver macrophages. Int J Cancer 1995; 61(5): 716–21PubMedCrossRefGoogle Scholar
  21. 21.
    Papahadjopoulos D, Allen TM, Gabizon A, et al. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci U S A 1991; 88: 11460–4PubMedCrossRefGoogle Scholar
  22. 22.
    Gokhale PC, Radhakrishnan B, Husain SR, et al. An improved method of encapsulation of doxorubicin in lipsomes: pharmacological, toxicological and therapeutic evaluation. Br J Cancer 1996; 74: 43–8PubMedCrossRefGoogle Scholar
  23. 23.
    Treat J, Greenspan A, Forst D, et al. Antitumor activity of liposome-encapsulated doxorubicin in advanced breast cancer: phase II study. J Natl Cancer Inst 1990; 82(21): 1706–10PubMedCrossRefGoogle Scholar
  24. 24.
    Cowens JW, Creaven PJ, Greco WR, et al. Initial clinical (phase I) trial of TLC D-99 (doxorubicin encapsulated in liposomes). Cancer Res 1993; 53: 2796–802PubMedGoogle Scholar
  25. 25.
    Cowens JW, Kanter P, Brenner DE, et al. Phase I study of doxorubicin encapsulated in liposomes [abstract]. Proc Am Soc Clin Oncol 1989; 8: 69Google Scholar
  26. 26.
    Kanter PM, Bullard GA, Ginsbert RA, et al. Comparison of the cardiotoxic effects of liposomal doxorubicin (TLCD-99) versus free doxorubicin in beagle dogs. In Vivo 1993; 7: 17–26PubMedGoogle Scholar
  27. 27.
    Woodle MC. Controlling liposome blood clearance by surface-grafted polymers. Adv Drug Deliv Rev 1998; 32(1-2): 139–52PubMedCrossRefGoogle Scholar
  28. 28.
    Woodle MC, Newman MS, Cohen JA. Sterically stabilized liposomes: physical and biological properties. J Drug Target 1994; 2(5): 397–403PubMedCrossRefGoogle Scholar
  29. 29.
    Gabizon A, Martin F. Polyethylene glycol-coated (pegylated) liposomal doxorubicin. Rationale for use in solid tumours. Drugs 1997; 54Suppl. 4: 15–21PubMedCrossRefGoogle Scholar
  30. 30.
    Ranson MR, Carmichael J, O’Byrne K, et al. Treatment of advanced breast cancer with sterically stabilized liposomal doxorubicin: results of a multicenter phase II trial. J Clin Oncol 1997; 15(10): 3185–91PubMedGoogle Scholar
  31. 31.
    Lyass O, Uziely B, Ben-Yosef R, et al. Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in metastatic breast carcinoma. Cancer 2000; 89(5): 1037–47PubMedCrossRefGoogle Scholar
  32. 32.
    Hubert A, Lyass O, Pode D, et al. Doxil (Caelyx): an exploratory study with pharmacokinetics in patients with hormone-refractory prostate cancer. Anticancer Drugs 2000; 11: 123–7PubMedCrossRefGoogle Scholar
  33. 33.
    Lohri A, Gelmon KA, Embree L, et al. Phase I/II study of liposome encapsulated doxorubicin (TLC D-99) in non-small cell lung cancer (NSCLC) [abstract]. Proc Am Soc Clin Oncol 1991; 10: 106Google Scholar
  34. 34.
    Casper ES, Schwartz GK, Sugarman A, et al. Phase I trial of dose-intense liposome-encapsulated doxorubicin in patients with advanced sarcoma. J Clin Oncol 1997; 15: 2111–7PubMedGoogle Scholar
  35. 35.
    Conley BA, Egorin MJ, Whitacre MY, et al. Phase I and pharmacokinetic trial of liposome-encapsulated doxorubicin. Cancer Chemother Pharmacol 1993; 33(2): 107–12PubMedCrossRefGoogle Scholar
  36. 36.
    Northfelt DW, Dezube BJ, Thommes JA, et al. Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi’s sarcoma: results of a randomized phase III clinical trial. J Clin Oncol 1998; 16: 2445–51PubMedGoogle Scholar
  37. 37.
    Uziely B, Jeffers S, Isacson R, et al. Liposomal doxorubicin: antitumor activity and unique toxicities during two complementary phase I studies. J Clin Oncol 1995; 13: 1777–85PubMedGoogle Scholar
  38. 38.
    Cheung TW, Remick SC, Azarcia N, et al. AIDS-related Kaposi’s sarcoma: a phase II study of liposomal doxorubicin. Clin Cancer Res 1999; 5: 3432–7PubMedGoogle Scholar
  39. 39.
    Opravil M, Tomlinson D, Bogner R, et al. Caelyx (Doxil; liposomal doxorubicin) is tolerated well long-term at high cumulative dose in AIDS-related Kaposi’s sarcoma (AIDS-KS) patients: ameta-analysis of 1716 patients [abstract]. Proc Am Soc Clin Oncol 1998; 17: 66Google Scholar
  40. 40.
    Halm U, Etzrodt G, Schiefke I, et al. A phase II study of pegylated liposomal doxorubicin for treatment of advanced hepatocellular carcinoma. Ann Oncol 2000; 11: 113–4PubMedCrossRefGoogle Scholar
  41. 41.
    Ruff P, Moodley D, Rapoport BL, et al. Pegylated liposomal doxorubicin (Caelyx) in advanced hepatocellular carcinoma (HCC) [abstract]. Proc Am Soc Clin Oncol 2000; 19: 268Google Scholar
  42. 42.
    Johnson PJ, Dobbs N, Kalayci C, et al. Clinical efficacy and toxicity of standard dose adraimycin in hyperbilirubinaemic patients with hepatocellular carcinoma: relation to liver tests and pharmacokinetic parameters. Br J Cancer 1992; 65: 751–5PubMedCrossRefGoogle Scholar
  43. 43.
    Safra T, Muggia F, Jeffers S, et al. Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann Oncol 2000; 11: 1029–33PubMedCrossRefGoogle Scholar
  44. 44.
    Lebwohl DE, Canetta R. New developments in chemotherapy of advanced breast cancer. Ann Oncol 1999; 10Suppl. 6: S139–S46CrossRefGoogle Scholar
  45. 45.
    Henderson IC, Canellos GP. Cancer of the breast: the past decade. N Engl J Med 1980; 302: 78–90PubMedCrossRefGoogle Scholar
  46. 46.
    Jones V, Finucane D, Rodriguez R, et al. Phase II study of weekly paclitaxel (Taxol) and liposomal doxorubicin (Doxil) in patients with locally advanced and metastatic breast cancer [abstract]. Proc Am Soc Clin Oncol 2000; 19: 116Google Scholar
  47. 47.
    Rimassa L, Salvini P, Carnaghi C, et al. Unexpected low efficacy of Caelyx and Vinorelbine in metastatic breast cancer (MBC) [abstract]. Proc Am Soc Clin Oncol 2000; 19: 115Google Scholar
  48. 48.
    Valero V, Buzdar AU, Theriault RL, et al. Phase II trial of liposome-encapsulated doxorubicin, cyclophosphamide and fluorouracil as first-line therapy in patients with metastatic breast cancer. J Clin Oncol 1999; 17:1425-34 1425–34PubMedGoogle Scholar
  49. 49.
    Shapiro CL, Ervin T, Welles L, et al. Phase II trial of high-dose liposome-encapsulated doxorubicin with granulocyte colony-stimulating factor in metastatic breast cancer. J Clin Oncol 1999; 17: 1435–41PubMedGoogle Scholar
  50. 50.
    Biganzoli L, Cufer T, Bruning P, et al. Doxorubicin (A)/taxol (T) versus doxorubicin/cyclophosphamide (C) as first line chemotherapy in metastatic breast cancer (MBC): a phase III study. Proc Am Soc Clin Oncol 2000: 282Google Scholar
  51. 51.
    Winer E, Batist G, Belt R, et al. Reduced cardiotoxicity of liposome-encapsulated doxorubicin (TLC D-99) compared to free doxorubicin in first-line therapy of metastatic breast cancer in patients at increased risk for anthracycline-induced cardiac toxicity [abstract]. Proc Am Soc Clin Oncol 2000; 19: 89Google Scholar
  52. 52.
    Batist G, Harris L, Azarnia N, et al. Improved therapeutic index of TLC D-99 (liposome-encapsulated doxorubicin) compared to free doxorubicin in first-line treatment of metastatic breast cancer in patients who had received prior adjuvant doxorubicin [abstract]. Proc Am Soc Clin Oncol 2000; 19: 105Google Scholar
  53. 53.
    Sadasivan R, Morgan R, Jennings S, et al. Overexpression of Her-2/neu may be an indicator of poor prognosis in prostate cancer. J Urol 1993; 150: 126–31PubMedGoogle Scholar
  54. 54.
    Berchuck A, Kamel A, Whitaker R, et al. Overexpression of HER-2/neu is associated with poor survival in advanced epithelial ovarian cancer. Cancer Res 1990; 50: 4087–91PubMedGoogle Scholar
  55. 55.
    Tandon AK, Clark GM, Chamness GC, et al. HER-2/neu oncogene protein and prognosis in breast cancer. J Clin Oncol 1989; 8: 1120–8Google Scholar
  56. 56.
    Slamon D, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344: 783–92PubMedCrossRefGoogle Scholar
  57. 57.
    Information on Protocol B-31. NSABP [online]. Available from: URL: http://www.nsabp.pitt.edu/B31_Press_Info.htm [Accessed 2001 Sep 13]
  58. 58.
    Protocol CLB-49808. ClinicalTrials.gov: a service of the National Institutes ofHealth [online]. http://www.clinicaltrials.gov [Accessed 2001 Sep 13]
  59. 59.
    Protocol NCCTG-N9831. ClinicalTrials.gov: a service of the National Institutes of Health [online]. http://www.clinicaltrials.gov [Accessed 2001 Sep 13]
  60. 60.
    Muggia FM, Hainsworth JD, Jeffers S, et al. Phase II study of liposomal doxorubicin in refractory ovarian cancer: Antitumor activity and toxicity modification by liposomal encapsulation. J Clin Oncol 1997; 15(3): 987–93PubMedGoogle Scholar
  61. 61.
    Israel VP, Garcia AA, Roma L, et al. Phase II study of liposomal doxorubicin in advanced gynecologic cancers. Gynecol Oncol 2000; 78: 143–7PubMedCrossRefGoogle Scholar
  62. 62.
    Gordon AN, Granai CO, Rose PG, et al. Phase II study of liposomal doxorubicin in platinum-and paclitaxel-refractory epithelial ovarian cancer. J Clin Oncol 2000; 18(17): 3093–100PubMedGoogle Scholar
  63. 63.
    Markman M, Kennedy A, Webster K, et al. Phase 2 trial of liposomal doxorubicin (40 mg/m2) in platinum/paclitaxel-refractory ovarian and fallopian tube cancers and primary carcinoma of the peritoneum. Gynecol Oncol 2000; 78: 369–72PubMedCrossRefGoogle Scholar
  64. 64.
    Campos S, Penson RT, Matulonis UA, et al. A phase II and pharmacokinetic/dynamic study of Doxil and weekly paclitaxel chemotherapy for recurrent mullerian tumors [abstract]. Proc Am Soc Clin Oncol 2000; 19: 410Google Scholar
  65. 65.
    Gordon AN, Fleagle JT, Guthrie D, et al. Interim analysis of a phase III randomized trial of Doxil/Caelyx (D) versus topotecan (T) in the treatment of patients with relapsed ovarian cancer [abstract]. Proc Am Soc Clin Oncol 2000; 19: 380Google Scholar
  66. 66.
    Sparano JA. Doxorubicin/Taxane combinations: cardiac toxicity and Pharmacokinetics. Semin Oncol 1999; 26(3 Suppl. 9): 14–9PubMedGoogle Scholar

Copyright information

© Adis International Limited 2001

Authors and Affiliations

  • Dawn N. Waterhouse
    • 1
    • 2
  • Paul G. Tardi
    • 2
  • Lawrence D. Mayer
    • 2
    • 3
  • Marcel B. Bally
    • 1
    • 2
  1. 1.Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverCanada
  2. 2.Department of Advanced TherapeuticsBritish Columbia Cancer Research CentreVancouverCanada
  3. 3.Faculty of Pharmaceutical SciencesUniversity of British ColumbiaVancouverCanada

Personalised recommendations