Drug Safety

, Volume 15, Issue 4, pp 261–273 | Cite as

Drug Interactions with Neuromuscular Blockers

  • Stanley Feldman
  • Lakshman Karalliedde
Review Article Drug Experience


Drugs administered to patients undergoing anaesthesia may complicate the use of the neuromuscular blockers that are given to provide good surgical conditions.

The various sites of interaction include actions on motor nerve conduction and spinal reflexes, acetylcholine (ACh) synthesis, mobilisation and release, sensitivity of the motor end plate to ACh and the ease of propagation of the motor action potential. In addition, many drugs affect the pharmacokinetics of neuromuscular blockers, especially as most drugs depend to a greater or lesser extent upon renal excretion.

The clinically significant interaction between nondepolarisers and depolarisers may be due to blockade of the pre-synaptic nicotinic receptors by the depolarisers, leading to decreased ACh mobilisation and release. Synergism between nondepolarisers probably results from post-synaptic receptor mechanisms. Volatile anaesthetic agents affect the sensitivity of the motor end-plate (post-synaptic receptor blockade) in addition to having effects on pre-synaptic nicotinic function. The effects of nondepolarisers are likely to be potentiated and their action prolonged by large doses of local anaesthetics due to depression of nerve conduction, depression of ACh formation, mobilisation and release, decreases in post-synaptic receptor channel opening times and reductions in muscular contraction.

Most antibacterials have effects on pre-synaptic mechanisms. Procainamide and quinidine principally block nicotinic receptor channels. Magnesium has a marked inhibitory effect on ACh release. Calcium antagonists could theoretically interfere with neurotransmitter release and muscle contractility. Phenytoin and lithium decrease ACh release, whilst corticosteroids and furosemide (frusemide) tend to increase the release of the transmitter. Ecothiopate, tacrine, organophosphates, propanidid, metoclopramide and bambuterol depress cholinesterase activity and prolong the duration of the neuromuscular block.

The probability of clinically significant interactions increases in patients receiving several drugs with possible effects on neuromuscular transmission and muscle contraction.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bowman WC, editor. Pharmacology of neuromuscular function. London: Butterworth, 1990Google Scholar
  2. 2.
    Feldman SA, England AJ. Neuromuscular function and block. In: Wood M, editor. Curr Opin Anaesthesiol 1995; 4: 351–6CrossRefGoogle Scholar
  3. 3.
    Riker WF, Wescoe WC. The pharmacology of Flaxedil with observations on certain analogues. Ann NY Acad Sci 1951; 54: 373–94PubMedCrossRefGoogle Scholar
  4. 4.
    Lebowitz PW, Ramsey FH, Savarese JJ, et al. Potentiation of neuromuscular blockade in man produced by combinations of pancuronium and metocurine or pancuronium and d-tubo-curarine. Anesth Analg 1980; 59(8): 604–9PubMedCrossRefGoogle Scholar
  5. 5.
    Martyn JA, Leibel WS, Matteo RS. Competitive non specific binding does not explain the potentiating effects of muscle relaxant combinations. Anesth Analg 1983; 62(2): 160–3PubMedGoogle Scholar
  6. 6.
    Waud BE, Waud DR. Quantitative examination of the interaction of competitive neuromuscular blocking agents on the indirectly elicited muscle twitch. Anesthesiology 1984; 61(4): 420–7PubMedCrossRefGoogle Scholar
  7. 7.
    Krieg N, Hendrick HH, Crul JF. Influence of suxamethonium on the potency of ORGH NC45 in anaesthetized patients. Br J Anaesth 1981; 53(3): 259–62PubMedCrossRefGoogle Scholar
  8. 8.
    d’Hollander A, Agoston S, DeVille A, et al. Chemical and pharmacological actions of a bolus injection of suxamethonium: two phenomena of distinct duration. Br J Anaesth 1983; 55(2): 131–4PubMedCrossRefGoogle Scholar
  9. 9.
    Feldman SA, Fauvel N. Potentiation and antagonism of vecuronium by decamethonium. Anesth Analg 1993; 76(3): 631–4PubMedCrossRefGoogle Scholar
  10. 10.
    Campkin NTA, Hood JR, Feldman SA. Resistance to decamethonium neuromuscular block after prior administration of vecuronium. Anesth Analg 1993; 77(1): 78–80PubMedCrossRefGoogle Scholar
  11. 11.
    Booij LH, Miller RD, Crul JF. The comparative influence of gamma hydroxy butyric acid, althesin and etomidate on the neuromuscular blocking potency of pancuronium in man. Acta Anesthesiol Belg 1979; 30: 219–23Google Scholar
  12. 12.
    Krieg N, Rutten M, Crul JF, et al. Preliminary review of the interactions of ORG NC45 with anaesthetics and antibiotics in animals. Br J Anaesth 1980; 52 Suppl. 1: 33S–6SPubMedCrossRefGoogle Scholar
  13. 13.
    Prien T, Zahn P, Menges M, Brussel T. 1 × ED90 dose of rocuronium bromide: tracheal intubation conditions and time course of action. Eur J Anaesthesiol 1995; 74 Suppl. 85–90Google Scholar
  14. 14.
    Keaveny JP, Knell PJ. Intubation under induction doses of propofol. Anaesthesia 1988; 43 Suppl. 1: 80–1PubMedCrossRefGoogle Scholar
  15. 15.
    Torda TA, Gage PW. Postsynaptic effect of iv anaesthetic agents at the neuromuscular junction. Br J Anaesth 1977; 49(8): 771–6PubMedCrossRefGoogle Scholar
  16. 16.
    Doenicke A, Dittmann-Kessler I, Sramoto A, et al. Etomidate and suxamethonium. The duration of relaxation and pseudocholinesterase activity. A clinical experimental study. Anaesthesist 1980; 29(3): 120–4PubMedGoogle Scholar
  17. 17.
    Sharma KK, Sharma UC. Influence of diazepam on the effect of neuromuscular blocking agents. J Pharm Pharmacol 1978; 30(1): 64PubMedCrossRefGoogle Scholar
  18. 18.
    Asbury AJ, Henderson PD, Brown BH, et al. Effect of diazepam on pancuronium-induced neuromuscular blockade maintained by a feedback system. Br J Anaesth 1981; 53(8): 859–63PubMedCrossRefGoogle Scholar
  19. 19.
    Bradshaw EG, Maddison S. Effect of diazepam at the neuromuscular junction: a clinical study. Br J Anaesth 1979; 51(10): 955–60PubMedCrossRefGoogle Scholar
  20. 20.
    Cronnelly R, Morris RB, Miller RD. Comparison of thiopental and midazolam on the neuromuscular responses to succinyl-choline or pancuronium in humans. Anesth Analg 1983; 62(1): 75–7PubMedCrossRefGoogle Scholar
  21. 21.
    Kaieda R, Maekewa T, Takeshita, et al. Effects of diazepam on evoked electrospinogram and electromyogram in man. Anesth Analg 1981; 60(4): 197–200PubMedGoogle Scholar
  22. 22.
    Cronnelly R, Dretchen KL, Sokoll MD, et al. Ketamine: myoneural activity and interaction with neuromuscular blocking agents. Eur J Pharmacol 1973; 22(1): 17–22PubMedCrossRefGoogle Scholar
  23. 23.
    Durrant NN, Ngwyen N, Lee C, et al. The interaction between ketamine and norcuron. In: Boulton TB, Atkinson RS, Lunn JN, et al, editors. Proceedings of the 6th European Congress on Anaesthesiology; 1982 Sep: London. London: Academic Press, 1982: 149–50Google Scholar
  24. 24.
    Chappie DJ, Clark JS, Hughes R. Interaction between atracurium and drugs used in anaesthesia. Br J Anaesth 1983; 55 Suppl. 1: 17S–22SGoogle Scholar
  25. 25.
    Engbaek J, Ording H, Pendersen T, et al. Dose-response relationships and neuromuscular blocking effects of vecuronium, pancuronium during ketamine anaesthesia. Br J Anaesth 1984; 56(9): 953–7PubMedCrossRefGoogle Scholar
  26. 26.
    Adams PR. Drug blockade of open end-plate channels. J Physiol 1976; 260(3): 531–52PubMedGoogle Scholar
  27. 27.
    Bowman WC. The neuromuscular junction: recent developments. Eur J Anaesthesiol 1985; 2(1): 59–93PubMedGoogle Scholar
  28. 28.
    Maleque MA, Warnick JE, Albuquerque EX. The mechanism and site of action of ketamine on skeletal muscle. J Pharmacol ExpTher 1981; 219(3): 638–45Google Scholar
  29. 29.
    Torda TA, Gage PW. Postsynaptic effects of iv anaesthetic agents at the neuromuscular junction. Br J Anaesth 1977; 49(8): 771–6PubMedCrossRefGoogle Scholar
  30. 30.
    Stanski DR, Ham J, Miller RD, et al. Time-dependent increase in sensitivity to d-tubocurarine during enflurane anesthesia in man. Anesthesiology 1980; 52(6): 483–7PubMedCrossRefGoogle Scholar
  31. 31.
    Rupp SM, McChristian JW, Miller RD. Neuromuscular effects of atracurium during halothane-nitrous oxide and enflurane-nitrous oxide anaesthesia in humans. Anesthesiology 1985; 63(1): 16–9PubMedCrossRefGoogle Scholar
  32. 32.
    Miller RD, Eger EII, Way WL, et al. Comparative neuromuscular effects of Forane and halothane alone and in combination with d-tubocurarine in man. Anesthesiology 1971; 35: 38–42PubMedCrossRefGoogle Scholar
  33. 33.
    Donati F, Bevan DR. Long term succinylcholine infusion during isoflurane anesthesia. Anesthesiology 1983; 58(1): 6–10PubMedCrossRefGoogle Scholar
  34. 34.
    Hilgenberg JC, Stoelting RK. Characteristics of succinylcholine produced phase II neuromuscular block during enflurane, halothane and fentanyl anesthesia. Anesth Analg 1981; 60(4): 192–6PubMedGoogle Scholar
  35. 35.
    Donati F, Bevan DR. Effect of enflurane and fentanyl on the clinical characteristics of long-term succinylcholine infusion. Can Anaesth Soc J 1982; 29(1): 59–64PubMedCrossRefGoogle Scholar
  36. 36.
    Rupp SM, Miller RD, Gencarelli PJ. Vecuronium induced neuromuscular blockade during enflurane, isoflurane and halothane anesthesia in humans. Anesthesiology 1984; 60(2): 102–5PubMedCrossRefGoogle Scholar
  37. 37.
    Swen J, Gencarelli PJ, Koot HW. Vecuronium infusion dose requirements during fentanyl and halothane anesthesia in humans. Anesth Analg 1985; 64(4): 411–4PubMedCrossRefGoogle Scholar
  38. 38.
    Miller RD, Rupp SM, Fisher DM, et al. Clinical pharmacology of vecuronium and atracurium. Anesthesiology 1984; 61: 444–53PubMedCrossRefGoogle Scholar
  39. 39.
    Foldes FF, Bencini A, Newton D. Influence of halothane and enflurane on the neuromuscular effects of ORG NC45 in man. Br J Anaesth 1980; 52 Suppl. 1: 64S–5SPubMedGoogle Scholar
  40. 40.
    Swen J, Agoston S, Koot H. Interactions between inhalation anaesthetics and muscle relaxants during steady state blockade. In: Boulton J, Atkinson RS, Lunn JN, et al, editors. Proceedings of the 6th European Congress on Anaesthesiology; 1982 Sep: London. London: Academic Press, 1982: 181–2Google Scholar
  41. 41.
    Gage PW, Hamill PO. Effects of several inhalation anaesthetics on the kinetics of postsynaptic conductance changes in mouse diaphragm. Br J Pharmacol 1976; 57(2): 263–72PubMedCrossRefGoogle Scholar
  42. 42.
    Waud BE, Waud DR. Comparison of the effects of general anesthetics on the end plate of skeletal muscle. Anesthesiology 1975; 43(5): 540–7PubMedCrossRefGoogle Scholar
  43. 43.
    Bean BP, Shrager P, Goldstein DA. Modification of sodium and potassium channel gating kinetics by ether and halothane. J Gen Physiol 1981; 77(3): 233–53PubMedCrossRefGoogle Scholar
  44. 44.
    Nelson TE, Sweo T. Ca++ uptake and Ca++ release by skeletal muscle sarcoplasmic reticulum: differing sensitivity to inhalation of anaesthetics. Anesthesiology 1988; 69(4): 571–7PubMedCrossRefGoogle Scholar
  45. 45.
    Komatsu T, Mori K, Uchida M, et al. The effects of halothane on the contractile properties of human skeletal muscles. Hiroshera J Anaesth 1979; 15: 81–7Google Scholar
  46. 46.
    Waud BE. Decrease in dose requirements of d-tubocurarine by volatile anesthetics. Anesthesiology 1979; 51(4): 298–302PubMedCrossRefGoogle Scholar
  47. 47.
    Forbes AR, Cohen WH, Eger EI. Pancuronium reduces halothane requirement in man. Anesth Analg 1979; 58(6): 497–9PubMedCrossRefGoogle Scholar
  48. 48.
    Shi WZ, Fahey MR, Fisher DM, et al. Laudanosine (a metabolite of atracurium) increases the minimum alveolar concentration of halothane in rabbits. Anesthesiology 1985; 63(6): 584–8PubMedCrossRefGoogle Scholar
  49. 49.
    Van Poznak A. The effect of inhalation anesthetics on repetitive activity generated at motor nerve endings. Anesthesiology 1967; 28(1): 124–7PubMedCrossRefGoogle Scholar
  50. 50.
    Bruckner J, Thomas KC, Bikhazi GB, et al. Neuromuscular drug interactions of clinical importance. Anesth Analg 1980; 59(9): 678–82PubMedGoogle Scholar
  51. 51.
    Aracava Y, Ikeda SR, Daly JW, et al. Interactions of bupivacaine with ionic channels of the nicotinic receptor. Mol Pharmacol 1984; 26(2): 304–13PubMedGoogle Scholar
  52. 52.
    Prostran M, Varagic VM. The effects of local anaesthetics on the isometric contraction of the isolated hemidiaphragm of the rat. Arch Int Pharmacodyn Ther 1981; 250(1): 30–9PubMedGoogle Scholar
  53. 53.
    Huang CL. Effects of local anaesthetics on the relationship between charge movements and contractile thresholds in frog skeletal muscle. J Physiol 1981; 320: 381–91PubMedGoogle Scholar
  54. 54.
    Marquis JK, Deschenes RJ. A re-evaluation of calcium — local anaesthetic antagonism. Exp Neurol 1982; 76(3): 547–52PubMedCrossRefGoogle Scholar
  55. 55.
    Eppens H, Kleine JW. Antibiotics and muscle relaxants: a dangerous combination. Arch Chir Neerl 1971; 23(3): 241–4PubMedGoogle Scholar
  56. 56.
    Giala M, Sareyiannis C, Cortsaris N, et al. Possible interaction of pancuronium and tubocurarine with oral neomycin [letter]. Anaesthesia 1982; 37(7): 776PubMedCrossRefGoogle Scholar
  57. 57.
    Bowen JM, McMullan WC. Influence of induced hypermagnesemia and hypocalcemia on neuromuscular blocking property of oxytetracycline in the horse. Am J Vet Res 1975; 36(7): 1025–8PubMedGoogle Scholar
  58. 58.
    Pittinger C, Adamson R. Antibiotic blockade of neuromuscular function. Annu Rev Pharmacol 1972; 12: 169–84PubMedCrossRefGoogle Scholar
  59. 59.
    Wright JM, Collier B. The site of neuromuscular block produced by polymyxin B and rolitetracycline. Can J Physiol Pharmacol 1976; 54(6): 926–36PubMedCrossRefGoogle Scholar
  60. 60.
    Hashimoto Y, Shima T, Matsukawa S, et al. Neuromuscular blocking property of minocycline in the rabbit. Tohoku J Exp Med 1979; 129(2): 203–4PubMedCrossRefGoogle Scholar
  61. 61.
    Singh YN, Harvey AL, Marshall IG. Antibiotic induced paralysis of the mouse phrenic nerve-hemidiaphragm preparation, and reversibility by calcium and by neostigmine. Anesthesiology 1978; 48(6): 418–24PubMedCrossRefGoogle Scholar
  62. 62.
    Pittinger CB, Eryasa Y, Adamson R. Antibiotic-induced paralysis. Anesth Analg 1970; 49(3): 487–501PubMedCrossRefGoogle Scholar
  63. 63.
    Durant NN, Lee C, Katz RL. Cumulation of neomycin and its residual potentiation of tubocurarine in the cat. Brit J Anaesth 1981; 53(6): 571–6PubMedCrossRefGoogle Scholar
  64. 64.
    Orts A, Marti JL, Baltar I, et al. Neuromuscular inhibition of new aminoglycoside antibiotics. Ann Anesthesiol Fr 1979; 20(1): 25–30PubMedGoogle Scholar
  65. 65.
    Barnett A, Ackerman E. Neuromuscular blocking activity of gentamicin in cats and mice. Arch Int Pharmacodyn Ther 1969; 181(1): 109–17PubMedGoogle Scholar
  66. 66.
    Singh YN, Marshall IG, Harvey AL. Pre-and postjunctional blocking effects of aminoglycoside, polymyxin, tetracycline, and lincosamide antibiotics. Br J Anaesth 1982; 54(12): 1295–306PubMedCrossRefGoogle Scholar
  67. 67.
    Sobek V. The effect of calcium, neostigmine and 4-aminopyridine upon respiratory arrest and depression of cardiovascular functions after aminoglycosidic antibiotics. Arzneimittelforschung 1982; 32(3): 222–4PubMedGoogle Scholar
  68. 68.
    Fiekers JF, Henderson F, Marshall IG, et al. Comparative effects of clindamycin and lincomycin on end-plate currents and quantal contents at the neuromuscular junction. J Pharmacol Exp Ther 1983; 227(2): 308–15PubMedGoogle Scholar
  69. 69.
    Lee C, Chen D, Nagel EL. Neuromuscular block by antibiotics: polymyxin B. Anesth Analg 1977; 56(3): 373–7PubMedCrossRefGoogle Scholar
  70. 70.
    Singh YN, Marshall IG, Harvey AL. The mechanism of the muscle paralysing actions of antibiotics and their interactions with neuromuscular blocking drugs. In: Bickell M, Breimer DD, Feuer S, et al., editors. Drug metabolism and drug interactions. London: Springer Verlag, 1980: 129–53Google Scholar
  71. 71.
    Wright JM, Collier B. Characterization of the neuromuscular block produced by clindamycin and lincomycin. Can J Physiol Pharmacol 1976; 54(6): 937–44PubMedCrossRefGoogle Scholar
  72. 72.
    Futamachi KJ, Prince DA. Effect of penicillin on an excitatory synapse. Brain Res 1975; 100(3): 589–97PubMedCrossRefGoogle Scholar
  73. 73.
    Noebels JL, Prince DA. Presynaptic origin of penicillin after discharges at mammalian nerve terminals. Brain Res 1977; 138: 59–74PubMedCrossRefGoogle Scholar
  74. 74.
    Grongano AW. Anaesthesia for atrial defibrillation. Effect of guidance on muscular relaxation. Lancet 1963; II: 1039–40CrossRefGoogle Scholar
  75. 75.
    Harrah MD, Way WL, Katzung BG. The interaction of d-tubocurarine with antiarrhythmic agents. Anesthesiology 1970; 33: 406–10PubMedCrossRefGoogle Scholar
  76. 76.
    Kornfeld P, Horowitz SH, Genkins G, et al. Myasthenia gravis unmasked by antiarrhythmic agents. Mt Sinai J Med 1976; 43(1): 10–4PubMedGoogle Scholar
  77. 77.
    Walsh MP. Calmodulin and its role in skeletal muscle function. Can Anaesth Soc J 1983; 30(4): 390–8PubMedCrossRefGoogle Scholar
  78. 78.
    Zalman F, Perloff JK, Durant NN, et al. Acute respiratory failure following intravenous verapamil in Duchenne’s muscular dystrophy. Am Heart J 1983; 105(3): 510–1PubMedCrossRefGoogle Scholar
  79. 79.
    Anderson KA, Marshall RJ. Interactions between calcium entry blockers and vecuronium bromide in anaesthetised cats. Br J Anaesth 1985; 57(8): 775–81PubMedCrossRefGoogle Scholar
  80. 80.
    Kraynack BJ, Lawson NW, Gintautas J. Neuromuscular blocking action of verapamil in cats. Can Anaesth Soc J 1983; 30: 242–7PubMedCrossRefGoogle Scholar
  81. 81.
    Lee C, Zhang X, Kwan WF. Neuromuscular refractoriness pre-junctional block by MgSO4 in the pig. Anesth Analg 1995; 80: 5270Google Scholar
  82. 82.
    James MF. Clinical use of magnesium infusions in anaesthesia. Anesth Analg 1992; 74(1): 129–36PubMedCrossRefGoogle Scholar
  83. 83.
    del Castillo J, Engback L. The nature of the neuromuscular block produced by magnesium. J Physiol (Lond) 1954; 124: 370–84Google Scholar
  84. 84.
    Ramanthan J, Sibai BM, Pillai R, et al. Neuromuscular transmission studies in preeclamptic women receiving magnesium sulphate. Am J Obstet Gynecol 1988; 158(1): 40–6Google Scholar
  85. 85.
    Van Wilgenburg H. The effect of prednisolone on neuromuscular transmission in the rat diaphragm. Eur J Pharmacol 1979; 55(4): 355–61PubMedCrossRefGoogle Scholar
  86. 86.
    Crul JF, Long GJ, Brunner EA, et al. The changing pattern of neuromuscular blockade caused by succinylcholine in man. Anesthesiology 1966; 27(16): 729–35PubMedCrossRefGoogle Scholar
  87. 87.
    Meyers EF. Partial recovery from pancuronium neuromuscular blockade following hydrocortisone administration. Anesthesiology 1977; 46(2): 148–50PubMedCrossRefGoogle Scholar
  88. 88.
    Laflin MJ. Interaction of pancuronium and corticosteroids. Anesthesiology 1977; 47(5): 471–2PubMedCrossRefGoogle Scholar
  89. 89.
    Hall ED. Glucocorticoid modification of the responsiveness of fast (type 2) neuromuscular system to edrophonium and d-tubocurarine. Exp Neurol 1980; 69(2): 349–58PubMedCrossRefGoogle Scholar
  90. 90.
    Robinson BJ, Lee E, Rees D, et al. Betamethasone-induced resistance to neuromuscular blockade: a comparison of atracurium and vecuronium in vitro. Anesth Analg 1992; 74(5): 762–5PubMedCrossRefGoogle Scholar
  91. 91.
    Van Wilgenburg H. Effects of glucocorticoids on acetylcholine release at the neuromuscular junction [abstract]. Br J Pharmacol 1980; 68(1): 144PGoogle Scholar
  92. 92.
    Caldwell JE. Muscle relaxants in the Intensive Care Unit. In: Fukushima K, Ochai%R, editors. Muscle relaxants. Tokyo: Springer, 1995: 95–104Google Scholar
  93. 93.
    Ornstein E, Matteo RS, Schwartz AE, et al. The effect of phenytoin on the magnitude and duration of neuromuscular block following atracurium or vecuronium. Anesthesiology 1987; 67: 191–6PubMedCrossRefGoogle Scholar
  94. 94.
    Baumgardner JE, Bagshaw R. Acute versus chronic phenytoin therapy and neuromuscular blockade. Anaesthesia 1990; 45: 493–4PubMedCrossRefGoogle Scholar
  95. 95.
    Blanc-Bimar MC, Jadot G, Bruguerolle B. Modification of curarizing action of two curare like agents after administration of two antiepileptic agents. Ann Anesthesiol Fr 1979; 20: 685–90PubMedGoogle Scholar
  96. 96.
    Alderdice MT, McMillan JE. Comparison of the effects of trimethadione and its primary metabolite dimethadione on neuromuscular function and the effects of altered pH on the action of dimethadione. J Pharmacol Exp Ther 1982; 221: 547–51PubMedGoogle Scholar
  97. 97.
    Talbot PA, Alderice MT. Effects of primidone, phenobarbital and phenylethylmalonamide in the stimulated frog neuromuscular junction. J Pharmacol Exp Ther 1984; 228: 121–7PubMedGoogle Scholar
  98. 98.
    Platt PR, Thackray WM. Phenytoin-induced resistance to vecuronium. Anaesth Intensive Care 1993; 21(2): 185–91PubMedGoogle Scholar
  99. 99.
    Thalji Z, Jellish WS, Mardoch J, et al. The effect of anti-convulsant therapy on recovery from mivacurium induced paralysis [abstract]. Anesthesiology 1993; 79 Suppl. 965: S965Google Scholar
  100. 100.
    Donati F, Bevan DR. Controlled succinylcholine infusion in a patient receiving ecothiophate eye drops. Can Anaesth Soc J 1981; 28(5): 488–90PubMedCrossRefGoogle Scholar
  101. 101.
    Davies-Lepie SR. Tacrine may prolong effect of succinylcholine. Anesthesiology 1994; 81(2): 524PubMedCrossRefGoogle Scholar
  102. 102.
    Walker IR, Zapf PW, Mackay IR. Cyclophosphamide, cholinesterase and anaesthesia. Aust N Z J Med 1972; 2(3): 247–51PubMedCrossRefGoogle Scholar
  103. 103.
    Kao YJ, Turner DR. Prolongation of succinylcholine block by metoclopramide. Anesthesiology 1989; 70(6): 905–8PubMedCrossRefGoogle Scholar
  104. 104.
    Kao YJ, Tellez J, Turner DR. Dose-dependent effect of metoclopramide on cholinesterases and suxamethonium metabolism. Br J Anaesth 1990; 65(2): 220–4PubMedCrossRefGoogle Scholar
  105. 105.
    Vincent A, Newsom-Davis J, Martin V. Anti-acetylcholine receptor antibodies in D-penicillamine associated myasthenia gravis. Lancet 1978; I: 1254CrossRefGoogle Scholar
  106. 106.
    Russell AS, Lindstrom JM. Penicillamine-induced myasthenia gravis associated with antibodies to acetylcholine receptor. Neurology 1978; 28(8): 847–9PubMedCrossRefGoogle Scholar
  107. 107.
    Azar I, Cottrell J, Gupta B, et al. Furosemide facilitates recovery of evoked twitch response after pancuronium. Anesth Analg 1980; 59: 55–7PubMedGoogle Scholar
  108. 108.
    Staun P, Lennmarken C, Eriksson LI, et al. The influence of 10mg and 20mg of bambuterol on the duration of succinylcholine-induced neuromuscular blockade. Acta Anaesthesiol Scand 1990; 34(6): 498–500PubMedCrossRefGoogle Scholar
  109. 109.
    Fisher DM, Caldwell JE, Sharma M, et al. The influence of bambuterol (carbamylated terbutaline) on the duration of action of succinylcholine-induced paralysis in humans. Anesthesiology 1988; 69(5): 757–9PubMedCrossRefGoogle Scholar
  110. 110.
    Bang V, Viby-Mogensen J, Wiren JE. The effect of bambuterol on plasma cholinesterase activity and suxamethonium-induced neuromuscular blockade in subjects heterozygous for abnormal plasma cholinesterase. Acta Anaesthesiol Scand 1990; 34(7): 600–4PubMedCrossRefGoogle Scholar
  111. 111.
    Bodley PO, Halwax K, Potts L. Low serum pseudocholinesterase levels complicating treatment with phenelzine. BMJ 1969; 3(669): 510–2PubMedCrossRefGoogle Scholar
  112. 112.
    Vizi ES, Illes P, Ronai A, et al. Effect of lithium on acetylcholine release and synthesis. Neuropharmacology 1972; 11(4): 521–30PubMedCrossRefGoogle Scholar
  113. 113.
    Waud BE, Farrell L, Waud DR. Lithium and neuromuscular transmission. Anesth Analg 1982; 61(5): 399–402PubMedCrossRefGoogle Scholar
  114. 114.
    Hill GE, Wong KC, Hodges MR. Lithium carbonate and neuromuscular blocking agents. Anesthesiology 1977; 46(2): 122–6PubMedCrossRefGoogle Scholar
  115. 115.
    Harrah MD, Way WL, Katzung BG. The interaction of d-tubocurarine with antiarrhythmic drugs. Anesthesiology 1970; 33(4): 406–10PubMedCrossRefGoogle Scholar
  116. 116.
    Glynne GL. Drug interaction? Anaesthesia 1984; 39(3): 293PubMedCrossRefGoogle Scholar
  117. 117.
    Rozen MS, Whan FM. Prolonged curarization associated with propranolol. Med J Aust 1972; 1(10): 467–8PubMedGoogle Scholar
  118. 118.
    Dretchen KL, Standaert FG, Skirboll LR, et al. Evidence for a prejunctional role of cyclic nucleotides in neuromuscular transmission. Nature 1976; 264: 79–81PubMedCrossRefGoogle Scholar
  119. 119.
    Azar I, Kumar D, Betcher AM. Resistance to pancuronium in an asthmatic patient treated with aminophylline and steroids. Can Anaesth Soc J 1982; 29(3): 280–2PubMedCrossRefGoogle Scholar
  120. 120.
    Argov Z, Mastaglia FL. Drug therapy: disorders of neuromuscular transmission caused by drugs. N Engl J Med 1979; 301: 409–13PubMedCrossRefGoogle Scholar
  121. 121.
    Cheah LS, Lee HS, Gwee MCE. Anticholinesterase activity of and possible ion channel block by cimetidine, ranitidine and oxmetridine in the toad isolated rectus abdominis muscle. Clin Exp Pharmacol Physiol 1985; 12: 353–7PubMedCrossRefGoogle Scholar
  122. 122.
    Bogod DG, Oh TE. The effect of H2 antagonists on duration of action of suxamethonium in the parturient. Anaesthesia 1989; 44(7): 591–3PubMedCrossRefGoogle Scholar
  123. 123.
    Aw LLF, Cheah LS, Gwee MCE, et al. Inhibition of acetylcholinesterase activity by cimetidine and ranitidine. Pharmacologist 1983; 25: 626Google Scholar
  124. 124.
    McCarthy G, Mirakhur RK, Elliott P, et al. Effect of H2 receptor antagonist pretreatment on vecuronium and atracurium induced neuromuscular block. Br J Anaesth 1991; 66(6): 713–5PubMedCrossRefGoogle Scholar
  125. 125.
    Rana J, Raurzan I. Neuromuscular blocking drug pharmacodynamics after chronic exposure to H2 antagonists. In Vivo 1995; 9(2): 163–6PubMedGoogle Scholar
  126. 126.
    Tewfik GI. Trimetaphan: its effect on the pseudocholinesterase level of man. Anaesthesia 1957; 12: 326PubMedCrossRefGoogle Scholar
  127. 127.
    Poulton TJ, James FM, Lockridge O. Prolonged apnoea following trimetaphan and succinylcholine. Anesthesiology 1979; 50: 54PubMedCrossRefGoogle Scholar
  128. 128.
    Nakamura K, Koide M, Imanaga T, et al. Prolonged neuromuscular blockade following trimetaphan infusion. Anaesthesia 1980; 35: 1202–7PubMedCrossRefGoogle Scholar
  129. 129.
    Dale RC, Schroeder ET. Respiratory paralysis during treatment by hypertension with trimetaphan camsylate. Arch Intern Med 1976; 136: 816–8PubMedCrossRefGoogle Scholar
  130. 130.
    Robertson GS, Aberd MB. Serum protein and cholinesterase changes in association with contraceptive pills. Lancet 1967; I: 232–5CrossRefGoogle Scholar
  131. 131.
    Naguib M, Gyasi HK. Antioestrogenic drugs and atracurium — a possible interaction? Can Anaesth Soc J 1986; 33(5): 682–3PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 1996

Authors and Affiliations

  • Stanley Feldman
    • 1
  • Lakshman Karalliedde
    • 2
  1. 1.Magill Department of AnaesthesiaChelsea & Westminster HospitalLondonEngland
  2. 2.Department of AnaestheticsGuy’s HospitalLondonEngland

Personalised recommendations