Drug Safety

, Volume 23, Issue 2, pp 115–130

A Risk-Benefit Assessment of Injections of Hyaluronan and its Derivatives in the Treatment of Osteoarthritis of the Knee

  • Mark E. Adams
  • Andre J. Lussier
  • Jacques G. Peyron
Review Article

Abstract

Hyaluronan is critical for the homeostasis of the joint as an organ, in part, because it provides the rheological properties (viscosity and elasticity) of the synovial fluid. These properties depend upon both the concentration and the molecular weight of the hyaluronan in the synovial fluid. In osteoarthritis, the hyaluronan is both smaller in size and lower in concentration. Thus, it is rational and physiologically meaningful to treat osteoarthritis with viscosupplementation, i.e. injection of material designed to increase the rheological properties of the synovial fluid.

It is important, though, to assess the risks and benefits of such a physiological treatment. There are various products on the market for viscosupplementation. These include hyaluronan preparations of relatively low molecular weight (Hyalgan® and ARTZ®), a hyaluronan preparation of intermediate molecular weight, but still lower molecular weight than that of the hyaluronan in normal healthy synovial fluid (Orthovisc®), and a cross-linked hyaluronan (a hylan) of high molecular weight (Synvisc®). The evidence from in vitro and in vivo models of osteoarthritis and from clinical trials to date suggests that efficacy, as would be expected by mechanistic reasoning, depends strongly upon molecular weight.

The available evidence indicates that these products differ little in the incidence and severity of adverse events (about 2 to 4%, almost always local swelling, and with no adverse sequelae). All are very well tolerated in comparison to nonsteroidal anti-inflammatory drug therapy, although direct comparisons are few. The only potentially serious adverse event is joint infection, which is rare and directly dependent upon the number of injections, among other factors. No infection has been related to contamination of any of the products.

In summary, treatment with low molecular weight preparations of hyaluronan seems to be effective. However, viscosupplementation with hyaluronan preparations may have slightly higher risk and less benefit than viscosupplementation with hylans, because the relatively lower molecular weight hyaluronan preparations require more injections which may incur higher costs and theoretically an increased chance of infection. Viscosupplementation with hylans is clearly effective, and the available evidence suggests that the benefits almost certainly outweigh the risks.

References

  1. 1.
    Kramer JS, Yelin EH, Epstein WV. Social and economic impacts of four musculoskeletal conditions. Arthritis Rheum 1983; 26: 901–7PubMedCrossRefGoogle Scholar
  2. 2.
    Gabriel SE, Crowson CS, Campion ME, et al. Direct medical costs unique to people with arthritis. J Rheumatol 1997; 24: 719–25PubMedGoogle Scholar
  3. 3.
    Lanes SF, Lanza LL, Radensky PW, et al. Resource utilization and cost of care for rheumatoid arthritis and osteoarthritis in a managed care setting — the importance of drug and surgery costs. Arthritis Rheum 1997; 40(8): 1475–81PubMedCrossRefGoogle Scholar
  4. 4.
    Gabriel SE, Crowson CS, Campion ME, et al. Indirect and non-medical costs among people with rheumatoid arthritis and osteoarthritis compared with nonarthritic controls. J Rheumatol 1997; 24(1): 43–8PubMedGoogle Scholar
  5. 5.
    MacLean CH, Knight K, Paulus H, et al. Costs attributable to osteoarthritis. J Rheumatol 1998; 25: 2213–8PubMedGoogle Scholar
  6. 6.
    Danielsson L, Hernborg J. Morbidity and mortality of osteoarthritis of the knee (gonarthrosis) in Malmo, Sweden. Clin Orthop 1970; 69: 224–6PubMedGoogle Scholar
  7. 7.
    Hannan MT, Anderson JJ, Pincus T, et al. Educational attainment and osteoarthritis: differential associations with radiographic changes and symptomreporting. J Clin Epidemiol 1992; 45: 139–47PubMedCrossRefGoogle Scholar
  8. 8.
    Gabriel SE, Jaakkimainen L, Bombardier C. Risk for serious gastrointestinal complications related to use of nonsteroidal anti-inflammatory drugs. Ann Intern Med 1991; 115: 10: 787–96PubMedGoogle Scholar
  9. 9.
    Singh G. Recent considerations in nonsteroidal anti-inflammatory drug gastropathy. Am J Med 1998; 105(1B): 31S–8SPubMedCrossRefGoogle Scholar
  10. 10.
    Balazs EA, Denlinger JL. Viscosupplementation: a new concept in the treatment of osteoarthritis. J Rheumatol 1993; 20Suppl. 39: 3–9Google Scholar
  11. 11.
    Al-Assaf S, Phillips GO, Deeble DJ, et al. The enhanced stability of the cross-linked hylan structure to hydroxyl (OH) radicals compared with the uncross-linked hyaluronan. Radiat Phys Chem 1995; 46207–17Google Scholar
  12. 12.
    Pozo MA, Balazs EA, Belmonte C. Reduction of sensory responses to passive movements of inflamed knee joints by hylan, a hyaluronan derivative. Exp Brain Res 1997; 1163–9Google Scholar
  13. 13.
    Smith MM, Ghosh P. Synthesis of hyaluronic acid by human synovial fibroblasts is influenced by the nature of the hyaluronate in the extracellular environment. Rheumatol Int 1987; 7: 113–22PubMedCrossRefGoogle Scholar
  14. 14.
    Balazs EA. Hyaluronic acid and matrix implantation. Arlington (MA); Biotrix, Inc., 1971Google Scholar
  15. 15.
    Darzynkiewicz Z, Balazs EA. Effect of connective tissue intercellular matrix on lymphocyte stimulation: I: suppression of lymphocyte stimulation by hyaluronic acid. Exp Cell Res 1971; 66: 113–23PubMedCrossRefGoogle Scholar
  16. 16.
    Forrester JV, Balazs EA. Inhibition of phagocytosis by high molecular weight hyaluronan. Immunology 1980; 40: 435–46PubMedGoogle Scholar
  17. 17.
    Forrester JV, Wilkinson PC. Inhibition of leukocyte locomotion by hyaluronic acid. J Cell Sci 1981; 48: 315–31PubMedGoogle Scholar
  18. 18.
    Larsen NE, Lombard KM, Parent EG, et al. Effect of hylan on cartilage and chondrocyte cultures. J Orthop Res 1992; 10: 23–32PubMedCrossRefGoogle Scholar
  19. 19.
    Yasui T, Akatsuka M, Tobetto K, et al. Effects of hyaluronan on the production of stromelysin and tissue inhibitor of metalloproteinase-1 in bovine articular chondrocytes. Biomed Res 1992; 13(5): 343–8Google Scholar
  20. 20.
    Weiss C, Band P. Musculoskeletal applications of hyaluronan and hylan: potential uses in the foot and ankle. Clin Podiatr Med Surg 1995; 12(3): 497–517PubMedGoogle Scholar
  21. 21.
    Hamerman D, Wood DD. Rapid Communication. Interleukin 1 enhances synovial cell hyaluronate synthesis. Exp Biol Med 1984; 177: 205–10CrossRefGoogle Scholar
  22. 22.
    Rydell N, Balazs EA. Effect of intra-articular injection of hyaluronic acid on the clinical symptoms of osteoarthritis and on granulation tissue formation. Clin Orthop 1971; 80: 25–32PubMedCrossRefGoogle Scholar
  23. 23.
    Kikuchi T, Yamaguchi T, Sakakibara Y, et al. Therapeutic effect of high molecular weight sodium hyaluronate (SL-1010) on the experimental osteoarthritis induced by rabbit knee immobilization. Jpn Pharmacol Ther 1993; 21 Suppl.: S401–S9Google Scholar
  24. 24.
    Sakakibara Y, Miura T, Iwata H, Kikuchi T, et al. Effect of high-molecular-weight sodium hyaluronate on immobilized rabbit knee. Clin Orthop 1994; 299: 282–92PubMedGoogle Scholar
  25. 25.
    Kido H, Maeyama K, Tagawa T, et al. Effect of high molecular weight sodium hyaluronate (SL-1010) on experimental osteoarthritis induced by immobilization of rabbit knee joint. Jpn Pharmacol Ther 1993; 21 Suppl.: S393–S9Google Scholar
  26. 26.
    Kikuchi T, Yamada H, Shimmei M. Effect of high molecular weight hyaluronan on cartilage degeneration in a rabbit model of osteoarthritis. Osteoarthritis Cartilage 1996; 4: 99–110PubMedCrossRefGoogle Scholar
  27. 27.
    Armstrong S, Read R, Ghosh P. The effects of intraarticular hyaluronan on cartilage and subchondral bone changes in an ovine model of early osteoarthritis. J Rheumatol 1994; 21: 680–8PubMedGoogle Scholar
  28. 28.
    Williams JM, Plaza V, Hui F, et al. Hyaluronic acid suppresses fibronectin fragment mediated cartilage chondrolysis: 2: in vivo. Osteoarthritis Cartilage 1997; 5(4): 235–40PubMedCrossRefGoogle Scholar
  29. 29.
    Obara T, Mabuchi K, Iso T, et al. Increased friction of animal joints by experimental degeneration and recovery by addition of hyaluronic acid. Clin Biomech 1997; 12(4): 246–52CrossRefGoogle Scholar
  30. 30.
    Yoshioka M, Shimizu C, Harwood FL, et al. The effects of hyaluronan during the development of osteoarthritis. Osteoarthritis Cartilage 1997; 5(4): 251–60PubMedCrossRefGoogle Scholar
  31. 31.
    Yoshimi T, Kikuchi T, Obara T, et al. Effects of high-molecular-weight sodiumhyaluronate on experimental osteoarthrosis induced by the resection of rabbit anterior cruciate ligament. Clin Orthop 1994; 298: 296–304PubMedGoogle Scholar
  32. 32.
    Abatangelo G, Botti P, Del Bue M, et al. Intraarticular sodium hyaluronate injections in the Pond-Nuki experimental model of osteoarthritis in dogs: I: biochemical results. Clin Orthop 1989; 278–85Google Scholar
  33. 33.
    Schiavinato A, Lini E, Guidolin D, et al. Intraarticular sodium hyaluronate injections in the Pond-Nuki experimental model of osteoarthritis in dogs: II: morphological findings. Clin Orthop 1989; 286–99Google Scholar
  34. 34.
    Marshall KW. The current status of hylan therapy for the treatment of osteoarthritis. Todays Ther Trends 1997; 15(2): 99–108Google Scholar
  35. 35.
    Phillips MW. Clinical trial comparison of intra-articular sodium hyaluronate products in the horse. J Equin Vet Sci 1989; 9: 39–40CrossRefGoogle Scholar
  36. 36.
    Asari A, Miyauchi S, Matsuzaka S, et al. Molecular weight-dependent effects of hyaluronate on arthritic synovium. Arch Histol Cytol 1999; 61(2): 125–35CrossRefGoogle Scholar
  37. 37.
    Aviad AD, Houpt JB. The molecular weight of therapeutic hyaluronan (sodium hyaluronate): how significant is it. J Rheumatol 1994; 21: 297–301PubMedGoogle Scholar
  38. 38.
    Balazs EA, Watson D, Duff IF, et al. Hyaluronic acid in synovial fluid. I. Molecular parameters of hyaluronic acid in normal and arthritic human synovial fluid. Arthritis Rheum 1967; 10(4): 357–76PubMedCrossRefGoogle Scholar
  39. 39.
    Adams ME. Viscosupplementation as articular therapy. In: Laurent TC, editor. The chemistry, biology andmedical application of hyaluronan and its derivatives. London: Portland Press, 1998: 243–53Google Scholar
  40. 40.
    Peyron JG. Viscosupplementation for the treatment of osteoarthritis of the knee with hyaluronan and hylans: rationale and state of the art. In: Tanaka S, Hamanishi C, editors. Advances in osteoarthritis. Tokyo: Springer, 1999: 213–36CrossRefGoogle Scholar
  41. 41.
    Bragatini A, Gassini M, Dibastini G. Controlled single blind trial of intra-articularly injected hyaluronic acid (Hyalgan) in osteoarthritis of the knee. Clin Trial J 1982; 24: 333–40Google Scholar
  42. 42.
    Grecomoro G, Martorana U, DiMarco C. Intra-articular treatment with sodium hyaluronate in gonarthrosis: a controlled clinical trial versus placebo. Pharmatherapeutica 1987; 5: 137–41PubMedGoogle Scholar
  43. 43.
    Carrabba M, Paresce E, Angelini M, et al. The safety and efficacy of different dose schedules of hyaluronic acid in the treatment of painful osteoarthritis of the knee with joint effusion. Eur J Rheumatol Inflamm 1995; 1525–31Google Scholar
  44. 44.
    Henderson EB, Smith EC, Pegley F, et al. Intra-articular injections of 750 kD hyaluronan in the treatment of osteoarthritis: a randomised single centre double-blind placebo-controlled trial of 91 patients demonstrating lack of efficacy. Ann Rheum Dis 1994; 53: 529–34PubMedCrossRefGoogle Scholar
  45. 45.
    Dixon AStJ, Jacoby RK, Berry H, et al. Clinical trial of intraarticular injection of sodium hyaluronate in patients with osteoarthritis of the knee. Curr Med Res Opin 1988; 11(4): 205–13PubMedCrossRefGoogle Scholar
  46. 46.
    Dougados M, Nguyen M, Listrat V, et al. High molecular weight sodium hyaluronate (Hyalectin) in osteoarthritis of the knee: a one year placebo-controlled trial. Osteoarthritis Cartilage 1993; 1: 97–103PubMedCrossRefGoogle Scholar
  47. 47.
    Listrat V, Ayral X, Patarnello F, et al. Arthroscopic evaluation of potential structure modifying activity of hyaluronan (Hyalgan ®) in osteoarthritis of the knee. Osteoarthritis Cartilage 1997; 5(3): 153–60PubMedCrossRefGoogle Scholar
  48. 48.
    Altman RD, Moskowitz RW, and the Hyalgan® study group. Intraarticular sodium hyaluronate (Hyalgan®) in the treatment of patients with osteoarthritis of the knee: a randomized clinical trial. J Rheumatol 1998; 25: 2203–12PubMedGoogle Scholar
  49. 49.
    Pietrogrande V, Melanotte PL, D’Agnolo B, et al. Hyaluronic acid versus methylprednisolone intra-articularly injected for treatment of osteoarthritis of the knee. Curr Ther Res 1991; 50(5): 691–701Google Scholar
  50. 50.
    Leardini G, Mattara L, Franceschini M, et al. Intra-articular treatment of knee osteoarthritis: a comparative study between hyaluronic acid and 6-methyl prednisolone acetate. Clin Exp Rheumatol 1991; 9375–81Google Scholar
  51. 51.
    Jones AC, Pattrick M, Doherty S, et al. Intra-articualr hyaluronic acid compared to intra-articular triamcinolone hexacetonide in inflammatory knee osteoarthritis. Osteoarthritis Cartilage 1995; 3269–73hGoogle Scholar
  52. 52.
    Dieppe PA, Sathapatayavongs B, Jones HE. Intraarticular steroids in osteoarthritis. Rheum Rehab 1980; 19: 212–17CrossRefGoogle Scholar
  53. 53.
    Jones A, Doherty M. Intra-articular corticosteroids are effective in osteoarthritis but there are no clinical predictors of response. Ann Rheum Dis 1996; 55(11): 829–32PubMedCrossRefGoogle Scholar
  54. 54.
    Oshima Y, Azuma H, Namiki O, et al. Intra-articular injection therapy of high molecular weight sodium hyaluronate (SPH) on osteoarthritis of the knee joint — phase II clinical study. Jpn Pharmacol Ther 1983; 11(6): 2253–67Google Scholar
  55. 55.
    Namiki O, Toyoshima H, Morisaki N. Therapeutic effect of intra-articular injection of high molecular weight hyaluronic acid on osteoarthritis of the knee. Int J Clin Pharmacol Ther Toxicol 1982; 20: 501–7PubMedGoogle Scholar
  56. 56.
    Shichikawa K, Igarashi M, Sugawara S, et al. Clinical evaluation of high molecular weight sodium hyaluronate (SPH) on osteoarthritis of the knee — multi-center well controlled comparative study. Jpn J Clin Pharmacol Ther 1983; 14545Google Scholar
  57. 57.
    Honma T, Sakurai M, Maeda I, et al. Clinical effects of high molecular weight sodium hyaluronate (Artz) injected into osteoarthritic knee joint. Jpn Pharmacol Ther 1989; 17(10): 5057–72Google Scholar
  58. 58.
    Igarashi M, Arai M, Morita H, et al. Multicentre clinical studies of high molecular weight sodium hyaluronate in the long-term treatment of osteoarthritis of the knee. Jpn Pharmacol Ther 1983; 11: 4871–88Google Scholar
  59. 59.
    Puhl W, Bernau A, Greiling H, et al. Intra-articular sodium hyaluronate in osteoarthritis of the knee: a multicenter, double-blind study. Osteoarthritis Cartilage 1993; 1: 233–41PubMedCrossRefGoogle Scholar
  60. 60.
    Dahlberg L, Lohmander LS, Ryd L. Intraarticular injections of hyaluronan in patients with cartilage abnormalities and knee pain: a one-year double- blind, placebo-controlled study. Arthritis Rheum 1994; 37: 521–8PubMedCrossRefGoogle Scholar
  61. 61.
    Lohmander LS, Dalén N, Englund G, et al. Intra-articular hyaluronan injections in the treatment of osteoarthritis of the knee: a randomised, double blind, placebo controlled multicentre trial. Ann Rheum Dis 1996; 55(7): 424–31PubMedCrossRefGoogle Scholar
  62. 62.
    Gray RG, Tenenbaum J, Gottlieb NL. Local corticosteroid injection treatment in rheumatic disorders. Semin Arthritis Rheum 1981; 10: 231–54PubMedCrossRefGoogle Scholar
  63. 63.
    Lequesne MG. The algofunctional indices for hip and knee osteoarthritis. J Rheumatol 1997; 24: 779–81PubMedGoogle Scholar
  64. 64.
    Balazs EA. The physical properties of synovial fluid and the special role of hyaluronic acid. In: Helfet A, editor. Disorders of the knee. 2nd ed. Philadelphia (PA): JB Lippincott Company, 1982: 61–74Google Scholar
  65. 65.
    Dürr J, Goodman S, Potocnik A, et al. Localization of β1-integrins in human cartilage and their role in chondrocyte adhesion to collagen and fibronectin. Exp Cell Res 1993; 207: 235–44PubMedCrossRefGoogle Scholar
  66. 66.
    Takigami S, Takigami M, Phillips GO. Hydration characteristics of the cross-linked hyaluronan derivative hylan. Carbohydr Polym 1993; 22: 153–60CrossRefGoogle Scholar
  67. 67.
    Band P, Goldman A, Barbone K, et al. Intra-articular distribution and residence time of hylan polymers [abstract]. Mater Res Soc 1995: 433Google Scholar
  68. 68.
    Scale D, Wobig M, Wolpert W. Viscosupplementation of osteoarthritis knees with hylan: a treatment schedule study. Curr Ther Res 1994; 55: 220–32CrossRefGoogle Scholar
  69. 69.
    Adams ME. An analysis of clinical studies of the use of cross-linked hyaluronan, hylan, in the treatment of osteoarthritis. J Rheumatol 1993; 20Suppl. 39: 16–8Google Scholar
  70. 70.
    Adams ME, Atkinson MA, Lussier A, et al. The role of viscosupplementation with hylan G-F 20 (Synvisc) in the treatment of osteoarthritis of the knee: a Canadianmulticenter trial comparing hylan G-F 20 alone, hylan G-F 20 with nonsteroidal anti-inflammatory drugs (NSAIDs) and NSAIDs alone. Osteoarthritis Cartilage 1995; 3: 213–26PubMedCrossRefGoogle Scholar
  71. 71.
    Adams ME. Viscosupplementation with hylan vs NSAID therapy: clinical trial experience [abstract]. Osteoarthritis Cartilage 1997; 71Google Scholar
  72. 72.
    Lussier A, Cividino AA, McFarlane CA, et al. Viscosupplementation with hylan for the treatment of osteoarthritis: findings from clinical practice in Canada. J Rheumatol 1996; 23(9): 1579–85PubMedGoogle Scholar
  73. 73.
    Dixon J, Hosie G, on behalf of the Primary Care Rheumatology Society OA knee study Group. Double-blind, double-control comparison of viscosupplementation with Synvisc® against diclofenac and control in knee osteoarthritis [abstract]. Br J Rheumatol 1998; 37Suppl. 1: 155Google Scholar
  74. 74.
    Puttick MPE, Wade JP, Chalmers A, et al. Acute local reactions after intraarticular hylan for osteoarthritis of the knee. J Rheumatol 1995; 22(7): 1311–4PubMedGoogle Scholar
  75. 75.
    Adams ME. Acute local reactions after intraarticular hylan for osteoarthritis of the knee. J Rheumatol 1996; 23(5): 944–5PubMedGoogle Scholar
  76. 76.
    Jones A, Regan M, Ledingham J, et al. Importance of placement of intra-articular steroid injections. BMJ 1993; 307: 1329–30PubMedCrossRefGoogle Scholar
  77. 77.
    Haslock I, MacFarlane D, Speed C. Intra-articular and soft tissue injections: a survey of current practice. Br J Rheumatol 1995; 34: 449–52PubMedCrossRefGoogle Scholar
  78. 78.
    Hollander JL, Jessar RA, Brown EM. Intra-synovial corticosteroid therapy: a decade of use. Bull Rheum Dis 1961; 9(5): 239–40Google Scholar
  79. 79.
    Luzar MJ, Altawi B. Pseudogot following intraarticular of sodium hyaluronate. Arthritis Rheum 1998; 41:939–40PubMedCrossRefGoogle Scholar
  80. 80.
    Maillefert JF, Hirschhorn P, Pascaud F, et al. Acute attack of chondrocalsinosis after an intrarticulate infection of hyaluronan. Rev Rhum Engl Ed 1997; 64: 593–4PubMedGoogle Scholar
  81. 81.
    Anonymous. Hyaluronan injections for osteoarthritis of the knee. Med Lett 1998; 40 (1030): 69–70Google Scholar

Copyright information

© Adis International Limited 2000

Authors and Affiliations

  • Mark E. Adams
    • 1
  • Andre J. Lussier
    • 2
  • Jacques G. Peyron
    • 3
  1. 1.Department of MedicineUniversity of Calgary and McCaig Centre for Joint Injury and Arthritis ResearchCalgaryCanada
  2. 2.University of SherbrookeSherbrookeCanada
  3. 3.Centre de RhumathologieHôpital de la PitiéNeuilly sur SeineFrance

Personalised recommendations