Drug Safety

, Volume 18, Issue 3, pp 171–188

ACE Inhibitor-Induced Angioedema

Incidence, Prevention and Management
  • Wim Vleeming
  • Jan G. C. van Amsterdam
  • Bruno H. Ch. Stricker
  • Dick J. de Wildt
Pharmacoepidemiology

Summary

Available information from 1980 to 1997 on angiotensin converting enzyme (ACE) inhibitor-induced angioedema and its underlying mechanisms are summarised and discussed. The incidence of angioedema is low (0.1 to 0.2%) but can be considered as a potentially life-threatening adverse effect of ACE inhibitor therapy. This adverse effect of ACE inhibitors, irrespective of the chemical structure, can occur early in treatment as well as after prolonged exposure for up to several years. The estimated incidence is quite underestimated. The actual incidence can be far higher because of poorly recognised presentation of angioedema as a consequence of its late onset in combination with usually long term therapy. Also, a spontaneous reporting bias can contribute to an actual higher incidence of this phenomenon. The incidence can be even higher (up to 3-fold) in certain risk groups, for instance Black Americans. Treatment includes immediate withdrawal of the ACE inhibitor and acute symptomatic supportive therapy followed by immediate (and long term) alternative therapy with other classes of drugs to manage hypertension and/or heart failure.

Preclinical and clinical studies for the elucidation of the underlying mechanism(s) of ACE inhibitor-associated angioedema have not generated definite conclusions. It is suggested that immunological processes and several mediator systems (bradykinin, histamine, substance P and prostaglandins) are involved in the pathogenesis of angioedema. A great part of all reviewed reports suggest a relationship between ACE inhibitor-induced angioedema and increased levels of (tissue) bradykinin. However, no conclusive evidence of the role of bradykinin in angioedema has been found and an exclusive role of bradykinin seems unlikely. So far, no clear-cut evidence for an immune-mediated pathogenesis has been found. In addition, ACE gene polymorphism and some enzyme deficiencies are proposed to be involved in ACE inhibitor-induced angioedema. Progress in pharmacogenetic and molecular biological research should throw more light on a possible genetic component in the pathogenesis of ACE inhibitor-associated angioedema.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frohlich E. Angiotensin converting enzyme inhibitors. Hypertension 1989; 13: I125–30PubMedCrossRefGoogle Scholar
  2. 2.
    The Fifth Report of the Joint National Committe on Detection, Evaluation, and Treatment of High Blood Pressure (JNC V). Arch Intern Med 1993; 153: 154–83CrossRefGoogle Scholar
  3. 3.
    The management of hypertension: a consensus statement. Australian Consensus Conference 1993 [see comments]. Med J Aust 1994 Mar 21; 160 Suppl. 21: S1–16Google Scholar
  4. 4.
    VACSGAA. Low-dose captopril for the treatment of mild to moderate hypertension. I. Results of a 14-week trial. Veterans Administration Cooperative Study Group on Antihypertensive Agents. Arch Intern Med 1984; 144: 1947–53CrossRefGoogle Scholar
  5. 5.
    Williams GH. Quality of life and its impact on hypertensive patients. Am J Med 1987; 82: 98–105PubMedCrossRefGoogle Scholar
  6. 6.
    Cooper WD, Sheldon D, Brown D, et al. Post-marketing surveillance of enalapril: experience in 11,710 hypertensive patients in general practice. J R Coll Gen Pract 1987; 37: 346–9PubMedGoogle Scholar
  7. 7.
    Inman WH, Rawson NS, Wilton LV, et al. Postmarketing surveillance of enalapril. I: results of prescription-event monitoring. BMJ 1988; 297: 826–9PubMedCrossRefGoogle Scholar
  8. 8.
    Wood SM, Mann RD, Rawlins MD. Angio-oedema and urticaria associated with angiotensin converting enzyme inhibitors. Br Med J Clin Res 1987; 294: 91–2CrossRefGoogle Scholar
  9. 9.
    Israili ZH, Hall WD. Cough and angioneurotic edema associated with angiotensin-converting enzyme inhibitor therapy: a review of the literature and pathophysiology [see comments]. Ann Intern Med 1992; 117: 234–42PubMedGoogle Scholar
  10. 10.
    Burkhart GA, Brown NJ, Griffin MR, et al. Angiotensin converting enzyme inhibitor associated angioedema: higher risk in blacks than in whites. Pharmacoepidemiol Drug Saf 1996; 5: 149–54PubMedCrossRefGoogle Scholar
  11. 11.
    Brown NJ, Ray WA, Snowden M, et al. Black Americans have an increased rate of angiotensin converting enzyme inhibitor-associated angioedema. Clin Pharmacol Ther 1996 Jul; 60(1): 8–13PubMedCrossRefGoogle Scholar
  12. 12.
    Cohen ML, Kurz KD. Angiotensin converting enzyme inhibition in tissues from spontaneously hypertensive rats after treatment with captopril or MK-421. J Pharmacol Exp Ther 1982; 220: 63–9PubMedGoogle Scholar
  13. 13.
    Dzau VJ. Multiple pathways of angiotensin production in the blood vessel wall: evidence, possibilities and hypotheses. J Hypertens 1989; 7: 933–6PubMedCrossRefGoogle Scholar
  14. 14.
    Unger T, Gohlke P, Ganten D, et al. Converting enzyme inhibitors and their effects on the renin-angiotensin system of the blood vessel wall. J Cardiovasc Pharmacol 1989; 13 Suppl. 3: S8–16PubMedCrossRefGoogle Scholar
  15. 15.
    Omata K, Abe K, Tsunoda K, et al. Role of endogenous angiotensin II and prostaglandins in the antihypertensive mechanism of angiotensin converting enzyme inhibitor in hypertension. Clin Exp Hypertens A 1987; 9: 569–74PubMedCrossRefGoogle Scholar
  16. 16.
    Katayama A, Inaba M, Maruno Y, et al. Effect of captopril or enalapril on renal prostaglandins E2. Prostaglandins 1989; 38: 401–11PubMedCrossRefGoogle Scholar
  17. 17.
    Schror K. Converting enzyme inhibitors and the interaction between kinins and eicosanoids. J Cardiovasc Pharmacol 1990; 15 Suppl. 6: S60–8PubMedGoogle Scholar
  18. 18.
    Guivernau M, Armijo F, Rosas R. Role of sulfhydryl groups in the stimulatory effect of captopril on vascular prostacyclin synthesis. Eur J Pharmacol 1991; 198: 1–6PubMedCrossRefGoogle Scholar
  19. 19.
    Van Heiningen PN, Batink HD, van Zwieten PA. Angiotensin II-induced increase in slowly exchanging 45Ca2+ in relation to contractile responses of rat and guinea-pig aorta. Naunyn Schmiedebergs Arch Pharmacol 1991; 344: 107–13PubMedCrossRefGoogle Scholar
  20. 20.
    Ehlers MR, Riordan JF. Angiotensin-converting enzyme: new concepts concerning its biological role. Biochem 1989; 28: 5311–8CrossRefGoogle Scholar
  21. 21.
    Erdos EG. Angiotensin I converting enzyme and the changes in our concepts through the years. Lewis K. Dahl memorial lecture. Hypertension 1990; 16: 363–70PubMedCrossRefGoogle Scholar
  22. 22.
    Ideishi M, Sasaguri M, Ikeda M, et al. Angiotensin-converting activity of tissue kallikrein. Nephron 1990; 55 Suppl. 1: 62–4PubMedCrossRefGoogle Scholar
  23. 23.
    Fyhrquist F. Clinical pharmacology of the ACE inhibitors. Drugs 1986; 32 Suppl. 5: 33–9PubMedCrossRefGoogle Scholar
  24. 24.
    Ondetti MA. Structural relationships of angiotensin converting-enzyme inhibitors to pharmacologic activity. Circulation 1988; 77: I74–8PubMedGoogle Scholar
  25. 25.
    Cushman DW, Wang FL, Fung WC, et al. Comparisons in vitro, ex vivo, and in vivo of the actions of seven structurally diverse inhibitors of angiotensin converting enzyme (ACE). Br J Clin Pharmacol 1989; 28 Suppl. 2: 115S–30SPubMedCrossRefGoogle Scholar
  26. 26.
    Cushman DW, Wang FL, Fung WC, et al. Differentiation of angiotensin-converting enzyme (ACE) inhibitors by their selective inhibition of ACE in physiologically important target organs. Am J Hypertens 1989; 2: 294–306PubMedGoogle Scholar
  27. 27.
    Quincke H. Uber akutes umschreibenes hautodem. Monatsschr Prakt Dermatol 1882; 1: 129Google Scholar
  28. 28.
    Osler W. Hereditary angioneurotic oedema. Am J Med Sci 1988; 95: 362CrossRefGoogle Scholar
  29. 29.
    Champion RH. Urticaria. In: Rook A, Wilkinson DS, Ebling FJ, editors. Textbook of dermatology. London: Blackwell 1979; 971–9Google Scholar
  30. 30.
    Wilkin JK, Hammond JJ, Kirkendall WM. The captopril-induced eruption. A possible mechanism: cutaneous kinin potentiation. Arch Dermatol 1980; 116: 902–5PubMedCrossRefGoogle Scholar
  31. 31.
    Hedner T, Samuelsson O, Lindholm L, et al. Precipitation of angioedema by antihypertensive drugs. J Hypertens Suppl. 1991 Dec; 9(6): S360–1PubMedCrossRefGoogle Scholar
  32. 32.
    Suarez M, Ho PW, Johnson ES, et al. Angioneurotic edema, agranulocytosis, and fatal septicemia following captopril therapy. Am J Med 1986; 81: 336–8PubMedCrossRefGoogle Scholar
  33. 33.
    Slater EE, Merrill DD, Guess HA, et al. Clinical profile of angioedema associated with angiotensin converting-enzyme inhibition. JAMA 1988; 260: 967–70PubMedCrossRefGoogle Scholar
  34. 34.
    Barna JS, Frable MA. Life-threatening angioedema. Otolaryngol Head Neck Surg 1990; 103: 795–8PubMedGoogle Scholar
  35. 35.
    Ulmer JL, Garvey MJ. Fatal angioedema associated with lisinopril. Ann Pharmacother 1992; 26: 1245–6PubMedGoogle Scholar
  36. 36.
    Oike Y, Ogata Y, Higashi D, et al. Fatal angioedema associated with enalapril. Intern Med 1993 Apr; 32(4): 308–10PubMedCrossRefGoogle Scholar
  37. 37.
    Hedner T, Samuelsson O, Lunde H, et al. Angio-oedema in relation to treatment with angiotensin converting inhibitors. BMJ 1992; 304: 941–5PubMedCrossRefGoogle Scholar
  38. 38.
    Pigman EC, Scott JL. Angioedema in the emergency department: the impact of angiotensin-converting enzyme inhibitors. Am J Emerg Med 1993; 11: 350–4PubMedCrossRefGoogle Scholar
  39. 39.
    Boyd IW. Angio-oedema and ACE inhibitors [letter]. Aust NZ J Med 1995 Dec; 25(6): 746–7CrossRefGoogle Scholar
  40. 40.
    Kostis JB, Shelton B, Gosselin G, et al. Adverse effects of enalapril in the Studies of Left Ventricular Dysfunction (SOLVD). SOLVD Investigators. Am Heart J 1996 Feb; 131(2): 350–5PubMedCrossRefGoogle Scholar
  41. 41.
    Finley CJ, Silverman MA, Nunez AE. Angiotensin-converting enzyme inhibitor-induced angioedema: still unrecognized. Am J Emerg Med 1992; 10: 550–2PubMedCrossRefGoogle Scholar
  42. 42.
    Shionoiri H, Takasaki I, Hirawa N, et al. A case report of angioedema during long-term (66 months) angiotensin converting enzyme inhibition therapy with enalapril. Jpn Circ J 1996 Mar; 60(3): 166–70PubMedCrossRefGoogle Scholar
  43. 43.
    Dyer PD. Late-onset angioedema after interruption of angiotensin converting enzyme inhibitor therapy. J Allergy Clin Immunol 1994 May; 93(5): 947–8PubMedCrossRefGoogle Scholar
  44. 44.
    Nielsen EW, Stenberg PA, Einarsen E, et al. Angioedema associated with ACE inhibitors. Tidsskr Nor Laegeforen 1994; 114: 804–6PubMedGoogle Scholar
  45. 45.
    Maier C. Life-threatening postoperative angioedema following treatment with an angiotensin converting enzyme inhibitor. Anaesthesist 1995; 44: 875–9PubMedCrossRefGoogle Scholar
  46. 46.
    Abrams WB, Davies RO, Ferguson RK. Overview: the role of angiotensin-converting enzyme inhibitors in cardiovascular therapy. Fed Proc 1984; 43: 1314–21PubMedGoogle Scholar
  47. 47.
    Goodfield MJ, Millard LG. Severe cutaneous reactions to captopril. Br Med J Clin Res 1985; 290: 1111CrossRefGoogle Scholar
  48. 48.
    Kallenberg CG. Severe cutaneous reactions to captopril [letter]. BMJ 1985; 290: 1829Google Scholar
  49. 49.
    Irvin JD, Viau JM. Safety profiles of the angiotensin converting enzyme inhibitors captopril and enalapril. Am J Med 1986; 81: 46–50PubMedCrossRefGoogle Scholar
  50. 50.
    Singer DR, Macgregor GA. Angioneurotic oedema associated with two angiotensin converting inhibitors. BMJ 1986; 293: 1243CrossRefGoogle Scholar
  51. 51.
    Chalmers D, Dombey SL, Lawson DH. Post marketing surveillance of captopril (for hypertension): a preliminary report. Br J Clin Pharmacol 1987; 24: 343–9PubMedCrossRefGoogle Scholar
  52. 52.
    Rush JE, Merrill DD. The safety and tolerability of lisinopril in clinical trials. J Cardiovasc Pharmacol 1987; 9 Suppl. 3: S99–107PubMedCrossRefGoogle Scholar
  53. 53.
    Weber MA. Safety issues during antihypertensive treatment with angiotensin converting enzyme inhibitors. Am J Med 1988; 84: 16–23PubMedGoogle Scholar
  54. 54.
    Cameron HA, Higgins TJ. Clinical experience with lisinopril: observations on safety and tolerability. J Hum Hypertens 1989; 3 Suppl. 1: 177–86PubMedGoogle Scholar
  55. 55.
    Gannon TH & Eby TL. Angioedema from angiotensin converting enzyme inhibitors: a cause of upper airway obstruction. Laryngoscope 1990; 100: 1156–60PubMedCrossRefGoogle Scholar
  56. 56.
    Gianos ME, Klaustermeyer WB, Kurohara M, et al. Enalapril induced angioedema. Am J Emerg Med 1990; 8: 124–26PubMedCrossRefGoogle Scholar
  57. 57.
    Maclean D, Ramsay LE, Richardson PJ. Enalapril and nifedipine in the treatment of mild to moderate essential hypertension: a 6 month comparison. Br J Clin Pharmacol 1990; 30: 203–11PubMedCrossRefGoogle Scholar
  58. 58.
    Orfan N, Patterson R, Dykewicz MS. Severe angioedema related to ACE inhibitors in patients with a history of idiopathic angioedema. JAMA 1990; 264: 1287–89PubMedCrossRefGoogle Scholar
  59. 59.
    Seidman MD, Lewandowski CA, Sarpa JR, et al. Angioedema related to angiotensin-converting enzyme inhibitors. Otolaryngol Head Neck Surg 1990; 102: 727–31PubMedGoogle Scholar
  60. 60.
    Candelaria LM, Huttula CS. Angioedema associated with angiotensin-converting enzyme inhibitors. J Oral Maxillofac Surg 1991; 49: 1237–9PubMedCrossRefGoogle Scholar
  61. 61.
    Lanting PJ, Brouwers TM, van Buuren HR, et al. Angioedema caused by enalapril. Ned Tijdschr Geneeskd 1991; 135: 335–7PubMedGoogle Scholar
  62. 62.
    Peacock ME, Brennan WA, Strong SL, et al. Angioedema as a complication in periodontal surgery: report of a case. J Periodontol 1991; 62: 643–5PubMedCrossRefGoogle Scholar
  63. 63.
    Roberts JR, Wuerz RC. Clinical characteristics of angiotensin-converting enzyme inhibitor-induced angioedema [see comments]. Ann Emerg Med 1991; 20: 555–8PubMedCrossRefGoogle Scholar
  64. 64.
    Bielory L, Lee SS, Holland CL, et al. Long-acting ACE inhibitor-induced angioedema. Allergy Proc 1992; 13: 85–7PubMedCrossRefGoogle Scholar
  65. 65.
    Diehl KL, Wernze H. Angioneurotic edema caused by angiotensin-converting enzyme inhibitors [in German]. Dtsch Med Wochenschr 1992; 117: 727–32PubMedCrossRefGoogle Scholar
  66. 66.
    Jain M, Armstrong L, Hall J. Predisposition to and late onset of upper airway obstruction following angiotensin-converting enzyme inhibitor therapy [see comments]. Chest 1992; 102: 871–4PubMedCrossRefGoogle Scholar
  67. 67.
    Nzerue MC. Angioedema complicating lisinopril therapy. Cent Afr J Med 1992; 38: 391–2PubMedGoogle Scholar
  68. 68.
    Rees RS, Bergman J, Ramirez Alexander R. Angioedema associated with lisinopril. Am J Emerg Med 1992; 10: 321–2PubMedCrossRefGoogle Scholar
  69. 69.
    Dobroschke R, Georgi R, Krier C. Acute angioneurotic edema due to ACE inhibitors. Anasthesiol Intensivemedizin Notfallmed Schmerzther 1992; 27: 510–2CrossRefGoogle Scholar
  70. 70.
    Bishop PC, Wisnieski JJ, Christensen J. Recurrent angioedema and urticaria. West J Med 1993 Nov; 159(5): 605–8PubMedGoogle Scholar
  71. 71.
    Thompson T, Frable MA. Drug-induced, life-threatening angioedema revisited. Laryngoscope 1993; 103: 10–2PubMedCrossRefGoogle Scholar
  72. 72.
    Blaine DE, Thompson TE, Frable MA. Angioedema secondary to ACE inhibitors. Va Med Q 1993 Fall; 120(4): 207–8PubMedGoogle Scholar
  73. 73.
    Matsumura M, Haruki K, Kajinami K, et al. Angioedema likely related to angiotensin converting enzyme inhibitors. Intern Med 1993 May; 32(5): 424–6PubMedCrossRefGoogle Scholar
  74. 74.
    Farraye FA, Peppercorn MA. Abdominal pain, angioedema, and angiotensin-converting enzyme inhibitors [letter; comment]. Am J Gastroenterol 1994 Jul; 89(7): 1117–8PubMedGoogle Scholar
  75. 75.
    Jacobs RL, Hoberman LJ, Goldstein HM. Angioedema of the small bowel caused by an angiotensin-converting enzyme inhibitor [see comments]. Am J Gastroenterol 1994 Jan; 89(1): 127–8PubMedGoogle Scholar
  76. 76.
    Pracy JP, McGlashan JA, Walsh RM, et al. Angioedema secondary to angiotensin-converting enzyme inhibitors. J Laryngol Otol 1994; 108: 696–8PubMedCrossRefGoogle Scholar
  77. 77.
    Varma JR, Nixon GA. Angioedema and angiotensin-converting enzyme (ACE) inhibitors. J Am Board Fam Pract 1994; 7: 433–5PubMedGoogle Scholar
  78. 78.
    Bauwens LJ, Copper MP, Schmidt JT. Life-threatening angioedema as a side effect of angiotensin-converting-enzyme (ACE) inhibitors. Ned Tijdschr Geneeskd 1995; 139: 674–77PubMedGoogle Scholar
  79. 79.
    Epeldo Gonzalo F, Boada Montagut L, Vecina ST. Angioedema caused by ramipril [letter]. Ann Pharmacother 1995; 29(4): 431–2PubMedGoogle Scholar
  80. 80.
    Kozel MM, Mekkes JR, Bos JD. Increased frequency and severity of angio-oedema related to long-term therapy with angiotensin-converting enzyme inhibitor in two patients. Clin Exp Dermatol 1995; 20: 60–1PubMedCrossRefGoogle Scholar
  81. 81.
    Kuo DC, Barish RA. Isolated uvular angioedema associated with ACE inhibitor use. J Emerg Med 1995; 13: 327–30PubMedCrossRefGoogle Scholar
  82. 82.
    Waldfahrer F, Leuwer A, Krause J, et al. Severe oropharyngeal angioedema caused by ACE inhibitor. A case report [in German]. HNO 1995; 43: 35–8PubMedGoogle Scholar
  83. 83.
    Frontera Y, Piecuch JF. Multiple episodes of angioedema associated with lisinopril, an ACE inhibitor. J Am Dent Assoc 1995 Feb; 126(2): 217–20PubMedGoogle Scholar
  84. 84.
    Johansen EC, Johansen JB, Dossing H. Angioneurotic edema in relation to therapeutic use of angiotensin-converting enzyme inhibitor. Ugeskr Laeger 1996; 158: 59–60PubMedGoogle Scholar
  85. 85.
    Kind B, Fattinger K, Krahenbuhl S, et al. Drug-induced angioedema. Schweiz Rundsch Med Prax 1996 Apr 23; 85(17): 567–9Google Scholar
  86. 86.
    Langauer Messmer S, Schiller P, Bircher AJ. Glottic angioedema, ciprofloxacin, and ACE inhibitors [letter]. Postgrad Med J 1996 Jun; 72(848): 383PubMedCrossRefGoogle Scholar
  87. 87.
    Mullins RJ, Shanahan TM, Dobson RT. Viceral angioedema related to treatment with ACE Inhibitor. Med J Aust 1996; 165(6): 319–21PubMedGoogle Scholar
  88. 88.
    O’Mara NB, OMara EM. Delayed onset of angioedema with angiotensin converting enzyme inhibitors: case report and review of the literature. Pharmacotherapy 1996; 16(4): 675–9PubMedGoogle Scholar
  89. 89.
    Ogbureke KU, Cruz C, Johnson JV, et al. Perioperative angioedema in a patient on long-term angiotensin-converting enzyme (ACE)-inhibitor therapy. J Oral Maxillofac Surg 1996 Jul; 54(7): 917–20PubMedCrossRefGoogle Scholar
  90. 90.
    Pavletic A. Angioedema of the intestine [letter]. N Engl J Med 1996; 335(20): 1534PubMedCrossRefGoogle Scholar
  91. 91.
    Kolenc KM, Dobbin KR. Angioedema caused by ACE inhibitor mistaken for allergic reaction. J Emerg Nurs 1996 Jun; 22(3): 228–31PubMedCrossRefGoogle Scholar
  92. 92.
    Abdelmalek MF, Douglas DD. Lisinopril-induced isolated visceral angioedema: review of ACE-inhibitor-induced small bowel angioedema. Dig Dis Sci 1997 Apr; 42(4): 847–50PubMedCrossRefGoogle Scholar
  93. 93.
    Weiner JM. Failure to recognise the association of life-threatening angio-oedema and angiotensin-converting enzyme inhibitor therapy [see comments]. Aust NZ J Med 1995 Jun; 25(3): 241–2CrossRefGoogle Scholar
  94. 94.
    McElligott S, Perlroth M, Raish L. Angioedema after substituting lisinopril for captopril [letter]. Ann Intern Med 1992; 116: 426–7PubMedGoogle Scholar
  95. 95.
    Brown NJ, Nadeau JH. Does race predispose to angiotensin-associated angioneurotic edema? [letter; comment] Ann Intern Med 1993 Dec 15; 119(12): 1224PubMedGoogle Scholar
  96. 96.
    Gainer JV, Nadeau JH, Ryder D, et al. Increased sensitivity to bradykinin among African Americans. J Allergy Clin Immunol 1996 Aug; 98(2): 283–7PubMedCrossRefGoogle Scholar
  97. 97.
    Chin HL, Buchan DA. Severe angioedema after long-term use of an angiotensin-converting enzyme inhibitor. Ann Intern Med 1990; 112: 312–3PubMedGoogle Scholar
  98. 98.
    Jain M, Amstrong L, Hall J. Upper airway obstruction following angiotensine-converting enzyme inhibitor therapy [letter]. Chest 1993; 104: 1311Google Scholar
  99. 99.
    Heyman WR. Acquired angioedema. J Am Acad Dermatol 1997; 36: 611–5CrossRefGoogle Scholar
  100. 100.
    Ono H, Kawaguchi K, Ishii N, et al. A point mutation in Exon 7 of the C1 inhibitor gene causing Type I hereditary angioedema. Hum Genet 1996; 98(4): 452–53PubMedCrossRefGoogle Scholar
  101. 101.
    Bissler JJ, Cicardi M, Donaldson VH, et al. A cluster of mutations within a short triplet repeat in the C1 inhibitor gene. Proc Natl Acad Sci USA 1994 Sep 27; 91(20): 9622–5PubMedCrossRefGoogle Scholar
  102. 102.
    Zahedi R, Aulak KS, Eldering E, et al. Characterization of CI inhibitor TA: a dysfunctional C1INH with deletion of Lysine 251. J Biol Chem 1996; 271(39): 24307–12PubMedCrossRefGoogle Scholar
  103. 103.
    Ildiz F. Pharyngeal angioedema from oxygen [letter]. Aviat Space Environ Med 1994 Dec; 65(12): 1160PubMedGoogle Scholar
  104. 104.
    Ocejo Vinyals JG, Leyva Cobian F, Fernandez Luna JL. A mutation unique in serine protease inhibitors (serpins) identified in a family with type II hereditary angioneurotic edema. Mol Med 1995 Sep; 1(6): 700–5PubMedGoogle Scholar
  105. 105.
    Chang WSW, Whisstock J, Hopkins PCR, et al. Importance of the release of Strand 1C to the polymerization mechanism of inhibitory serpins. Protein Sci 1997; 6(1): 89–98PubMedCrossRefGoogle Scholar
  106. 106.
    Nielsen EW, Johanson HT, Hogasen K, et al. Activation of the complement, coagulation, fibrinolytic and kallikrein kinin systems during attacks of hereditary angioedema. Immunopharmacology 1996; 33(1–3): 359–60PubMedCrossRefGoogle Scholar
  107. 107.
    Cugno M, Cicardi M, Coppola R, et al. Activation of Factor XII and cleavage of high molecular weight kininogen during acute attacks in hereditary and acquired C1 inhibitor deficiencies. Immunopharmacology 1996; 33(1–3): 361–4PubMedCrossRefGoogle Scholar
  108. 108.
    Fawaz Estrup F. Human parvovirus infection: rheumatic manifestations, angioedema, C1 esterase inhibitor deficiency, ANA positivity, and possible onset of systemic lupus erythematosus. J Rheumatol 1996 Jul; 23(7): 1180–5PubMedGoogle Scholar
  109. 109.
    Schaefer RM, Fink E, Schaefer L, et al. Role of bradykinin in anaphylactoid reactions during hemodialysis with AN69 dialysers. Am J Nephrology 1993; 13: 473–7CrossRefGoogle Scholar
  110. 110.
    Schaefer RM, Schaefer L, Horl WH. Anaphylactoid reaction during hemodialysis. Clin Nephrology 1994; 42: S44–S47Google Scholar
  111. 111.
    Bi CK, Soltani K, Sloan JB, et al. Tissue-specific autoantibodies induced by captopril [abstract]. Clin Res 1987; 35: 922AGoogle Scholar
  112. 112.
    Couture R, Regoli D. Inactivation of substance P and its C-terminal fragments in rat plasma and its inhibition by captopril. Can J Physiol Pharmacol 1981; 59: 621–5PubMedCrossRefGoogle Scholar
  113. 113.
    Cascieri MA, Bull HG, Mumford RA, et al. Carboxyl-terminal tripeptidyl hydrolysis of substance P by purified rabbit lung angiotensin-converting enzyme and the potentiation of substance P activity in vivo by captopril and MK-422. Mol Pharmacol 1984; 25: 287–93PubMedGoogle Scholar
  114. 114.
    Anderson MW, deShazo RD. Studies of the mechanism of angiotensin-converting enzyme (ACE) inhibitor-associated angioedema: the effect of an ACE inhibitor on cutaneous responses to bradykinin, codeine, and histamine. J Allergy Clin Immunol 1990; 85: 856–8PubMedCrossRefGoogle Scholar
  115. 115.
    Andersson RGG, Persson K. ACE inhibitors and their influence on inflammation, bronchial reactivity and cough. Eur Heart J 1994; Suppl. C: 52-6Google Scholar
  116. 116.
    Gelfand JA, Boss GR, Conley CL, et al. Acquired C1 esterase inhibitor deficiency and angioedema: a review. Med Baltimore 1979; 58: 321–8Google Scholar
  117. 117.
    Megerian CA, Arnold JE, Berger M. Angioedema: 5 years’ experience, with a review of the disorder’s presentation and treatment. Laryngoscope 1992; 102: 256–60PubMedCrossRefGoogle Scholar
  118. 118.
    Yeung JH, Coleman JW, Park BK. Drug-protein conjugates-IX. Immunogenicity of captopril-protein conjugates. Biochem Pharmacol 1985; 34: 4005–12PubMedCrossRefGoogle Scholar
  119. 119.
    Coleman JW, Yeung JH, Roberts DH, et al. Drug-specific antibodies in patients receiving captopril. Br J Clin Pharmacol 1986; 22: 161–5PubMedCrossRefGoogle Scholar
  120. 120.
    Navis GJ, de Jong PE, Kallenberg CG, et al. Absence of cross-reactivity between captopril and enalapril [letter]. Lancet 1984; I: 1017CrossRefGoogle Scholar
  121. 121.
    Gavras I, Gavras H. Captopril and enalapril [letter]. Ann Intern Med 1983; 98: 556–7PubMedGoogle Scholar
  122. 122.
    Smith CIE, Hammarstrom L. Immunologic abnormalities induced by D-penicillamine. Pseudo Allergic Reactions, Basel: Karger, 1985: 135–80Google Scholar
  123. 123.
    Hammarstrom L, Smith CI, Berg CI. Captopril-induced IgA deficiency [letter]. Lancet 1991; 337: 436PubMedCrossRefGoogle Scholar
  124. 124.
    Richardson D, Bane B, Proctor J, et al. Enalapril in the treatment of moderate hypertension [abstract no. 735]. 10th Scientific Meeting of the International Society of Hypertension. 1984; Interlaken, SwitzerlandGoogle Scholar
  125. 125.
    Davies RO, Irvin JD, Kramsch DK, et al. Enalapril worldwide experience. Am J Med 1984; 77: 23–35PubMedCrossRefGoogle Scholar
  126. 126.
    Omae T, Kawano Y, Yoshida K. Side effects and metabolic effects of converting enzyme inhibitors. Clin Exp Hypertens A 1987; 9: 635–42PubMedCrossRefGoogle Scholar
  127. 127.
    Edwards CR, Padfield PL. Angiotensin-converting enzyme inhibitors: past, present, and bright future. Lancet 1985; I: 30–4CrossRefGoogle Scholar
  128. 128.
    Furness PN, Goodfield MJ, MacLennan KA, et al. Severe cutaneous reactions to captopril and enalapril; histological study and comparison with early mycosis fungoides. J Clin Pathol 1986; 39: 902–7PubMedCrossRefGoogle Scholar
  129. 129.
    Caspritz G, Alpermann HG, Schleyerbach R. Influence of the new angiotensin converting enzyme inhibitor ramipril on several models of acute inflammation and the adjuvant arthritis in the rat. Arzneimittelforschung 1986; 36: 1605–8PubMedGoogle Scholar
  130. 130.
    Frank MM, Gelfand JA, Atkinson JP. Hereditary angioedema: the clinical syndrome and its management. Ann Intern Med 1976; 84: 580–93PubMedGoogle Scholar
  131. 131.
    Frank MM. C1 esterase inhibitor: clinical clues to the pathophysiology of angioedema [editorial]. J Allergy Clin Immunol 1986; 78: 848–50PubMedCrossRefGoogle Scholar
  132. 132.
    Quastel M, Harrison R, Cicardi M, et al. Behavior in vivo of normal and dysfunctional C1 inhibitor in normal subjects and patients with hereditary angioneurotic edema. J Clin Invest 1983; 71: 1041–6PubMedCrossRefGoogle Scholar
  133. 133.
    Donaldson VH, Ratnoff OD, Dias Da Silva W, et al. Permeability-increasing activity in hereditary angioneurotic edema plasma. II. Mechanism of formation and partial characterization. J Clin Invest 1969; 48: 642–53PubMedCrossRefGoogle Scholar
  134. 134.
    Ratnoff OD, Pensky J, Ogston D, et al. The inhibition of plasmin, plasma kallikrein, plasma permeability factor, and the C′1r subcomponent of the first component of complement by serum C′1 esterase inhibitor. J Exp Med 1969; 129: 315–31PubMedCrossRefGoogle Scholar
  135. 135.
    Roitt I, Brostoff J, Male D. Complement. In: Walport M, editor. Immunology. London: Gower Medical Publishing, 1989Google Scholar
  136. 136.
    Schreiber AD, Zweiman B, Atkins P, et al. Acquired angioedema with lymphoproliferative disorder: association of C1 inhibitor deficiency with cellular abnormality. Blood 1976; 48: 567–80PubMedGoogle Scholar
  137. 137.
    Geha RS, Quinti I, Austen KF, et al. Acquired C1-inhibitor deficiency associated with antiidiotypic antibody to monoclonal immunoglobulins. N Engl J Med 1985; 312: 534–40PubMedCrossRefGoogle Scholar
  138. 138.
    Jackson J, Feighery C. Autoantibody-mediated acquired deficiency of C1 inhibitor [letter]. N Engl J Med 1988; 318: 122–3PubMedCrossRefGoogle Scholar
  139. 139.
    Spath PJ, Wuthrich R, Matter L, et al. Acquired angioedema and anti-C1-inhibitorbody [letter]. Arch Intern Med 1989; 149: 1213–6PubMedCrossRefGoogle Scholar
  140. 140.
    Ishii N, Ono H, Kawaguchi K, et al. Hereditary angioedema caused by a point mutation of the Exon 7 in the C1 inhibitor gene. Br J Dermatol 1996; 134(4): 731–3PubMedCrossRefGoogle Scholar
  141. 141.
    Hentges F, Humbel R, Dicato M, et al. Acquired C1 esteraseinhibitor deficiency: case report with emphasis on complement and kallikrein activation during two patterns of clinical manifestations. J Allergy Clin Immunol 1986; 78: 860–7PubMedCrossRefGoogle Scholar
  142. 142.
    Erdos EG. Kinases in bradykinin, kallidin and kallikrein. In: Erdos EG, editor. Handbook of experimental pharmacology. Berlin: Springer-Verlag, 1979: 427–87Google Scholar
  143. 143.
    Regoli D, Barabe J. Pharmacology of bradykinin and related kinins. Pharmacol Rev 1980; 32: 1–46PubMedGoogle Scholar
  144. 144.
    Bonner G, Preis S, Schunk U, et al. Hemodynamic effects of bradykinin on systemic and pulmonary circulation in healthy and hypertensive humans. J Cardiovasc Pharmacol 1990; 15 Suppl. 6: S46–56PubMedGoogle Scholar
  145. 145.
    Brown NJ, Ryder D, Gainer JV, et al. Differential effects of angiotensin converting enzyme inhibitors on the vasodepressor and prostacyclin responses to bradykinin. J Pharmacol Exp Ther 1996 Nov; 279(2): 703–12PubMedGoogle Scholar
  146. 146.
    Oyvin IA, Gaponyuk PY, Volodin VM, et al. Mechanisms of blood vessel permeability derangement under the influence of permeability factors (histamine, serotonin, kinins) and inflammatory agents. Biochem Pharmacol 1972; 21: 89–95PubMedCrossRefGoogle Scholar
  147. 147.
    Kaplan CG. Allergy, Principles and practice. St Louis: C V Mosby Company, 1988; 1377–91Google Scholar
  148. 148.
    D’Orleans Juste P, de Nucci G, Vane JR. Kinins act on B1 or B2 receptors to release conjointly endothelium-derived relaxing factor and prostacyclin from bovine aortic endothelial cells. Br J Pharmacol 1989; 96: 920–6PubMedCrossRefGoogle Scholar
  149. 149.
    Tiffany CW, Burch RM. Bradykinin stimulates tumor necrosis factor and interleukin-1 release from macrophages. FEBS Letters 1989; 247: 189–92PubMedCrossRefGoogle Scholar
  150. 150.
    Wiemer G, Wirth K. Production of cyclic GMP via activation of B1 and B2 kinin receptors in cultured bovine aortic endothelial cells. J Pharmacol Exp Ther 1992; 262: 729–33PubMedGoogle Scholar
  151. 151.
    Ferner RW, Simpson JM, Rawlins MD. Effects of intradermal bradykinin after inhibition of angiotensine converting enzyme. Br Med J (Clin Res Ed) 1987; 294: 1119–20CrossRefGoogle Scholar
  152. 152.
    Fuller RW, Dixon CM, Cuss FM, et al. Bradykinin-induced bronchoconstriction in humans: mode of action. Am Rev Respir Dis 1987; 135: 176–80PubMedGoogle Scholar
  153. 153.
    Ferner RE, Wilson D, Paterson JR, et al. The effects of intradermal bradykinin are potentiated by angiotensin converting inhibitors in hypertensive patients. Br J Clin Pharmacol 1989; 27: 337–42PubMedCrossRefGoogle Scholar
  154. 154.
    Jouquey S, Brown NL, Fichelle J, et al. Comparison of the effects of the ace inhibitors trandolapril and enalapril on phlogogen induced foot pad oedema in the rat. Agents Actions 1988; 24: 297–302PubMedCrossRefGoogle Scholar
  155. 155.
    Tielemans C, Madhoun P, Lenaers M, et al. Anaphylactoid reactions during hemodialysis on AN69 membranes in patients receiving ACE inhibitors. Kidney Int 1990; 38: 982–4PubMedCrossRefGoogle Scholar
  156. 156.
    Brunet P, Jaber K, Berland Y, et al. Anaphylactoid reactions during hemodialysis and hemofiltration: role of associating AN69 membrane and angiotensin I-converting enzyme inhibitors. Am J Kidney Dis 1992; 19: 444–7PubMedGoogle Scholar
  157. 157.
    Verresen L, Flink E, Lemke HD, et al. Bradykinin is a mediator of anaphylactoid reactions during dialysis with AN69 membranes. Kidney Int 1994; 45: 1497–503PubMedCrossRefGoogle Scholar
  158. 158.
    Margoles J. The relationship of coagulation of plasma and release of peptides. Ann NY Acad Sci 1963; 104: 133–45CrossRefGoogle Scholar
  159. 159.
    Griffin JH, Cochrane CG. Mechanisms for the involvement of high molecular weight kininogen in surface-dependent reactions of Hageman factor. Proc Natl Acad Sci USA 1976; 73: 2554–8PubMedCrossRefGoogle Scholar
  160. 160.
    Schwarzbeck A, Wittenmeier KW, Hallfritzsch U. Anaphylactoid reactions, angiotensin-converting enzyme inhibitors and extracorporeal hemotherapy [letter]. Nephron 1993; 65: 499–500PubMedCrossRefGoogle Scholar
  161. 161.
    Pegues DA, Beck Sague CM, Woollen SW, et al. Anaphylactoid reactions associated with reuse of hollow-fiber hemodialyzers and ACE inhibitors. Kidney Int 1992; 42: 1232–7PubMedCrossRefGoogle Scholar
  162. 162.
    Kroon AA, Mol AJ, Stalenhoef AF. ACE inhibitors and LDL-apheresis with dextran sulphate adsorbtion [letter]. Lancet 1992; 340: 1476PubMedCrossRefGoogle Scholar
  163. 163.
    Keller C, Grutzmacher P, Bahr F, et al. LDL-apheresis with dextran sulphate and anaphylactoid reactions to ACE inhibitors [letter; comment]. Lancet 1993; 341: 60–1PubMedCrossRefGoogle Scholar
  164. 164.
    Bork K, Witzke G, Artmann K, et al. Interaction between C1-INA, coagulation, fibrinolysis and kinin system in hereditary angioneurotic edema (HANE) and urticaria. Arch Dermatol Res 1984; 276: 375–80PubMedCrossRefGoogle Scholar
  165. 165.
    Barrow SE, Dollery CT, Heavey DJ, et al. Effect of vasoactive peptides on prostacyclin synthesis in man. Br J Pharmacol 1986; 87: 243–7PubMedCrossRefGoogle Scholar
  166. 166.
    Varonier HS, Panzani R. The effect of inhalations of bradykinin on healthy and atopic (asthmatic) children. Int Arch Allergy Immnol 1968; 34: 293–6CrossRefGoogle Scholar
  167. 167.
    Greenberg R, Osman Jr GH, O’Keefe EH, et al. The effects of captopril (SQ 14,225) on bradykinin-induced bronchoconstriction in the anesthetized guinea pig. Eur J Pharmacol 1979; 57: 287–94PubMedCrossRefGoogle Scholar
  168. 168.
    Marceau F, Gendreau M, Barabe J, et al. The degradation of bradykinin (BK) and of des-Arg9-BK in plasma. Can J Physiol Pharmacol 1981; 59: 131–8PubMedCrossRefGoogle Scholar
  169. 169.
    Johnston CI, Yasujima M, Clappison BH. The kallikrein-kinin system and angiotensin converting enzyme inhibition in hypertension. In: Horovitz Z P, editor. Angiotensin converting inhibitors: mechanisms of action and clinical implications. Baltimore: Urban & Schwarzenberg, 1981; 123–39Google Scholar
  170. 170.
    Johnston CI, Clappison BH, Anderson WP, et al. Effect of angiotensin-converting enzyme inhibition on circulating and local kinin levels. Am J Cardiol 1982; 49: 1401–4PubMedCrossRefGoogle Scholar
  171. 171.
    Stanziola L, Greene LJ, Santos RA. Effect of long-term angiotensin converting enzyme inhibition on bradykinin metabolism in rats [abstract]. Hypertension 1989; 13: 516–7Google Scholar
  172. 172.
    Larochelle P, Genest J, Kuchel O, et al. Effect of captopril (SQ 14225) on blood pressure, plasma renin activity and angiotensin I converting enzyme activity. Can Med Assoc J 1979; 121: 309–16PubMedGoogle Scholar
  173. 173.
    Unger T, Schull B, Hubner D, et al. Plasma-converting enzyme activity does not reflect effectiveness of oral treatment with captopril. Eur J Pharmacol 1981; 72: 255–9PubMedCrossRefGoogle Scholar
  174. 174.
    Fyhrquist F, Gronhagen Riska C, Hortling L, et al. The induction of angiotensin converting enzyme by its inhibitors. Clin Exp Hypertens A 1983; 5: 1319–30PubMedCrossRefGoogle Scholar
  175. 175.
    Rodriguez FJ, Gil V, del Carmen Beneyto M, et al. Effects of captopril once daily on blood pressure and angiotensin converting enzyme in hypertensive patients. Postgrad Med J 1986; 62 Suppl. 1: 94–6PubMedGoogle Scholar
  176. 176.
    Umeki S, Ohga R, Ono S, et al. Angiotensin I level and sporadic hypokalemic periodic paralysis. Arch Intern Med 1986; 146: 1956–60PubMedCrossRefGoogle Scholar
  177. 177.
    Umeki S, Terao A, Sawayama T. A new syndrome: angiotensin-converting enzyme dysfunction syndrome: differential diagnosis and pathogenesis — case reports. Angiology 1988; 39: 58–67PubMedCrossRefGoogle Scholar
  178. 178.
    Auchincloss JH, Streeten DH, Gilbert R, et al. Dyspnea in patients with hyperbradykininism and excessive venous pooling. Am J Med 1986; 81: 260–6PubMedCrossRefGoogle Scholar
  179. 179.
    Burrell LM. A risk-benefit assesment of losartan potassium in the treatment of hypertension. Drug Saf 1997; 16(1): 56–65PubMedCrossRefGoogle Scholar
  180. 180.
    Burrell M, Johnston CI. Angiotensin II receptor antagonists: potential in elderly patients with cardiovascular disease. Drugs Aging 1997; 10(6): 421–34PubMedCrossRefGoogle Scholar
  181. 181.
    Acker CG, Greenberg A. Angioedema induced by the angiotensin II blocker losartan [letter]. N Engl J Med 1995 Dec 7; 333(23): 1572PubMedCrossRefGoogle Scholar
  182. 182.
    Boxer M. Accupril and Cozaar induced angioedema in the same patient. J Allergy Clin Immunol 1996; 98(2): 471PubMedCrossRefGoogle Scholar
  183. 183.
    Weir MR. Angiotensin II Receptor antagonists: a new class of antihypertensive agents. Am Fam Physician 1996; 53(2): 589–94PubMedGoogle Scholar
  184. 184.
    Sharma PK, Yium JJ. Angioedema associated with angiotensin II receptor antagonist losartan. South Med J 1997 May; 90(5): 552–3PubMedCrossRefGoogle Scholar
  185. 185.
    Andersson RGG, Karlber BE, Lindgren BR, et al. Enalapril, but not cilazaprilat increases inflammatory skin reactions in guinea pigs. Drugs 1991; 41 Suppl. 1: 48–53PubMedCrossRefGoogle Scholar
  186. 186.
    Lindgren BR, Anderson CD, Andersson RG. Potentiation of inflammatory reactions in guinea-pig skin by an angiotensin converting enzyme inhibitor (MK 422). Eur J Pharmacol 1987; 135: 383–7PubMedCrossRefGoogle Scholar
  187. 187.
    Foreman JC. Neuropeptides and the pathogenesis of allergy. Allergy 1987; 42: 1–11PubMedCrossRefGoogle Scholar
  188. 188.
    Rosenqvist U, Persson K, Lindgren BR, et al. Effects of cilazaprilat and enalaprilat on experimental dermatitis in guinea pigs. Pharmacol Toxicol 1991; 68: 404–7PubMedCrossRefGoogle Scholar
  189. 189.
    Kramer HJ, Glanzer K, Meyer Lehnert H, et al. Kinin- and non-kinin-mediated interactions of converting enzyme inhibitors with vasoactive hormones. J Cardiovasc Pharmacol 1990; 15 Suppl. 6: S91–8PubMedGoogle Scholar
  190. 190.
    Mathews KP, Pan PM, Gardner NJ, et al. Familial carboxypeptidase N deficiency. Ann Intern Med 1980; 93: 443–5PubMedGoogle Scholar
  191. 191.
    Vaith P, Bender K, Peter HH. Angioneurotic edema in hereditary alpha-1-antitrypsin deficiency. Immun Infekt 1991; 19: 27–9PubMedGoogle Scholar
  192. 192.
    Cambien F, Alhenc Gelas F, Herbeth B, et al. Familial resemblance of plasma angiotensin-converting enzyme level: the Nancy Study. Am J Hum Genet 1988; 43: 774–80PubMedGoogle Scholar
  193. 193.
    Alhenc-Gelas F, Cambien F, Herbeth B, et al. Distribution and genetic control of plasma angiotensin I-converting enzyme levels in man [abstract]. Am J Hum Hypertens. 1988; 1: 87AGoogle Scholar
  194. 194.
    Rigat B, Hubert C, Alhenc Gelas F, et al. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 1990; 86: 1343–6PubMedCrossRefGoogle Scholar
  195. 195.
    Yeo WW, Ramsay LE, Morice AH. ACE inhibitor cough: a genetic link [letter]? Lancet 1991; 337: 187PubMedCrossRefGoogle Scholar
  196. 196.
    Chan WK, Chan TY, Luk WK, et al. A high incidence of cough in Chinese subjects treated with angiotensin converting enzyme inhibitors [letter]. Eur J Clin Pharmacol 1993; 44: 299–300PubMedCrossRefGoogle Scholar
  197. 197.
    Furuya K, Yamaguchi E, Hirabayashi T, et al. Angiotensin-I-converting enzyme gene polymorphism and susceptibility to cough [letter] [see comments]. Lancet 1994; 343: 354PubMedCrossRefGoogle Scholar
  198. 198.
    Lee EJ. The angiotensin 1-converting enzyme genetic polymorphism is associated with altered substrate affinity. Pharmacogenetics 1994; 4: 101–3PubMedCrossRefGoogle Scholar
  199. 199.
    Tiret L, Rigat B, Visvikis S, et al. Evidence, from combined segregation and linkage analysis, that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACE levels. Am J Hum Genet 1992; 51: 197–205PubMedGoogle Scholar
  200. 200.
    Chadwick IG, Yeo WW, Higgins KS, et al. ACE inhibitors, cough, and genetics [letter; comment]. Lancet 1994; 343: 740–1PubMedCrossRefGoogle Scholar
  201. 201.
    Kreft Jais C, Laforest L, Bonnardeaux A, et al. ACE inhibitors, cough, and genetics [letter; comment]. Lancet 1994; 343: 740PubMedCrossRefGoogle Scholar
  202. 202.
    Cambien F, Poirier O, Lecerf L, et al. Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction [see comments]. Nature 1992; 359: 641–4PubMedCrossRefGoogle Scholar
  203. 203.
    Tiret L, Bonnardeaux A, Poirier O, et al. Synergistic effects of angiotensin-converting enzyme and angiotensin-II type 1 receptor gene polymorphisms on risk of myocardial infarction [see comments]. Lancet 1994; 344: 910–3PubMedCrossRefGoogle Scholar
  204. 204.
    Zee RY, Lou YK, Griffiths LR, Morris BJ. Association of a polymorphism of the angiotensin I-converting enzyme gene with essential hypertension. Biochem Biophys Res Commun 1992; 184: 9–15PubMedCrossRefGoogle Scholar
  205. 205.
    Morris BJ, Zee RY, Ying LH, et al. Independent, marked associations of alleles of the insulin receptor and dipeptidyl carboxypeptidase-I genes with essential hypertension. Clin Sci (Colch) 1993; 85: 189–95Google Scholar
  206. 206.
    Swartz SL, Williams GH. Angiotensin-converting enzyme inhibition and prostaglandins. Am J Cardiol 1982; 49: 1405–9PubMedCrossRefGoogle Scholar
  207. 207.
    Coleridge HM, Coleridge JC, Ginzel KH, et al. Stimulation of ‘irritant’ receptors and afferent C-fibres in the lungs by prostaglandins. Nature 1976; 451-3Google Scholar
  208. 208.
    Le Jeunne C, Biour M, Lowenstein W, et al. Cough provoked by angiotensin-converting enzyme inhibitors: effect of non-steroidal anti-inflammatory agents. Rev Mal Respir 1988; 5: 645–7PubMedGoogle Scholar
  209. 209.
    Gilchrist NL, Richards AM, March R, et al. Effect of sulindac on angiotensin converting enzyme inhibitor-induced cough: randomised placebo-controlled double-blind cross-over study [see comments]. J Hum Hypertens 1989; 3: 451–5PubMedGoogle Scholar
  210. 210.
    McEwan JR, Choudry NB, Fuller RW. The effect of sulindac on the abnormal cough reflex associated with dry cough. J Pharmacol Exp Ther 1990; 255: 161–4PubMedGoogle Scholar
  211. 211.
    Fogari R, Zoppi A, Tettamanti F, et al. Effects of nifedipine and indomethacin on cough induced by angiotensin-converting enzyme inhibitors: a double-blind, randomized, cross-over study. J Cardiovasc Pharm 1992; 19: 670–3Google Scholar

Copyright information

© Adis International Limited 1998

Authors and Affiliations

  • Wim Vleeming
    • 1
  • Jan G. C. van Amsterdam
    • 1
  • Bruno H. Ch. Stricker
    • 2
  • Dick J. de Wildt
    • 1
    • 3
  1. 1.National Institute of Public Health and the EnvironmentBilthovenThe Netherlands
  2. 2.Department of Epidemiology and BiostatisticsErasmus UniversityRotterdamThe Netherlands
  3. 3.Rudolf Magnus Institute for NeurosciencesUtrecht UniversityUtrechtThe Netherlands
  4. 4.Laboratory of Health Effects ResearchNational Institute of Public Health and the EnvironmentBilthovenThe Netherlands

Personalised recommendations