Advertisement

Drug Safety

, Volume 11, Issue 5, pp 318–377 | Cite as

Drug-Induced Taste and Smell Disorders

Incidence, Mechanisms and Management Related Primarily to Treatment of Sensory Receptor Dysfunction
  • Robert I. Henkin
Review Articles Pharmacoepidemiology

Summary

Drugs in every major pharmacological category can impair both taste and smell function and do so more commonly than presently appreciated. Impairment usually affects sensory function at a molecular level, causing 2 major behavioural changes — loss of acuity (i.e. hypogeusia and hyposmia) and/or distortion of function (i.e. dysgeusia and dysosmia). These changes can impair appetite, food intake, cause significant lifestyle changes and may require discontinuation of drug administration.

Loss of acuity occurs primarily by drug inactivation of receptor function through inhibition of tastant/odorant receptor: (i) binding; (ii) Gs protein function; (iii) inositol trisphosphate function; (iv) channel (Ca++, Na++) activity; (v) other receptor inhibiting effects; or (vi) some combination of these effects. Distortions occur primarily by a drug inducing abnormal persistence of receptor activity (i.e. normal receptor inactivation does not occur) or through failure to activate: (i) various receptor kinases; (ii) Gi protein function; (iii) cytochrome P450 enzymes; or other effects which usually (iv) turn off receptor function; (v) inactivate tastant/odorant receptor binding; or (vi) some combination of these effects.

Termination of drug therapy is commonly associated with termination of taste/smell dysfunction, but occasionally effects persist and require specific therapy to alleviate symptoms. Treatment primarily requires restoration of normal sensory receptor growth, development and/or function. Treatment which restores sensory acuity requires correction of steps initiating receptor and other pathology and includes zinc, theophylline, magnesium and fluoride. Treatment which inhibits sensory distortions requires reactivation of biochemical inhibition at the receptor or inactivation of inappropriate stimulus receptor binding and/or correction of other steps initiating pathology including dopaminergic antagonists, γ-aminobutyric acid (GABA)-ergic agonists, calcium channel blockers and some orally active local anaesthetic, antiarrhythmic drugs.

Keywords

Adis International Limited Captopril Olfactory Epithelium Recognition Threshold Medical Economic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brewster JL, de Valoir T, Dwyer ND, et al. An osmosensory signal transduction pathway in yeast. Science 1993; 259: 1760–3PubMedGoogle Scholar
  2. 2.
    Parkinson JS, Blair DF. Does E coli have a nose? Science 1993; 259: 1701–2PubMedGoogle Scholar
  3. 3.
    Maddock JR, Shapiro L. Polar localization of the chemoreceptor complex in the Escherichia coli cell. Science 1993; 259: 1717–29PubMedGoogle Scholar
  4. 4.
    Alley MRK, Maddock JR, Shapiro L. Requirement of the carboxyl terminus of a bacterial chemoreceptor for its targeted proleotysis. Science 1993; 259: 1754–7PubMedGoogle Scholar
  5. 5.
    Allen WF. Effects of various inhaled vapors on respiration and blood pressure in anesthetized, unanesthetized, sleeping and anosmic subjects. Am J Physiol 1929; 88: 620–32Google Scholar
  6. 6.
    Nisheno T, Sugiyano A, Tanaka A, et al. Effects of topical nasal anesthesia on shift of breathing route in adults. Lancet 1992; 339: 1497–9Google Scholar
  7. 7.
    The nose and the respiratory system [editorial]. Lancet 1992; 339: 1511–2Google Scholar
  8. 8.
    Kraus DH, Weir Jr CW, Yaeger Jr H, et al. Altered pulmonary function in patients with hyposmia. Clin Res 1986; 34: 579aGoogle Scholar
  9. 9.
    Henkin RI. Taste in man. In: Harrison D, Hinchcliffe R, editors. Scientific Foundations of Otolaryngology. London: Heinemann Medical Books, 1976: 468–83Google Scholar
  10. 10.
    Henkin RI. The definition of primary and accessory areas of olfaction as the basis for a classification of decreased olfactory acuity. In: Hayashi T, editor. Olfaction and Taste II. London: Pergamon Press, 1967: 235–52Google Scholar
  11. 11.
    Henkin RI. Evaluation and treatment of human olfactory dysfunction. In: English C, editor. Otolaryngology. Vol 2. Philadelphia: Lippincott, 1993: 1–86Google Scholar
  12. 12.
    Henkin RI. Allergic rhinitis. N Engl J Med 1992; 326: 576PubMedGoogle Scholar
  13. 13.
    Henkin RI. Salty and bitter taste. JAMA 1991; 265: 2253PubMedGoogle Scholar
  14. 14.
    Henkin RI. Disordered smell. Lancet 1988; 2: 901–2PubMedGoogle Scholar
  15. 15.
    Henkin RI. Concepts of therapy in taste and smell dysfunction: repair of sensory receptor function as primary treatment. In: Kurihara K, Suzuki N, Ogawa H, editors. Olfaction & Taste 11. Tokyo: Springer Verlag, 1994: 568–73Google Scholar
  16. 16.
    Henkin RI. Phantogeusia. In: Taylor RB, editor. Difficult Diagnosis II. Philadelphia: WB Saunders Co, 1992: 348–56Google Scholar
  17. 17.
    Henkin RI, Christiansen RL. Taste localization on the tongue, palate and pharynx of normal man. J Appl Physiol 1967; 22: 316–20PubMedGoogle Scholar
  18. 18.
    Henkin RI, Christiansen RL. Taste thresholds in patients with artificial dentures. J Am Dent Ass 1967; 75: 1118–20Google Scholar
  19. 19.
    Henkin RI. Taste localization in man. In: Bosma JF, editor. Oral sensation and perception II. Springfield: CC Thomas, 1969: 43–68Google Scholar
  20. 20.
    Henkin RI. Disorders of taste and smell. JAMA 1971; 218: 1946PubMedGoogle Scholar
  21. 21.
    Bosma JD, Henkin RI, Christiansen RL, et al. Hypoplasia of the nose and eyes, hyposmia, hypogeusia and hypogonado-trophic hypogonadism in two males. J Craniofac Genet Dev Biol 1981; 1: 153–84PubMedGoogle Scholar
  22. 22.
    Kostka V, editor. Aspartic proteinases and their inhibitors. New York: DeGruyter, 1985Google Scholar
  23. 23.
    Henkin RI. Effects of vapor phase pollutants on central nervous system and sense organ function. In: Finkel AJ, Duel WC, editors. Clinical implications of air pollution research. Acton: Publishing Sciences Group, 1976: 193–216Google Scholar
  24. 24.
    Henkin RI. Impairment of olfaction and of the tastes of sour and bitter in pseudohypoparathyroidism. J Clin Endocrinol Metab 1968; 28: 624–8PubMedGoogle Scholar
  25. 25.
    Farfel Z, Bourne HR. Pseudohypoparathyroidism: mutation affecting adenylyl cyclase. Min Electro Met 1982; 8: 227–36Google Scholar
  26. 26.
    Henkin RI. Abnormalities of taste and olfaction in various disease states. In: Kare MR, Maller O, editors. The chemical senses and nutrition. Baltimore: Johns Hopkins Press, 1967: 95–113Google Scholar
  27. 27.
    Zisman E, Henkin RI, Ross GT, et al. A biochemical similarity between chromatin negative gonadal dysgenesis and pseudohypoparathyroidism. Acta Endocrin Panamer 1970; 1: 59–71Google Scholar
  28. 28.
    Henkin RI, Lippoldt RE, Bilstad J, et al. A zinc protein isolated from human parotid saliva. Proc Natl Acad Sci USA 1975; 72: 488–92PubMedGoogle Scholar
  29. 29.
    Shatzman AR, Henkin RI. Gustin concentration changes relative to salivary zinc and taste in humans. Proc Natl Acad Sci USA 1981; 78: 3867–71PubMedGoogle Scholar
  30. 30.
    Henkin RI, Keiser HR, Jaffe IA, et al. Decreased taste sensitivity after D-penicillamine reversed by copper administration. Lancet 1967; 2: 1268–71PubMedGoogle Scholar
  31. 31.
    Henkin RI, Patten BM, Re P, et al. A syndrome of acute zinc loss. Arch Neurol 1975; 32: 745–51PubMedGoogle Scholar
  32. 32.
    Tomita H. Zinc in taste and smell disorders. In: Tomita H, editor. Trace elements in clinical medicine. Tokyo: Springer Verlag, 1990: 15–37Google Scholar
  33. 33.
    Henkin RI, Larson AL, Powell RD. Hypogeusia, dysgeusia, hyposmia and dysosmia following influenza-like infection. Ann Otol Rhinol Laryngol 1975; 84: 672–82PubMedGoogle Scholar
  34. 34.
    Walters E, Buchhert K, Maruniak JA. Olfactory cytochrome P450 immunoreactivity in mice is altered by dichlobenil but preserved by metyropone. Toxicology 1993; 81: 113–22PubMedGoogle Scholar
  35. 35.
    Dahl AR. The effect of cytochrome P450-dependent metabolism and other enzyme activities on olfaction. In: Margolis FL, Getchell TV, editors. Molecular neurobiology of the olfactory system. New York: Plenum Press, 1988: 51Google Scholar
  36. 36.
    Ding X, Coon MJ. Immunological characterization of multiple forms of cytochrome P450 in rabbit nasal microsomes and evidence for tissue specific expression of cytochrome P450 NMa and NMb. Mol Pharmacol 1990; 37: 489–96PubMedGoogle Scholar
  37. 37.
    Brittebo EB. Metabolism of xenobiotics in the nasal olfactory mucosa: implications for local toxicity. Pharmacol Toxicol 1993; 72 Suppl. 3:50–2PubMedGoogle Scholar
  38. 38.
    Erikkson C, Brittebo EB. Metabolic activation of the herbicide dichlobenil in the olfactory mucosa of mice and rats. Chem Biol Interact 1991; 79: 165–77Google Scholar
  39. 39.
    Henkin RI. The neuroendocrine control of perception. In: Hamburg DA, Pribram KH, Stunkard AJ, editors. Perception and its disorders. Vol 48. Baltimore: Williams & Wilkins Co, 1970:54–107Google Scholar
  40. 40.
    Henkin RI. The role of adrenal corticosteroids in sensory processes. In: Blaschko H, Sayer G, Smith AD, editors. Adrenal gland. Handbook of physiology, endocrinology. Vol 6. Washington: Am Physiol Soc, 1975: 209–30Google Scholar
  41. 41.
    McConnell RJ, Menendez CW, Smith FR, et al. Defects of taste and smell in patients with hypothyroidism. Am J Med 1975; 59: 354–64PubMedGoogle Scholar
  42. 42.
    Rivlin RS, Osnos M, Rosenthal S, et al. Abnormalities in taste preference in hypothyroid rats. Am J Physiol 1977; 1: E80–4Google Scholar
  43. 43.
    Hallman VL, Hurst JW. Loss of taste as toxic effect of methimazole (Tapazole) therapy. JAMA 1953; 152: 322Google Scholar
  44. 44.
    Schneeberg NG. Loss of sense of taste due to methylthiouracil therapy. JAMA 1952; 149: 1091–3Google Scholar
  45. 45.
    Varma VM, Grollman EF, Dai WL, et al. Taste loss after 1131 treatment for thyroid cancer. Clin Res 1992; 40: 417AGoogle Scholar
  46. 46.
    Varma VM, Dai WL, Henkin RI. Persistent taste abnormalities in patients with thyroid cancer after thyroidectomy and radioactive iodine (RAI) may be related to racial or age differences. Clin Res 1993;41:392AGoogle Scholar
  47. 47.
    Hamilton Jr CR, Henkin RI, Weir G, et al. Olfactory status and response to clomiphene in male gonadotrophin deficiency. Ann Intern Med 1973; 78: 47–55PubMedGoogle Scholar
  48. 48.
    Formari AJ, Avram MM. Altered taste perception in uremia. Trans Am Soc Artif Inter Organs 1978; 24: 385–8Google Scholar
  49. 49.
    Sumderman Jr FW. Current status of zinc deficiency in the pathogenesis of neurological, dermatological and musculo-skeletal disorders. Ann Clin Lab Sci 1975; 5: 132–45Google Scholar
  50. 50.
    Henkin RI, Schechter PJ, Friedewald WT, et al. A double blind study of the effects of zinc sulfate on taste and smell dysfunction. Am J Med Sci 1976; 272: 285–99PubMedGoogle Scholar
  51. 51.
    Henkin RI, Aamodt RI, Foster DM. The role of zinc in taste and smell, In: Prasad AS, editor. The clinical, biochemical and nutritional aspects of trace elements. New York: Alan N Liss Inc., 1982: 161–88Google Scholar
  52. 52.
    Solomons NW, Rosenberg TH, Sandstead HH, et al. Zinc deficiency in Crohn’s disease. Digestion 1977; 16: 87–95PubMedGoogle Scholar
  53. 53.
    Solomons NW, Rosenberg IH, Sandstead HH. Zinc nutrition in celiac sprue. Am J Clin Nutr 1976; 29: 371–6PubMedGoogle Scholar
  54. 54.
    Hambidge KM, Hambidge C, Jacobs M, et al. Low levels of zinc in hair, anorexia, poor growth and hypoguesia in children. Pediatr Res 1972; 6: 868–74PubMedGoogle Scholar
  55. 55.
    Atkin-Thor E, Goddard BW, O’Nion J, et al. Hypogeusia and zinc depletion in chronic dialysis patients. Am J Clin Nutr 1978; 31: 1948–51PubMedGoogle Scholar
  56. 56.
    Mahajan SK, Prasad AS, Briggs WA, et al. Improvement of uremie hypogeusia by zinc: A double blind study. Am J Clin Nutr 1980; 33: 1517–21PubMedGoogle Scholar
  57. 57.
    Weisman K, Christensen E, Dreyer V. Zinc supplementation in alcoholic cirrhosis: a double blind clinical trial. Acta Med Scand 1979; 205: 361–6Google Scholar
  58. 58.
    Tomita H, Ishii T, Miyakogawa M. Zinc and taste disturbance. Trace Metal Metab 1975; 1: 61–8Google Scholar
  59. 59.
    Tomita H. Ageusia by zinc deficiency and therapy. Taste Smell 1977; 11: 40–3Google Scholar
  60. 60.
    Mahajan SK, Prasad AS, Rabbani P, et al. Zinc metabolism in uremia. J Lab Clin Med 1979; 94: 693–8PubMedGoogle Scholar
  61. 61.
    Mahajan SK, Gardiner WH, Abbasi AA, et al. Abnormal plasma and erythrocyte zinc distribution in uremia. Trans Am Sci Art Int Org 1978; 24: 50Google Scholar
  62. 62.
    Mahajan SK, Abassi A, Prasad AS, et al. Zinc metabolism and taste acuity in renal transplant recipients. Kidney Int 1983; 16 Suppl.: S310–4Google Scholar
  63. 63.
    Spinozzi NJ, Murray CL, Grupe SE. Altered taste acuity in children with end stage renal disease. Pediatr Res 1978; 12: 442Google Scholar
  64. 64.
    Eggert JV, Siegler RL, Edomkesmalee G. Zinc supplementation in chronic renal failure. Int J Paed Nephrol 1982; 3: 21–4Google Scholar
  65. 65.
    Bicknell JM, Wiggins RV. Taste disorder from zinc deficiency after tonsillectomy. West J Med 1988; 149: 457–60PubMedGoogle Scholar
  66. 66.
    Yoshida S, Endo S, Tomita H. A double blind study of the therapeutic efficacy of zinc gluconate on taste disorder. Auris Nasus Larynx 1991; 18: 153–61PubMedGoogle Scholar
  67. 67.
    Abe H, Tomita H. Experimental studies of taste disturbance due to food additives. Nihon Univ J Med Ass 1983; 29: 1–10Google Scholar
  68. 68.
    Zinc deficiency, Taste acuity and growth failure. Nutr Res 1978; 36:213–4Google Scholar
  69. 69.
    Campieri C, Ben Dardeff A, Prandini R, et al. Improvement of impotence, taste and olfactory defects in periodically hemodialyzed patients treated with zinc chloride [in Italian; abstract in English]. Minerva Nephrol 1980; 27: 377–82Google Scholar
  70. 70.
    Krueger KC. Hypogeusia and hyposmia associated with low serum zinc levels: a case report. JAMA 1980; 234: 109–11Google Scholar
  71. 71.
    Watson AR, Stuart A, Wells FE, et al. Zinc supplementation and its effect on taste acuity in children with chronic renal failure. Hum Nutr Clin Nutr 1983; 37: 219–25PubMedGoogle Scholar
  72. 72.
    Russell RM, Cox ME, Solomons N. Zinc and the special senses. Ann Intern Med 1983; 99: 227–39PubMedGoogle Scholar
  73. 73.
    Sprenger KBG, Bundschu D, Lewis K, et al. Improvement of uremic neuropathy and hypogeusia by dialysate zinc supplementation: a double blind study. Kidney Int 1983; 16 Suppl.: S315–8Google Scholar
  74. 74.
    Vreman HJ, Venter C, Leegwater J, et al. Taste, smell and zinc metabolism in patients with chronic renal failure. Nephron 1980; 26: 163–70PubMedGoogle Scholar
  75. 75.
    O’Nion J, Atkin-Thor E, Rothent SW. Effect of zinc supplementation on red blood zinc, serum zinc, taste acuity and dietary intakes in zinc deficient dialysis patients. Dial Transplant 1978; 7: 1208–13Google Scholar
  76. 76.
    Hasegawa M, Yamada K, Uchida H, et al. Mineral contents in the hair of taste disorder patients. Trace Metal Metab 1987; 15: 109–16Google Scholar
  77. 77.
    Mikoshiba H. Study of the movement of electrolytes and trace metals in parotid saliva of patients suffering from taste disorder. J Nihon Univ Med Ass 1984; 43: 509–18Google Scholar
  78. 78.
    Tomita H, Ishii T, Mikoshiba H, et al. Combined disorders of taste and smell. Otologia 1981; 27 Suppl. 1: 259–64Google Scholar
  79. 79.
    Tomita H. Combined disturbance of taste and smell. Taste Smell 1980; 14: 25–31Google Scholar
  80. 80.
    Henkin RI, Aamodt RL, Babcock AK, et al. Treatment of abnormal chemoreception in human taste and smell. In: Norris DM, editor. Perception of behavioral chemicals. Amsterdam: Elsevier/North-Holland Biomedical Press, 1981: 227–65Google Scholar
  81. 81.
    Babcock AK, Henkin RI, Aamodt RL, et al. The effects of oral zinc on zinc metabolism, II: in vivo kinetics. Metabolism 1982; 31: 335–47Google Scholar
  82. 82.
    Olmez I, Gulovali MC, Gordon GE, et al. Trace elements in human parotid saliva. Biol Trace Elem Res 1988; 17: 259–70PubMedGoogle Scholar
  83. 83.
    Law JS, Nelson N, Watanabe K, et al. Human salivary gustin is a potent activator of calmodulin-dependent brain phosphodiesterase. Proc Natl Acad Sci USA 1987; 84: 1674–8PubMedGoogle Scholar
  84. 84.
    Henkin RI. Zinc, saliva and taste: Interrelationships of gustin, nerve growth factor, saliva and zinc, In: Hambidge JM, Nichols BL, editors. Zinc and copper in clinical medicine. New York: Spectrum Publications Inc., 1978: 35–48Google Scholar
  85. 85.
    Shatzman AR, Henkin RI. Gustin concentration changes relative to salivary zinc and taste in humans. Proc Natl Acad Sci USA 1981; 78: 3867–71PubMedGoogle Scholar
  86. 86.
    Foster DM, Aamodt RL, Henkin RI, et al. Zinc metabolism in humans: A kinetic model. Am J Physiol 1979; 237: R340–9PubMedGoogle Scholar
  87. 87.
    Aamodt RL, Rumble WF, Johnston GS, et al. Absorption of orally administered Zn65 by normal human subjects. Am J Clin Nutr 1981; 34: 2648–52PubMedGoogle Scholar
  88. 88.
    Aamodt RL, Rumble WF, Babcock AK, et al. Effects of oral zinc loading on zinc metabolism in humans-I: Experimental studies. Metabolism 1982; 31: 326–34PubMedGoogle Scholar
  89. 89.
    Babcock AK, Henkin RI, Aamodt RL, et al. Effects of oral zinc loading on zinc metabolism in humans-II: In vivo kinetics. Metabolism 1982; 31: 335–47Google Scholar
  90. 90.
    Wastney ME, Aamodt RL, Rumble WF, et al. Kinetic analysis of zinc metabolism and its regulation in normal humans. Am J Physiol 1986; 251: R398–408PubMedGoogle Scholar
  91. 91.
    Wastney ME, Foster DM, Henkin RI. Identification of abnormal sites of zinc transport and metabolism in patients with sensory and endocrine disorders. In: Hurley LS, Keen CL, Lonnerdal B, et al. editors. Trace elements in man and animals 6. New York: Plenum Press, 1988: 53–4Google Scholar
  92. 92.
    Wastney ME, Henkin RI. Development and application of a model for zinc metabolism in humans. Prog Food Nutr Sci 1988; 12: 243–54PubMedGoogle Scholar
  93. 93.
    Gentle MJ. The effects of zinc deficiency on oral behavior and taste bud morphology in chicks. Br Poultry Sci 1881; 22: 265–73Google Scholar
  94. 94.
    Hasegawa H, Tomita H. Assessment of taste disorders in rats by simultaneous study of the two bottle preference test and abnormal ingestive behavior. Auris Nasus Laryx 1986; 13 Suppl. 1: S33–41Google Scholar
  95. 95.
    Hasegawa H, Kishi T, Tomita H. Abnormal taste reactivities in zinc deficient rats. Proc Jpn Ass Taste Smell 1980; 14: 69–71Google Scholar
  96. 96.
    Brosvic GM, Slotnick RM, Henkin RI. Decreased gustatory sensitivity in zinc deprived rats. Physiol Behav 1992; 52: 527–33PubMedGoogle Scholar
  97. 97.
    Pallauf J. Zinkgehalte in Knochen and Ganzkorper wachsender bei unterschiedliche Zinversorgung zum Stoffwechsel des Zinks in tierschen Organismus. Z Tierphysiol 1972; 30: 193–202Google Scholar
  98. 98.
    Kobayashi T, Tomita H. Electron microscopic observation of vallate taste buds of zinc-deficient rats with taste disturbance. Auris Nasus Larynx 1986; 13 Suppl. 1: S25–31PubMedGoogle Scholar
  99. 99.
    Naganuma M, Ikeda M, Tomita H. Changes in soft palate taste buds of rats due to aging and zinc deficiency-scanning electron microscopic observation. Auris Nasus Larynx 1988; 15: 117–27PubMedGoogle Scholar
  100. 100.
    Ohki M, Fujita S, Tomita H, et al. Turnover of taste buds of rats with taste disorders caused by zinc deficiency. Proc Jpn Symp Taste Smell 1988; 12: 41–4Google Scholar
  101. 101.
    Kobayashi T. Electron microscopic observation of vallate taste buds of zinc-deficient rats with taste disturbance. J Nihon Univ Med Ass 1983; 42: 557–64Google Scholar
  102. 102.
    Kishi T. Histochemical studies on the taste buds of zinc deficient rats. J Nihon Univ Med Ass 1984; 43: 15–31Google Scholar
  103. 103.
    Shigihara S, Tomita H. Electron microscopy of the olfactory epithelium in zinc deficient rats. Nihon Univ J Med Ass 1986; 28: 263–80Google Scholar
  104. 104.
    Mikoshiba H, Hosonuma H, Kobayashi T, et al. A quantitative study of zinc concentrations in the olfactory epithelium of nasal cavity and the central nervous system in zinc deficient rats. Trace Metal Metab 1983; 11: 1–4Google Scholar
  105. 105.
    Martin MFR, McKenna F, Bird HA, et al. Captopril: a new treatment for rheumatoid arthritis. Lancet 1984; 1: 1325–7PubMedGoogle Scholar
  106. 106.
    Packer M, Lee WH, Yushak M, et al. Comparison of captopril and enalapril in patients with chronic heart failure. N Engl J Med 1986; 315: 847–53PubMedGoogle Scholar
  107. 107.
    McFate Smith W, Kulaga SF, Mancloa F, et al. Overall tolerance and safety of enalapril. J Hypertens 1984; 2 Suppl. 5: 113–7Google Scholar
  108. 108.
    Currie WJC, Cooper WD. Safety of angiotensin-converting enzyme inhibitors. Lancet 1985; 1: 580–1PubMedGoogle Scholar
  109. 109.
    Johnston CI, Arnolda L, Hiwatari M. Angiotensin-con verting enzyme inhibitors in the treatment of hypertension. Drugs 1984; 27: 271–7PubMedGoogle Scholar
  110. 110.
    Hollenburg NK. Medical therapy of renovascular hypertension: efficiency and safety of captopril in 269 patients. Cardiovasc Rev Rep 1983; 4: 852–78Google Scholar
  111. 111.
    Groel JT, Tadros SS, Dreslinski GR, et al. Long-term antihy-pertensive therapy with captopril. Hypertension 1983; 5 Suppl. III: 145–51Google Scholar
  112. 112.
    Weinberger MH. Influence of an angiotensin converting enzyme inhibitor on diuretic induced metabolic effect in hypertension. Hypertension 1983; 5 Suppl. III: 132–8Google Scholar
  113. 113.
    Knill JR. The development of captopril and its role in the treatment of hypertension. Clin Exp Pharmacol Physiol 1983; 7: 63–71Google Scholar
  114. 114.
    Havelka J, Boerlin HJ, Studer A, et al. Long-term experience with captopril in severe hypertension. Br J Clin Pharmacol 1984; 14: 718–68Google Scholar
  115. 115.
    Abrams WB, Davies RO, Ferguson RK. Overview: the role of angiotensin-converting enzyme inhibitors in cardiovascular therapy. Fed Proc 1983; 43: 1314–21Google Scholar
  116. 116.
    Kono T, Oseko F, Ikeda F, et al. Effects of a new angiotensin-converting enzyme inhibitor, MK421, in normal men and patients. Endocrinol Jpn 1982; 29: 615–22PubMedGoogle Scholar
  117. 117.
    MacGregor GA, Markandu ND, Bayless J, et al. Non-sulfhy-dryl-containing angiotensin-converting enzyme inhibitor (MK 421); evidence for role of renin system in normotensive subjects. BMJ 1981; 283: 401–3PubMedGoogle Scholar
  118. 118.
    Croog SH, Levine S, Testa MA, et al. The effects of antihypertensi ve therapy on the quality of life. N Engl J Med 1986; 314: 1657–64PubMedGoogle Scholar
  119. 119.
    Edwards IR, Coulter DM, Beasley DMG, et al. Captopril: 4 years of post marketing surveillance of all patients in New Zealand. Br J Clin Pharmacol 1987; 23: 529–36PubMedGoogle Scholar
  120. 120.
    Frohlich DF, Cooper RA, Lewis EJ. Review of the overall experience of captopril on hypertension. Arch Intern Med 1984; 144: 1441–4PubMedGoogle Scholar
  121. 121.
    Jackson B, Maher D, Matthews PG, et al. Lack of cross sensitivity between captopril and enalapril. Aust N Z J Med 1988; 18: 21–7PubMedGoogle Scholar
  122. 122.
    Grosskopf I. Persistent captopril-associated taste alteration. Clin Pharm 1984; 3: 235PubMedGoogle Scholar
  123. 123.
    McNeil JJ, Anderson A, Christophidis N, et al. Taste loss associated with oral captopril treatment. BMJ 1979; 15: 1555–6Google Scholar
  124. 124.
    Classes PH, Ferguson RK. Temporary ageusia related to captopril. Lancet 1979; 2: 526Google Scholar
  125. 125.
    Ondeti MA, Rubin B, Cushman DW. Design of specific inhibitors on angiotensin-converting enzyme: mechanism of orally active antihypertensive agents. Science 1977; 196: 441–4Google Scholar
  126. 126.
    Abu-Hamdan DK, Desai H, Sondheimer J. Taste acuity and zinc metabolism in captopril-treated hypertensive male patients. Am J Hypertens 1987; 1 (Pt 3): 303S–308SGoogle Scholar
  127. 127.
    Brunner HR, Waeber B, Wautera JP, et al. Inappropriate renin secretion unmasked by captopril (SQ 14225) in hypertension of chronic renal failure. Lancet 1971; 2: 704–7Google Scholar
  128. 128.
    Gavras H, Brunner HR, Turini GA, et al. Antihypertensive effect of the oral angiotensin converting enzyme inhibitor (AQ 14225) in man. N Engl J Med 1978; 298: 991–5PubMedGoogle Scholar
  129. 129.
    Zazgornick J, Kaiser W, Biesenbach G. Captopril induced dysgeusia. Lancet 1992; 341: 1542Google Scholar
  130. 130.
    Patchen AA, Harris E, Tristam EW. A new class of angiotensin-converting enzyme inhibitors. Nature 1980; 288: 280–3Google Scholar
  131. 131.
    Gross DM, Sweet CS, Ulm EH, et al. Effect of N-[(S)-l-car-boxy-3 phenylpropyl] 1-Ala-1-Pro and its ethyl ester [MK-421] on angiotensin converting enzyme in vitro and angiotensin 1 pressor responses in vivo. J Pharmacol Exp Ther 1981; 216: 552–7PubMedGoogle Scholar
  132. 132.
    Stumpe KO, Kolloch R, Overlack A. Captopril and enalapril: Evaluation of therapeutic efficacy and safety. Pract Cardiol 1984; 10: 260–9Google Scholar
  133. 133.
    Gomez HJ, Cirillo VJ, Irvin JD. Enalapril: a review of human pharmacology. Drugs 1985; 30 Suppl. 1: 13–24PubMedGoogle Scholar
  134. 134.
    Edwards CRW, Padfield PL. Angiotensin-converting enzyme inhibitors: past, present and bright future. Lancet 1985; 55 Suppl. 1:30–4Google Scholar
  135. 135.
    Robertson JIS. Summary. Br J Clin Pharmacol 1984; 18 Suppl. 2: 257S–259SGoogle Scholar
  136. 136.
    McFate Smith W, Davies RO, Gabriel MA, et al. Tolerance and safety of enalapril. Br J Pharmacol 1984; 18 Suppl. 2: 249S–255SGoogle Scholar
  137. 137.
    Packer M. Converting-enzyme inhibition for severe chronic heart failure: views from a skeptic. Int J Cardiol 1985; 7: 111–20PubMedGoogle Scholar
  138. 138.
    Classes PH, Larigani GE, Conner DP, et al. Enalapril, a non-sufhydryl angiotensin-converting enzyme inhibitor. Clin Pharm 1985; 4: 27–40Google Scholar
  139. 139.
    Dollery CT. Safety and efficacy of enalapril. J Hypertens 1983; 1 Suppl. 1: 155–7Google Scholar
  140. 140.
    Davies RO, Irvin JD, Kramsch DK, et al. Enalapril worldwide experience. Am J Med 1984; 77: 23–35PubMedGoogle Scholar
  141. 141.
    Perrone C, Gerbaud L, Leport C, et al. Dysgeusia during treatment with enalapril. Therapie 1989; 44: 67Google Scholar
  142. 142.
    Boyd O. Captopril induced taste disturbance. Lancet 1993; 342: 304PubMedGoogle Scholar
  143. 143.
    Enalapril (Vasotec). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1553Google Scholar
  144. 144.
    Fosinopril (Monopril). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1386Google Scholar
  145. 145.
    Lisinopril (Zestril). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2339Google Scholar
  146. 146.
    Levenson JL, Kennedy K. Dysosmia, dysgeusia and nifedipine. Ann Intern Med 1985; 102: 135–6PubMedGoogle Scholar
  147. 147.
    Henkin RI, Graziadei PPG, Bradley DF. The molecular basis of taste and its disorders. Ann Intern Med 1969; 71: 791–821PubMedGoogle Scholar
  148. 148.
    Procardia XL (Nifedipine). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1796Google Scholar
  149. 149.
    Nifedipine (Adalat). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1566Google Scholar
  150. 150.
    Ikeda M, Tomita H, Sekimoto K. Drug-induced taste disorder: Due to zinc chelation? In: Tomita H, editor. Trace elements in clinical medicine. Tokyo: Springer Verlag, 1990: 255–60Google Scholar
  151. 151.
    Diltiazem (Cardizem). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1294Google Scholar
  152. 152.
    Wistrand PJ. The use of carbonic anhydrase inhibitors in ophthalmology and clinical medicine. Ann NY Acad Sci 1984; 424: 609–19Google Scholar
  153. 153.
    Joyce PW, Mills KH. Comparison of the effect of acetazolamide tablets and Sustets on diurnal intraocular pressure in patients with chronic simple glaucoma. Br J Opthalmol 1990; 74: 413–6Google Scholar
  154. 154.
    Joyce PW. Taste disturbance with acetazolamide. Lancet 1990; 336: 1446PubMedGoogle Scholar
  155. 155.
    Lichter PR. Reducing side-effects of carbonic anhydrase inhibitors. Opthalmology 1981; 88: 266–9Google Scholar
  156. 156.
    McMurdo MET, Hutchison GL, Lindsay G, et al. Taste disturbance with acetazolamide. Lancet 1990; 336: 1190–1PubMedGoogle Scholar
  157. 157.
    Miller LG, Miller SM. Altered taste secondary to acetazolamide therapy. J Fam Pract 1990; 31: 199–200PubMedGoogle Scholar
  158. 158.
    Acetazolamide (Diamox). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1157Google Scholar
  159. 159.
    Hansson HPJ. On the effect of carbonic anhydrase inhibition on the sense of taste: an unusual side effect of a medication. Nord Med 1961; 65: 65–7Google Scholar
  160. 160.
    Graber M, Kelleher S. Side effects of acetazolamide, the champagne blues. Am J Med 1988; 84: 979–80PubMedGoogle Scholar
  161. 161.
    Schiffman SS. Taste and smell in disease. N Engl J Med 1983; 308: 1275–9PubMedGoogle Scholar
  162. 162.
    Shiffman SS, Lockhead E, Maer FW. Amiloride reduces the taste intensity of Na+ and Na+ salts and sweeteners. Proc Natl Acad Sci USA 1983; 80: 6136–40Google Scholar
  163. 163.
    Chlorthalidone (Temoretic). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2633Google Scholar
  164. 164.
    Chlorthalidone (Thalitone). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1046Google Scholar
  165. 165.
    Gifford RW. Ethacrynic acid alone or in combination with methyldopa in management of mild hypertension: a report of 23 patients. Int Z Klin Pharmakol Ther Toxik 1970; 3: 255–60Google Scholar
  166. 166.
    Furosemide (Lasix). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1042Google Scholar
  167. 167.
    Pak C, Ruskin B, Diller E. Enhancement of renal excretion of zinc by hydrochlorothiazide. Clin Chem Acta 1972; 39: 511–7Google Scholar
  168. 168.
    Mattes RD, Engleman K. Effects of combined hydrochlorothiazide and amiloride versus single drug on changes in salt taste and intake. Am J Cardiol 1992; 70: 91–5PubMedGoogle Scholar
  169. 169.
    Mattes RD, Christensen CM, Engelman K. Effects of hydrocholorothiazide and amiloride on salt taste and excretion (intake). Am J Hypertens 1990; 3: 436–43PubMedGoogle Scholar
  170. 170.
    Henkin RI. Drug effects on taste and smell. In: Pradham SN, Maickel RP, Dutta SN, editors. Pharmacology in medicine: principles and practice. Bethesda: SP Press Int., 1986: 748–53Google Scholar
  171. 171.
    Clee MD, Burrow L. Taste and smell in disease. N Engl J Med 1983;309: 1062Google Scholar
  172. 172.
    Triamterine (Maxide). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1168Google Scholar
  173. 173.
    Sekimoto K, Tomita H. Zinc chelation of hypotensive agents causing taste disturbance. Nihon Univ J Med Ass 1986; 28: 233–52Google Scholar
  174. 174.
    Martino E, Aghini-Lombardi F, Maricotti S, et al. Amiodarone iodine-induced hypothroidism: risk factors and follow-up in 28 cases. Clin Endocrinol (Oxf) 1987; 26: 227–37Google Scholar
  175. 175.
    Gentykow GD, Sullivan JY. Extracardiac adverse effects of flecainide. Am J Cardiol 1984; 53: 101B–105BGoogle Scholar
  176. 176.
    Flecainamide (Tambocor). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1282Google Scholar
  177. 177.
    Mexilitine (Mexitil). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 616Google Scholar
  178. 178.
    Moricizine HC1 (Ethmozine). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1872Google Scholar
  179. 179.
    Procainamide (Procan SR). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1769Google Scholar
  180. 180.
    Cholestyramine (Questran). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 642Google Scholar
  181. 181.
    Gastpar H. Drug effects on the nasal mucosa and sense of smell [in German; abstract in English]. Laryngorhinootologie 1986; 65: 415–9Google Scholar
  182. 182.
    Clofibrate (Atromid S). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2517Google Scholar
  183. 183.
    Gemfibrozil (Lopid). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1752Google Scholar
  184. 184.
    Lovastatin (Mevacor). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1490Google Scholar
  185. 185.
    Weber R. Toxic drug-induced hyposmia with lovastatin [in German; abstract in English]. Laryngorhinootologie 1992; 71: 483–4PubMedGoogle Scholar
  186. 186.
    Pravachol (Pravastatin). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2320Google Scholar
  187. 187.
    Kinney EL, Carlin B, Ballard JO, et al. Clinical experience with amrinone in patients with advanced congestive heart failure. J Clin Pharmacol 1982; 22: 433–40PubMedGoogle Scholar
  188. 188.
    Diazoxide (Hyperstat IV). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2146Google Scholar
  189. 189.
    Dipyridamole (Persantin). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 619Google Scholar
  190. 190.
    Doxozosin (Cardura). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1971Google Scholar
  191. 191.
    Whittington J, Raftery EB. A controlled comparison of oxyfedrine, isosorbide dinitrate and placebo in the treatment of patients suffering attacks of angina pectoris. Br J Clin Pharmacol 1980; 10: 211–5PubMedGoogle Scholar
  192. 192.
    Isosorbide mononitrate (Monoket). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2183Google Scholar
  193. 193.
    Ewing RC, Janda SM, Henamon NE. Ageusia associated with transdermal nitroglycerine. Clin Pharm 1989; 8: 146–7PubMedGoogle Scholar
  194. 194.
    Rabe F. Isolierte Ageusie. Ein neues Symptom als Nebenwirkung von Medikamenten. Nervenarzt 1970; 41: 23–7PubMedGoogle Scholar
  195. 195.
    Grand A. Chlorhydrate d’oxyfedrine et trouble du gout. Nouv Presse Med 1972; 1: 1944Google Scholar
  196. 196.
    Becker F, Kirsten G. Die Wirkung von Ildamen und Seda-ildamen bei coronarkranken in Klinik und Practis. Fortschr Med 1968; 19: 723–31Google Scholar
  197. 197.
    Scott PJ. Glossitis with complete loss oftaste sensation during dindevan treatment. Report of a case. N Z Med J 1960; 59: 291–6Google Scholar
  198. 198.
    Labetalol (Trandate). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 478Google Scholar
  199. 199.
    Durand MV. Anosmie recurrente sous beta-bloquers. Presse Med 1985; 14: 2064Google Scholar
  200. 200.
    Henkin RI. Zinc in taste function: a critical review. Biol Trace Elem Res 1984; 6: 263–80Google Scholar
  201. 201.
    Shatzman AR, Henkin RI. Metal binding characteristics of the parotid salivary protein gustin. Biochim Biophys Acta 1980; 623: 107–18PubMedGoogle Scholar
  202. 202.
    Henkin RI, Law, JS, Nelson NR. The role of zinc on the trophic growth factors nerve growth factor and gustin. In: Hurley LS, Keen CL, Lonnerdal B, et al. Trace elements in man and animals 6. New York: Plenum Press, 1988: 385–8Google Scholar
  203. 203.
    Smit AJ, Hoorntje SJ, Donker AJM. Zinc deficiency during captopril treatment. Nephron 1983; 34: 196–7PubMedGoogle Scholar
  204. 204.
    Amlodipine (Norvasc). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1785Google Scholar
  205. 205.
    Berman JL. Dysosmia, dysgeusia and diltiazem. Ann Intern Med 1985; 102:717PubMedGoogle Scholar
  206. 206.
    Wester PO. Zinc during diuretic treatment. Lancet 1975; 8: 587Google Scholar
  207. 207.
    Orita M. Diuretics, Pharmaceutical Development Basic Lectures, VII(II). The current situation of new drugs, and the trends (part I) [in Japanese]. Chijin Shoin 1972: 421–41Google Scholar
  208. 208.
    Solomons NW. Zinc and human nutrition. In: Korcioglu ZA, Sarper RM, editors. Zinc and Copper in Medicine. Springfield: CC Thomas, 1980: 224–75Google Scholar
  209. 209.
    Henkin RI. Zinc in humans. In: Henkin RI, Apgar J, Cole JF, et al., editors. Zinc. Baltimore: University Park Press, 1979: 123–72Google Scholar
  210. 210.
    Giroux EL, Henkin RI. Competition for zinc among serum albumin and amino acids. Biochim Biophys Acta 1972; 273: 64–72PubMedGoogle Scholar
  211. 211.
    Henkin RI. Metal-albumin-amino acid interactions: Chemical and physiological interrelationships. In: Friedman M, editor. Protein-Metal interactions. New York: Plenum Publishing Co, 1974:299–328Google Scholar
  212. 212.
    Henkin RI. New aspects in the control of food intake and appetite. Ann NY Acad Sci 1977; 300: 321–34PubMedGoogle Scholar
  213. 213.
    Catalanotto FA, Henkin RI. Effects of thiols on sodium chloride preference and copper and zinc metabolism in the rat. Am J Physiol 1972; 222: 1594–8PubMedGoogle Scholar
  214. 214.
    Karin A, Brown EA. Isolation and identification of novel sulfur-containing metabolites of spironolactone (aldactone). Steroids 1972; 20: 41–62Google Scholar
  215. 215.
    Metolazone (Mykrox). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 936Google Scholar
  216. 216.
    Duncan RB, Briggs M. Treatment of uncomplicated anosmia by vitamin A. Arch Otolaryngol 1962; 73: 116–20Google Scholar
  217. 217.
    Henkin RI, Smith FR. Hyposmia in acute viral hepatitis. Lancet 1971; 1: 823–6PubMedGoogle Scholar
  218. 218.
    Henkin RI, Laster L. Relationship between vitamin A metabolism and decreased olfactory detection sensitivity in patients with abetalipoproteinemia and other type of malabsorption. J Clin Invest 1967; 46: 1069Google Scholar
  219. 219.
    Briggs MH, Duncan RB. Odour receptors. Nature 1961; 191: 1310–1PubMedGoogle Scholar
  220. 220.
    Smith CG. The change in volume of the olfactory and the accessory olfactory bulbs of the albino rat. J Comp Neurol 1935; 61: 477–508Google Scholar
  221. 221.
    Moulton DC. Pigment and the olfactory mechanism. Nature 1962; 195: 1312–3PubMedGoogle Scholar
  222. 222.
    Briggs MH, Duncan RB. Pigment and the olfactory mechanism. Nature 1962; 195: 1313–4PubMedGoogle Scholar
  223. 223.
    Bernard R, Halpern B. Taste changes in vitamin A deficiency. J Gen Physiol 1968; 52: 444–64PubMedGoogle Scholar
  224. 224.
    Goy JJ, Finci L, Sigwart U. Dysgeusia after high dose dipyri-damole treatment. Arzneimittelforschung 1985; 35: 854PubMedGoogle Scholar
  225. 225.
    Anggard E. Nitric oxide: mediator, murderer and medicine. Lancet 1994; 343: 1199–1206PubMedGoogle Scholar
  226. 226.
    Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med 1993; 329: 2002–12PubMedGoogle Scholar
  227. 227.
    Bredt DS, Hwang PM, Glatt CE, et al. Cloned and expressed nitric oxide synthetase structurally resembles cytochrome P450 reductase. Nature 1991; 351: 714–8PubMedGoogle Scholar
  228. 228.
    Amiodarone (Cardavone). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2528Google Scholar
  229. 229.
    Beddows SA, Page SR, Taylor AH, et al. Cytotoxic effects of amiodarone and desethylamiodorone on human thymocytes. Biochem Pharmacol 1989; 38: 4397–403PubMedGoogle Scholar
  230. 230.
    Kirsner JB. Sulfamethazine-related dysgeusia. JAMA 1979; 241: 837Google Scholar
  231. 231.
    Henkin RI. Sulfamethazine-related dysgeusia. JAMA 1979; 247: 837Google Scholar
  232. 232.
    Rollin H. Drug-related gustatory disorders. Ann Otol Rhinol Laryngol 1978; 87: 37–42PubMedGoogle Scholar
  233. 233.
    Mott AE, Leopold DA. Disorders in taste and smell. Med Clin North Am 1991; 75: 1321–53PubMedGoogle Scholar
  234. 234.
    Jacobi GH, Moergel K. Azulfedine und isolierte ageusie fur die Geschmachsqualitat suss. Internist Praxis 1976; 16: 379–80Google Scholar
  235. 235.
    Sulfisoxazole (Gantrasin). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1928Google Scholar
  236. 236.
    Farr M, Symmons DPM, Blake DR, et al. Neutropenia in patients with inflammatory arthritis treated with sulphasalazine. Am Rheum Dis 1986; 45: 761–4Google Scholar
  237. 237.
    Bliddal H, Eiberg B, Helin P. Gold-induced leucopenia may predict similar adverse reaction to sulfasalazine. Lancet 1987; 1:390PubMedGoogle Scholar
  238. 238.
    Jaffe IA. Ampicillin rashes. Lancet 1970: 1: 245PubMedGoogle Scholar
  239. 239.
    Jojart G. Sense of smell after gentamycin nose-drops. Lancet 1992; 339: 313PubMedGoogle Scholar
  240. 240.
    Manzo E. Azione della kananicini solo organo dell olfactto. Richerike Sperimentali. Arch Ital Otol 1960; 68: 305–21Google Scholar
  241. 241.
    Castello R. Effetti della neurotossicita della streptomicina i didro streptomicina sulla fungione olfattiva. Minerva Otorhinolaryng 1956; 6: 129–35Google Scholar
  242. 242.
    Rapuzzi G, Bruschi ML. Azione della streptomicine sul-l’attevita del recettori linguali di rana. Bull del Soc Ital Biol Spermet 1970; 46: 417–20Google Scholar
  243. 243.
    Amoxicillin (Augmentin). Physicans Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2242–4Google Scholar
  244. 244.
    Kerrebijn KF. Ampicillin rashes. Lancet 1970; 1: 245PubMedGoogle Scholar
  245. 245.
    Shapiro S, Siskina V, Sloane D, et al. Drug rashes with ampicillin and other penicillins. Lancet 1969; 2: 969–72PubMedGoogle Scholar
  246. 246.
    Lankin DL, Jewell GM, Grinvalsky HT. Psychotic-like reaction to procaine penicillin G. Ann Emerg Med 1983; 8: 507Google Scholar
  247. 247.
    Tompsett R. Pseudoanaphylactic reactions to procaine penicillin G. Arch Intern Med 1967; 120: 565–7PubMedGoogle Scholar
  248. 248.
    Piperacillin/Tazalactan (Zosyn). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994; Suppl. B: 33–40Google Scholar
  249. 249.
    Mall T, Witt M, Follath F. Reversible ageusia during cefecetril therapy [in German]. Dtsch Med Wochenschr 1983; 108: 1698PubMedGoogle Scholar
  250. 250.
    Cefadroxil (Duricef)- Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1799Google Scholar
  251. 251.
    Hodgson TG. Bad taste from cefamandole. Drug Intell Clin Pharm 1981; 15: 136PubMedGoogle Scholar
  252. 252.
    Cefpodoxine (Vantin). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2453Google Scholar
  253. 253.
    Ceftriaxone (Rocephin). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2003Google Scholar
  254. 254.
    Cephalexin (Keftab). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 873Google Scholar
  255. 255.
    Enoxacin (Penetrex). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1861Google Scholar
  256. 256.
    Ofloxcacin (Floxin). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1349–59Google Scholar
  257. 257.
    Clarithromycin (Biaxin). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 405Google Scholar
  258. 258.
    Bleasel AF, McLeod JG, Lane Brown M. Anosmia after doxycycline use. Med J Aust 1990; 152: 440PubMedGoogle Scholar
  259. 259.
    Magnasco LD, Magnasco AJ. Metallic taste with tetracycline therapy. Clin Pharmacy 1985; 4: 455–6Google Scholar
  260. 260.
    Abnormalities of taste. BMJ 1976; 2: 198Google Scholar
  261. 261.
    Amphotericin B (Fungizone). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 517Google Scholar
  262. 262.
    Henkin RI. Griseofulvin and dysgeusia: implications. Ann Intern Med 1971; 74: 795–6Google Scholar
  263. 263.
    Fogan L. Griseofulvin and dysgeusia: implications? Ann Intern Med 1971; 74: 795PubMedGoogle Scholar
  264. 264.
    Juhlin L. Loss of taste and terbinafine. Lancet 1992; 339: 1483PubMedGoogle Scholar
  265. 265.
    Back D. Loss of taste and terbinafine [letter]. Lancet 1992; 340: 252PubMedGoogle Scholar
  266. 266.
    Ottervanger J, Stricker BH. Loss of taste and terbinafine. Lancet 1993; 340: 728Google Scholar
  267. 267.
    Rauch S, Cada K. Tuberkulostatika. Hals-Nasen-Öhren-Heilkunde. In: Kuemmerle HP, Gossens N, editors. Klinik und Therapie der Nebenwirkungen. Stuttgart: Thieme, 1973: 310Google Scholar
  268. 268.
    Rollin H. Funkionsprufungen und Storungen des Geschmackssinnes. Arch Otol Rhinol Laryngol 1975; 210: 165–218Google Scholar
  269. 269.
    Girling DJ. Adverse effects of antituberculosis drugs. J Antimicrob Chemother 1982; 23: 56Google Scholar
  270. 270.
    Didanosine (Videx). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 645Google Scholar
  271. 271.
    Foscarnet (Foscavir). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 547Google Scholar
  272. 272.
    Simpson JR. Idoxuridine in the treatment of herpes zoster. Practitioner 1975; 215: 226–9PubMedGoogle Scholar
  273. 273.
    Interferon alfa-n3 (Alferon N). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1813Google Scholar
  274. 274.
    Rimantadine (Flumadine). American Hospital Formulary. Bethesda: American Society of Pharmacists, 1994: 427Google Scholar
  275. 275.
    Zalcitabine (HIVID). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1929–35Google Scholar
  276. 276.
    Zidovudine (Retrovir). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 742Google Scholar
  277. 277.
    Metronidazole (Flagyl). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2208Google Scholar
  278. 278.
    Scott AE. Clinical characteristics of taste and smell disorders. Ear Nose Throat J 1985; 68: 297–315Google Scholar
  279. 279.
    Strassman HD, Adams B, Pearson AW. Metronidazole effect on social drinkers. Q J Stud Alcohol 1970; 31: 394–8PubMedGoogle Scholar
  280. 280.
    Goldman P. Metronidozol. N Engl J Med 1980; 303: 1212–8PubMedGoogle Scholar
  281. 281.
    Prata A. Clinical evaluation of niridazole in Schistosoma mansoni infection. Ann NY Acad Sci 1969; 160: 660–9PubMedGoogle Scholar
  282. 282.
    Manson-Bahr PE. Antiprotozoal drugs. In: Meyler L, Herxheimer A, editors. Side effects of drugs. Vol 7. Amsterdam: Excerpta Medica, 1971: 411Google Scholar
  283. 283.
    Pentamidine (Nebupent). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 969Google Scholar
  284. 284.
    Pentamidine (Pentam). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 970Google Scholar
  285. 285.
    Gordon II BL, Yanagihara R. Treatment of systemic lupus erythematosis with the T-cell immunopotentiator levamisole: a follow-up report of 16 patients under treatment for a minimum of four months. Ann Allergy 1977; 39: 227–36PubMedGoogle Scholar
  286. 286.
    Runge LA. Pinals RS, Lourie SH, et al. Treatment of rheumatoid arthritis with levamisole: a controlled trial. Arthritis Rheum 1977; 20: 1445–8PubMedGoogle Scholar
  287. 287.
    Levamisole (Ergamisol). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1087Google Scholar
  288. 288.
    Van Belle H. Kinetics and inhibition of alkaline phosphatases from canine tissues. Biochim Biophys Acta 1972; 289: 158–68PubMedGoogle Scholar
  289. 289.
    Van Belle H. Kinetics and inhibition of rat and avian alkaline phosphatases. Gen Pharmacol 1976; 7: 53–8PubMedGoogle Scholar
  290. 290.
    Flotra L, Gjermo P, Rolla G, et al. Side effects of chlorhexidine mouth washes. J Dent Res 1971; 79: 119–25Google Scholar
  291. 291.
    Lang NP, Catalanotto FA, Knopfli RU, et al. Quality-specific taste impairment following the application of chlorhexidine digluconate mouth rinses. J Clin Periodontol 1988; 15: 43–8PubMedGoogle Scholar
  292. 292.
    O’Neil TCA. The use of chlorhexidine mouthwash in the control of gingival inflammation. Br Dent 1976; 3: 141: 276Google Scholar
  293. 293.
    Hepso HU, Bjornland T, Skoglund LA. Side effects and patient acceptance of 0.2% vs. 0.1 % chlorhexidine used as post operative prophylactic mouthwash. Int J Oral Maxillofac Surg 1988; 17: 17PubMedGoogle Scholar
  294. 294.
    Plath P, Otten Z. Untersuchungen über die Wirksamkeit von Hexetine bei akuten Erkrankungen des Rachens um der Mundhohle sowie nach Tonsillektomie. Ther Woche 1969; 19: 1565–6Google Scholar
  295. 295.
    Bergenholtz A, Hanstrom L. The plaque inhibiting effect of hexitidine (Oraldene) mouthwash compared to that of chlorhexidine. Comm Dent Oral Epidemiol 1974; 2: 70Google Scholar
  296. 296.
    Ciprofloxocin (Cipro). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1570Google Scholar
  297. 297.
    Beidler LM, Smallman R. Renewal of cells within taste cells. J Cell Biol 1965; 27: 263–72PubMedGoogle Scholar
  298. 298.
    Moulton DG. Cell renewal in the olfactory epithelium of the mouse. In: Denton DA, Koghlan JP, editors. Olfaction and taste V. New York: Academic Press, 1975: 111–4Google Scholar
  299. 299.
    Moulton DG, Celebi G, Fink RP. Olfaction in mammals — two aspects: proliferation of cells in the olfactory epithelium and sensitivity to odours. In: Wolstenholme GEW, Knight J, editors. Taste and smell in vertebrates. London: Churchill, 1970: 227–50Google Scholar
  300. 300.
    Moulton DG, Fink RP. Cell proliferation and migration in the olfactory epithelium, In: Schneider D, editor. Olfaction and taste IV. Stuttgart: Wissenschaftliche Verlagsgesellschaft, 1972:20–26Google Scholar
  301. 301.
    Moulton DG. Dynamics of cell populations in the olfactory epithelium. Ann NY Acad Sci 1974; 237: 52–61PubMedGoogle Scholar
  302. 302.
    Mulvaney BD, Heist HE. Regeneration of rabbit olfactory epithelium. Am J Anat 1971; 131: 241–52PubMedGoogle Scholar
  303. 303.
    Graziadei PPC. Cell dynamics in the olfactory mucosa. Tissue Cell 1973; 5: 113–31PubMedGoogle Scholar
  304. 304.
    Pratt WB. Chemotherapy of infection. New York: Oxford University Press, 1977:128–175Google Scholar
  305. 305.
    Seydell EM, Mecknight WP. Disturbances of olfaction resulting from intranasal use of tyrothricin. Arch Otolaryngol 1948; 47: 465–70PubMedGoogle Scholar
  306. 306.
    Weitzel C, Streikem FJ, Roester U, et al. Zink in Tepetum Lucidum. Hoppe-Zeyler’s Z Physiol Chem 1964; 296: 19–30Google Scholar
  307. 307.
    Ketoconazole (Nizoral). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1095Google Scholar
  308. 308.
    Back DJ, Teja JF. Azalez and allylamines: the clinical implications of interaction with cytochrome P-450 enzymes. J Dermatol Treat 1990; 1 Suppl. 2: 11–3Google Scholar
  309. 309.
    Como JA, Dismukes WE. Oral azole drugs as systemic antifungal therapy. N Engl J Med 1994; 330: 263–72PubMedGoogle Scholar
  310. 310.
    Loose DS, Kan PB, Hirst MA, et al. Ketoconozole blocks adrenal steroidogenesis inhibiting cytochrome P450 dependent enzymes. J Clin Invest 1983; 71: 1495–9PubMedGoogle Scholar
  311. 311.
    MacLean JH, Shipley MT, Bernstein DJ. Transnasal, transneuronal transport of herpes simplex virus type I into the rat brain. Soc Neurosci Abst 1987; 13: 1399Google Scholar
  312. 312.
    Gebhardt BM, Hall JM. Cellular neuroimmunologic reponses to ocular herpes simplex virus infection. J Neuroimmunol 1990; 28: 227–36PubMedGoogle Scholar
  313. 313.
    Stroup WG, Rock DL, Finzer NW. Localization of herpes simplex virus in the trigeminal and olfactory systems of the mouse central nervous system during acute latent infections by in situ hybridization. Lab Invest 1984; 51: 27–38Google Scholar
  314. 314.
    Kanda Y, Shigeno K, Kinoshita N, et al. Sudden hearing loss associated with interferon. Lancet 1994; 343: 1134–5PubMedGoogle Scholar
  315. 315.
    Calvet MC, Gresser I. Interferon enhances the excitability of cultured neurons. Nature 1979; 278: 558–60PubMedGoogle Scholar
  316. 316.
    Schattner A. Interferon on autoimmunity. Am J Med Sci 1989; 295: 532–44Google Scholar
  317. 317.
    Conton KC, Urba WJ, Smith II JW, et al. Exacerbation of symptoms of autoimmune disease in patients receiving alpha-interferon therapy. Cancer 1990; 65: 2237–42Google Scholar
  318. 318.
    Borgers M. The cytochemical application of new potent inhibitors of alkaline phosphatases. J Histochem Cytochem 1973; 21: 812–24PubMedGoogle Scholar
  319. 319.
    Glenney Jr JR. Tyrosine-phosphorylated proteins: mediators of signal transduction from the tyrosine kinases. Biochim Biophys Acta 1992; 1134: 113–27PubMedGoogle Scholar
  320. 320.
    Fischer EH, Charbonneau H, Tonks NK. Protein tyrosine phosphatases: a diverse family of intracellular and transmembrane enzymes. Science 1991; 253: 401–6PubMedGoogle Scholar
  321. 321.
    Lum CKL, Henkin RI. Characterization of fractions from bovine taste buds and epithelial tissue: Relationships to bioactivity. Biochim Biophys Acta 1976; 421: 362–79PubMedGoogle Scholar
  322. 322.
    Needleman M, Rez A. Thromboxanes: selective biosynthesis and distinct biological properties. J Clin Invest 1976; 193: 163–5Google Scholar
  323. 323.
    Bourliere F, Cendron H, Rapaport A. Action de l’acide acetylsalicylique sur la sensibilite au gout amer chez l’homme. Rev Fr Etud Clin Biol 1959; 4: 380–2PubMedGoogle Scholar
  324. 324.
    Rapaport A. Effet du salicylate de soude sur la reponse primaire du rat blanc aux stimuli amers. C R Soc Biol (Paris) 1956; 150: 2182–6Google Scholar
  325. 325.
    Chalopin H, Sodigne G, Nigeon-Dureuil M. Action de l’ion Sodium du salicylate de Sodium sur le rat normal aulsurrenalectomise soumis au froid et a l’inanition. J Physiol 1958; 50: 209–12Google Scholar
  326. 326.
    Hellekant G, Gopal V. Depression of taste responses by local or intravascular administration of salicylates in the rat. Acta Physiol Scand 1975; 95: 286–92PubMedGoogle Scholar
  327. 327.
    Song MK, Adham NF. Role of prostaglandin E in zinc absorption in the rat. Am J Physiol 1978; 234: E99–105PubMedGoogle Scholar
  328. 328.
    State FA. Effect of indomethacin on the histological structure and cholinesterase activity of taste buds. Acta Anat (Basel) 1980: 106: 30–4Google Scholar
  329. 329.
    Ibuprofen (Nuprin). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 684Google Scholar
  330. 330.
    Ketoprofen (Orudis). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2571Google Scholar
  331. 331.
    Straza JA, Ressetar M. Butazolidine in the treatment of arthritis. J Med Soc NJ 1953; 50: 333–4Google Scholar
  332. 332.
    Rechenberg V. Butazoldin. Thieme, Stuttgart, 1961: 102Google Scholar
  333. 333.
    Diclofenac (Voltarin). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 996Google Scholar
  334. 334.
    Etodolac (Lodine). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2551–3Google Scholar
  335. 335.
    Flurbiprofen (Ansaid). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2393Google Scholar
  336. 336.
    Ketorolac (Toradol). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2372Google Scholar
  337. 337.
    Misoprostol (Cytotec). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2197Google Scholar
  338. 338.
    Nabumetone (Relafen). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2275Google Scholar
  339. 339.
    Oxaprozin (Daypro). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2199Google Scholar
  340. 340.
    Piroxicam (Feldene). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1792Google Scholar
  341. 341.
    Sulindac (Clinoril). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1415Google Scholar
  342. 342.
    Beclomethasone (Beconase aerosol). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 475Google Scholar
  343. 343.
    Flunisolide (Aerobid, Aerobid-M). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 948Google Scholar
  344. 344.
    Drettner B, Ebbesen A, Nilsson M. Prophylactic treatment with flunisolide after polypectomy. Rhinology 1982; 20: 149–58PubMedGoogle Scholar
  345. 345.
    Pirbuterol (Maxair Inhaler). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1278Google Scholar
  346. 346.
    Behrend T. Was iest gesichert in der Behandlung der chronischen entzündlichen Gelenkerkrankungen? Internist (Berl) 1972; 13:473–80Google Scholar
  347. 347.
    Witzgall H. Goldbehandlung des chronischen Gelenkrheumatismus. Internist (Berl) 1967; 8: 250–3Google Scholar
  348. 348.
    Hochberg MC. Auronofin or D-penicillamine in treatment of rheumatoid arthritis. Ann Intern Med 1986; 105: 528–35PubMedGoogle Scholar
  349. 349.
    Gold sodium thiomalate (Myochrysine). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1501Google Scholar
  350. 350.
    Grootveld M, Blake DR, Sahinoglu T, et al. Control of oxidative damage in rheumatoid arthritis by gold(I)-thiolate drugs. Free Radic Res Comm 1990; 10: 199–220Google Scholar
  351. 351.
    Sternlieb I, Scheinberg H. Penicillamine therapy for hepato-lenticular degeneration. JAMA 1964; 189: 748–54PubMedGoogle Scholar
  352. 352.
    Keiser HR, Henkin RI, Kare MR, et al. Loss of taste during therapy with penicillamine. JAMA 1968; 203: 381–3PubMedGoogle Scholar
  353. 353.
    Gutierrez Fuentes JA. Ageusia as a secondary manifestation of treatment with D-penicillamine fin Spanish; abstract in English]. Res Clin Esp 1984; 172: 149–51Google Scholar
  354. 354.
    Jaffe IA. The treatment of rheumatoid arthritis and necrotizing vasculitis with penicillamine. Arthritis Rheum 1970; 13: 436–43PubMedGoogle Scholar
  355. 355.
    Huskisson FC, Hart FD. Penicillamine in the treatment of rheumatoid arthritis. Ann Rheum Dis 1972; 31: 402–4PubMedGoogle Scholar
  356. 356.
    Jaffe IA. Effects of penicillamine on the kidney and on taste. Postgrad Med J 1968; 44: 15–8Google Scholar
  357. 357.
    Taisch G, Broil H, Eberl R. D-penicillamine (Artimen) als Basistherapie bei chronischer Polyarthritis. Wien Klin Wschr 1973; 85: 59–63Google Scholar
  358. 358.
    Multicenter Trial Group. Controlled trial of D-penicillamine in severe rheumatoid arthritis. Lancet 1973; 1: 275–80Google Scholar
  359. 359.
    Miehlke K, Jentsch D. D-penicillamine-Therapie bei entzündlichen rheumatischen Krankheiten. Dtsch Arztbl 1975; 1207–12Google Scholar
  360. 360.
    Lyle WH. Penicillamine and zinc. Lancet 1974; 2: 1140PubMedGoogle Scholar
  361. 361.
    Penicillamine (Cupramine). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1424Google Scholar
  362. 362.
    Kare MR, Henkin RI. The effects of D-penicillamine on taste preference and volume intake of sodium chloride by the rat. Proc Soc Exp Biol Med 1969; 131: 559–65PubMedGoogle Scholar
  363. 363.
    Zawalich WS. Gustatory nerve discharge and preference behavior of penicillamine treated rats. Physiol Behav 1971; 6: 419–23PubMedGoogle Scholar
  364. 364.
    Ito H. Preference behavior and taste nerve responses in D-penicillamine treated rats. Physiol Behav 1978; 21: 574–9Google Scholar
  365. 365.
    Allopurinol (Zyloprim). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 772Google Scholar
  366. 366.
    Colchicine. Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1214Google Scholar
  367. 367.
    Beidler LJ, Nejod MS, Smallman RL, et al. Rat taste cell proliferation [abstract]. Fed Proc 1960; 19: 302Google Scholar
  368. 368.
    Henkin RI, Bradley DF. Hypogeusia corrected by Ni++ and Zn++. Life Sci 1970; 9: 701–9Google Scholar
  369. 369.
    Henkin RI, Bradley DF. Regulation of taste acuity by thiols and metal ions. Proc Natl Acad Sci USA 1969; 62: 30–7PubMedGoogle Scholar
  370. 370.
    Huskisson EC, Jaffe IA, Scott J, et al. 5-thiopyridoxine in rheumatoid arthritis: clinical and experimental studies. Arthritis Rheum 1980; 23: 106–10PubMedGoogle Scholar
  371. 371.
    Malawista SE. The action of colchicine in acute gouty arthritis. Arthritis Rheum 1975; 18 Suppl. 6: 835–46PubMedGoogle Scholar
  372. 372.
    Neundorfer B. Disorders of smell and taste in treatment with thiamazole and carbimazole [in German]. Nervenarzt 1987; 58: 61–2PubMedGoogle Scholar
  373. 373.
    Leys D. Hyperthyroidism treated with methythiouracil. Lancet 1945; 1: 461–4Google Scholar
  374. 374.
    Grossman S. Loss of taste and smell due to prophythiouracil therapy. NY State J Med 1953; 53: 1236Google Scholar
  375. 375.
    Frawley TF, Keopf GF. Neurotoxicity due to thiouracil and thiomen derivatives. Case report. J Clin Endocrinol 1950; 10: 623–5Google Scholar
  376. 376.
    Isbister J, Rundle FF. Antithyroid therapy: clinical trials with ‘mercazole’. Med J Aust 1954; 1: 78Google Scholar
  377. 377.
    Kruskemper HL. Nebenwirkungen thryrenstatischen Arzneimittel. Internist 1966; 1: 436–42Google Scholar
  378. 378.
    Ruhdorff KH. Geruchs und Geschmacksstörungen durch Thiamazol. Dstch Med Wschr 1979; 104: 408Google Scholar
  379. 379.
    Varma VM, Dai WL, Henkin RI. Persistent taste abnormalities in patients with thyroid cancer after thyroidectomy and radioactive iodine (RAI) may be related to racial or age differences in parotid saliva(s) RAI. Clin Res 1993; 41: 392AGoogle Scholar
  380. 380.
    Ferguson AW, de la Harpe PL, Farquar JW. Dimethyldiguanide in the treatment of diabetic children. Lancet 1961; 1: 1367–9PubMedGoogle Scholar
  381. 381.
    Haller H, Strauzenberg SE. Orale Diabetes Therapie. Leipzig: Thieme, 1966Google Scholar
  382. 382.
    Weller C, Macanlay A. Preliminary clinical observations on the use of a biguanide (DBI) as an oral hypoglycemic agent. J Am GeriatSoc 1959; 7: 128–36Google Scholar
  383. 383.
    Lahon HFJ, Mann RD. Glipizide: results of a multicentre clinical trial. J Int Med Res 1973; 1: 608–15Google Scholar
  384. 384.
    Gazzola G. Duecasi di ageusia d’insulin-terapia. Arch Psicolog Neurol Psychiatr 1952; 13: 104Google Scholar
  385. 385.
    Tolbutamide (Orinase). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2438Google Scholar
  386. 386.
    Diazoxide (Proglycem). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 576Google Scholar
  387. 387.
    Halter J, Kulkosky P, Woods S, et al. Afferent receptors, taste perception and pancreatic endocrine function in man. Diabetes 1975; 24: 414Google Scholar
  388. 388.
    Le Floch JR, Lievre GL, Sadoun J, et al. Taste impairment and related factors in type I diabetes mellitus. Diabetes Care 1989; 12: 173–8PubMedGoogle Scholar
  389. 389.
    Henkin RI, Earll JM. Abnormalities of sugar recognition and perception in patients with type II diabetes. Clin Res 1987; 35: 578AGoogle Scholar
  390. 390.
    Cohen AM, Shafrir T. Comparison of free fatty acid and glucose response in diabetic patients treated with phenethy-formamidimyliminourea HC1(DBI) Isr Med J 1962; 21: 28Google Scholar
  391. 391.
    Wray HL, Harry AW. Adenosine 3′5′ monophosphate-dependent protein kinase in adipose tissue: inhibition by tolbutamide. Biochem Biophys Res Comm 1973; 53: 291–4PubMedGoogle Scholar
  392. 392.
    Lasseter KC, Levey GS, Palmer RF, et al. The effect of sulfonylurea drugs on rabbit myocardial contractility, canine purkinge fiber automaticity and adenyl cyclase activity from rabbit and human hearts. J Clin Invest 1972; 51: 2429–34PubMedGoogle Scholar
  393. 393.
    Mertz W. Chromium. Physiol Rev 1969; 49: 164–231Google Scholar
  394. 394.
    Olmez I, Gulovali MC, Gordon G, et al. Trace elements in human saliva. In: Hemphill DD, editor. Trace Substances in Environmental Health XII. Columia: University of Missouri Press, 1978:231–240Google Scholar
  395. 395.
    Henkin RI, Gill Jr JR, Bartter FC. Studies on taste thresholds in normal man and patients with adrenal cortical insufficiency: The effects of adrenocorticosteroids. J Clin Invest 1963; 42: 727–35PubMedGoogle Scholar
  396. 396.
    Henkin RI, Bartter FC. Studies on olfactory thresholds in normal man and in patients with adrenal cortical insufficiency: The role of adrenal cortical steroids and of serum sodium concentration. J Clin Invest 1966; 45: 1631–9PubMedGoogle Scholar
  397. 397.
    Pruszewicz A, Kosowicz J. Quantitative and qualitative studies of the taste and smell in adrenal insufficiency. Endokrynol Pol 1966; 17: 321–327PubMedGoogle Scholar
  398. 398.
    Ezeh PI. Effect of steroids on the olfactory function of the dog. Physiol Behav 1992; 51: 1183–7PubMedGoogle Scholar
  399. 399.
    Henkin RI. The effects of corticosteroids and ACTH on sensory systems. In: De Wied D, Weijnen WM, editors. Progress in brain research. Amsterdam: Elsevier, 1970: 270–94Google Scholar
  400. 400.
    Henkin RI. The neuroendocrine control of perception. In: Hamburg DA, Pribram KH, Stunkard AJ, editors. Perception and its disorders. Baltimore, Williams and Wilkins, 1970: 54–107Google Scholar
  401. 401.
    Henkin RI. The role of adrenal corticosteroids in sensory processes. In: Blaschko H, Sayers G, Smith AD, editors. Handbook of physiology. Vol 6. Adrenal gland. Washington DC: American Physiology Society 1975: 209–30Google Scholar
  402. 402.
    Henkin RI. The metabolic regulation of taste acuity. In: Pfaffmann C, editor. Olfaction and taste III. New York: Rockefeller University Press, 1969: 574–85Google Scholar
  403. 403.
    Henkin RI, Fontana JA, Walker MD. On the mechanism of the presence and distribution of adrenal corticosteroids in the central and peripheral nervous system. Proceedings of the Third International Congress on Hormonal Steroids; 1970 Sept 7–12: Hamburg. Amsterdam: Excerpta Medica, 1971: 954–67Google Scholar
  404. 404.
    Henkin RI, Bradley DF. On the mechanism of action of carbohydrate active steroids on tastant detection and recognition. In: Sawyer C, Gorski R, editors. Steroid hormones and brain function. New York: Marcel Dekker, 1971: 225–311Google Scholar
  405. 405.
    Cooper DS. Antithyroid drugs. N Engl J Med 1980; 311: 1353–62Google Scholar
  406. 406.
    Reck R. Reversible loss of taste as a side effect in thiamazole therapy. Fortschr Med 1982; 100: 444–5PubMedGoogle Scholar
  407. 407.
    Erikssen J, Seegaard E, Naess K. Side-effect of thiocarbamides. Lancet 1975; 1: 231–3PubMedGoogle Scholar
  408. 408.
    Harris H, Kalmus H, Trotter WF. Taste sensitivity to phenylthiourea in goitre and diabetes. Lancet 1949; 2: 1038–9PubMedGoogle Scholar
  409. 409.
    McCarrison R. The thyroid gland in health and disease. London: Tindall and Co., 1917:178Google Scholar
  410. 410.
    Fischer R, Griffin F. Taste blindness and variations in taste threshold in relation to thyroid metabolism in normal and mentally ill populations. J Neuropsychiat 1960; 3: 98–104Google Scholar
  411. 411.
    Pittman JA, Beschi RJ. Taste thresholds in hyper-and hypothyroidism. J Clin Endocrinol Metab 1967; 27: 893–6Google Scholar
  412. 412.
    Mattes RD, Heller AD, Rivlin RS. Abnormalities in supra-threshold taste function in early hypothyroidism. In: Meiselman HL, Rivlin RS, editors. Clinical measurement of taste and smell. New York: MacMillan, 1986: 467–86Google Scholar
  413. 413.
    Henkin RI. Effects of ACTH, adrenocorticosteroids and thyroid hormone on sensory function. In: Stumpf W, Grant L, editors. Anatomical neuroendocrinology. Basel: S Karger, 1975:298–316Google Scholar
  414. 414.
    Beard MD, MacKay-Sim A. Loss of sense of smell in adult hypothyroid mice. Dev Brain Res 1987; 36: 18–189Google Scholar
  415. 415.
    Walker P, Weichsel Jr ME, Fisher DA, et al. Thyroxine increases nerve growth factor concentration in adult mouse brain. Science 1979; 204: 427–9PubMedGoogle Scholar
  416. 416.
    Walker P, Weil ML, Weichsel Jr ME., et al. Effect of thyroxine on nerve growth factor concentration in neonatal mouse brain. Life Sci 1981; 28: 1777–87PubMedGoogle Scholar
  417. 417.
    David S, Nathaniel EJH. Neural changes induced by neonatal hypothyroidism: an ultrasound study. Am J Anat 1983; 167: 381–94PubMedGoogle Scholar
  418. 418.
    Dussault JH, Ruel J. Thyroid hormones and brain development. Ann Rev Physiol 1987; 49: 321–4Google Scholar
  419. 419.
    Patel AJ, Rabie A, Lewis PD, et al. Effect of thyroid deficiency on postnatal cell formation in the rat brain: a biochemical investigation. Brain Res 1976; 104: 3–38Google Scholar
  420. 420.
    MacKay-Sim A, Beard MD. Hypothyroidism disrupts neural development in the olfactory epithelium of adult mice. Dev Brain Res 1987; 36: 190–8Google Scholar
  421. 421.
    Henkin RI, Shatzman AR. TSH, T3 and T4 stimulate adenylate cyclase in purified taste bud membranes. Clin Res 1981; 29: 580AGoogle Scholar
  422. 422.
    Law J, Henkin RI. Thyroid hormone inhibits taste bud membrane (TBM) adenosine 3′5′ monophosphate (cAMP) phos-phodiesterase (PDE) activity: a possible mechanism for hypogeusia in hypothyroidism. Clin Res 1983; 31: 528aGoogle Scholar
  423. 423.
    Law J, Henkin RI. Taste bud adenosine-3′5′-monophosphate phosphodiesterase: activity, subcellular distribution and kinetic parameters. Res Comm Chem Path Pharm 1982; 38: 439–52Google Scholar
  424. 424.
    Napolitano G, Palka G, Lio S, et al. Is zinc deficiency a cause of subclinical hypothyroidism in Down syndrome? Ann Genet 1990; 33: 9–15PubMedGoogle Scholar
  425. 425.
    Dai WL, Henkin RI. Hypothroidism induces zinc deficiency in humans. Clin Res 1994; 42: 172AGoogle Scholar
  426. 426.
    Arthur JR, Nicol F, Beckett JR. Hepatic iodothyronine 5′-deiodinase: the role of selenium. Biochem J 1990; 272: 537–40PubMedGoogle Scholar
  427. 427.
    Behne D, Kyriakopoulos A, Meinhold H, et al. Identification of type 1 iodothyronine 5’ deiodinase as a selenoenzyne. Biochem Biophys Res Comm 1990; 173: 1143–9PubMedGoogle Scholar
  428. 428.
    Berry MJ, Bann L, Larsen PR. Type 1 iodothyronine deiodinase is a selenocystein-containing enzyme. Nature 1991; 349: 438–40PubMedGoogle Scholar
  429. 429.
    Chandhury S, Sarkar PK. Stimulation of tubulin synthesis by thyroid hormones in the developing rat brain. Biochim Biophys Acta 1983; 763: 93–8Google Scholar
  430. 430.
    Valcana T, Einstein ER, Csejtey J, et al. Influence of thyroid hormones on myelin proteins in the developing rat brain. J Neurol Sci 1975; 25: 19–27PubMedGoogle Scholar
  431. 431.
    Noguchi T, Sugiasaki T. Hypomyelation in the cerebrum of the congenitally hypothyroid mouse (hyt). J Neurochem 1984; 42: 891–3PubMedGoogle Scholar
  432. 432.
    Nicholson JL, Altman J. Synaptogenesis in the rat cerebellum: effects of early hypo- and hyperthyroidism. Science 1972; 176: 530–1PubMedGoogle Scholar
  433. 433.
    Gottesfeld Z, Garcia CJ, Chronister RB. Perinatal, not adult, hypothyroidism suppresses dopaminergic axon sprouting in the deafferented olfactory tubercle of adult rats. J Neurosci Res 1987; 18: 568–73PubMedGoogle Scholar
  434. 434.
    Johanson IB. Development of olfactory and thermal responsiveness in hypothyroid and hyperthyroid rat pups. Dev Psychobiol 1980; 13: 343–52Google Scholar
  435. 435.
    Dai WL, Varma VM, Henkin RI. Distribution and uptake of radioactive iodine (RAI) and early oral symptoms in patients with thyroid cancer and RAI. Clin Res 1993; 41: 357AGoogle Scholar
  436. 436.
    Terry MC, Segal C. The association of diabetes and taste blindness. J Hered 1947; 38: 135–9PubMedGoogle Scholar
  437. 437.
    Bonatti M. Diabetes e gusto. Arcisp S Anna Ferrara 1950; 3: 245Google Scholar
  438. 438.
    Fabbi F. Gustatory sense modifications in diabetes. Arch Ohren Nasen Kehl Heilk 1954; 164: 543–6Google Scholar
  439. 439.
    Jorgensen MB, Buch NH. Studies on the sense of smell and taste in diabetics. Acta Otorhinolaryngol 1961; 53: 539–45Google Scholar
  440. 440.
    Law JS, Henkin RI. Low parotid saliva calmodulin in patients with taste and smell dysfunction. Biochem Med Metab Biol 1986; 36: 118–24PubMedGoogle Scholar
  441. 441.
    Chang FH, Bourne HR. Dexamethasone increases adenyl cyclase activity and expression of the α-subunit of Gs in GH3 cells. Endocrinology 1987; 121: 1711–5PubMedGoogle Scholar
  442. 442.
    Pieroni JB, Jacobowitz O, Chen J, et al. Signal recognition and integration of adenylate cyclase via inhibitory GTP-binding proteins. J Biol Chem 1990; 262: 11897–900Google Scholar
  443. 443.
    Saito N, Guitant X, Hayward M, et al. Corticosterone differentially regulates expression of Gsα and Giα messenger RNA and protein in rat cerebral cortex. Proc Natl Acad Sci USA 1989; 86: 3906–10PubMedGoogle Scholar
  444. 444.
    Gannon MN, Akompong T, Billingsley ML, et al. Adrenalec-tomyinduced alterations in calmodulin-dependent hippocampal adenylate cyclase activity: role of guanine nucleotide-binding proteins. Endocrinology 1994; 134: 853–7PubMedGoogle Scholar
  445. 445.
    Vitamin D. Ergocalciferol. Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2178Google Scholar
  446. 446.
    Jones PB, McCloskey EV, Kanis JA. Transient taste-loss during treatment with etidronate. Lancet 1987; 2: 637Google Scholar
  447. 447.
    Etidronate (Didronel). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1808Google Scholar
  448. 448.
    Etretinate (Tegison). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1908Google Scholar
  449. 449.
    Hesse E, Schnuch A. Taste and olfactory disturbances after treatment for acne with isotretinoin, a 13-cis-isomer of retinoic acid. Eur Arch Otorhinolaryng 1991; 247: 382–3Google Scholar
  450. 450.
    Whittet HB, Shinkwin C, Freeland AP. Anosmia due to nasal administration of corticosteroid. BMJ 1991; 303: 651PubMedGoogle Scholar
  451. 451.
    Terfenadine (Seldane). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1321Google Scholar
  452. 452.
    Loratadine (Claritin). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2131Google Scholar
  453. 453.
    Promethazine (Phenergan). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2582Google Scholar
  454. 454.
    Oxymetazoline (Afrin) American Hospital Formulary. Bethesda: American Society of Pharmacists, 1994: 1845Google Scholar
  455. 455.
    Phenylephrine/Neosynephrine (4-way fast acting nasal spray). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994:683Google Scholar
  456. 456.
    Pseudoephedrine (in Seldane discussion). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1326Google Scholar
  457. 457.
    Butorphanol (Stadol). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1381–4Google Scholar
  458. 458.
    Von Anrep F. Uber die physiologische Wirkurng des kokains. Pflugers Arch 1879; 21: 38–77Google Scholar
  459. 459.
    Knapp H. Hydrochlorate of cocaine-experiments and application. Med Rec 1884; 26: 461–3Google Scholar
  460. 460.
    Kiesone F. Uber die Wirkung des Cocain und der Gymnemasauve auf die Schleinnaut der Zunge und des Mandraums. Philosoph Stud Wundt 1894; 9: 510–27Google Scholar
  461. 461.
    Zilstorff-Pederson K. Sense of smell alterations by cocaine and tetracaine. Arch Otolaryngol 1965; 82: 53–5Google Scholar
  462. 462.
    Zilstorff K, Herbild O. Parosmia. Acta Otolaryngol Suppl 1979; 360: 40–1PubMedGoogle Scholar
  463. 463.
    Gordon AS. The effect of chronic cocaine abuse on human olfaction. Arch Otol Head Neck Surg 1990; 116: 1415–8Google Scholar
  464. 464.
    Macht DI, Macht MB. Comparison of effect of cobra venom and opiates on olfactory sense. Am J Physiol 1940; 129: P411–2Google Scholar
  465. 465.
    Rebattie JP, Lafon H, Caigfinger H. La pathologie iatrogene en oto-rhinolarngologie. J Fr Otol Rhino Laryngol 1972; 21: 931–5Google Scholar
  466. 466.
    Bertino M, Beauchamp GK, Engelman K. Naltrexone, an opioid blocker, alters taste perception and nutrient intake in humans. Am J Physiol 1991; 26: R59–63Google Scholar
  467. 467.
    Alprozolam (Xanax). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2456Google Scholar
  468. 468.
    Westhofen M. Drug induced disorders of smell [in German]. Med Montaschr Pharm 1990; 13: 138–40Google Scholar
  469. 469.
    Amoxapine (Ascendin). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1153Google Scholar
  470. 470.
    Estazolam (Prosom). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 451Google Scholar
  471. 471.
    Flurazepam (Dalmane). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1959Google Scholar
  472. 472.
    Oxazepam (Serax). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2605Google Scholar
  473. 473.
    Triazolam (Halcion). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2422Google Scholar
  474. 474.
    Ethchlorvynol (Placidyl). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 449Google Scholar
  475. 475.
    Zolpidem (Ambien). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2189–92Google Scholar
  476. 476.
    Amytriptyline (Elavil). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2332Google Scholar
  477. 477.
    Clomipramine (Anafranil). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 578Google Scholar
  478. 478.
    Desipramine (Norpramin). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1313Google Scholar
  479. 479.
    Imipramine (Tofranil). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 995Google Scholar
  480. 480.
    Trimipramine (Surmontil). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2608Google Scholar
  481. 481.
    Bupropion (Wellbutrin). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 762Google Scholar
  482. 482.
    Chlormezanone (Trancopal). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2122Google Scholar
  483. 483.
    Paroxetine (Paxil). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2267Google Scholar
  484. 484.
    Setraline (Zoloft). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2000Google Scholar
  485. 485.
    Venlafaxine (Effexor). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: Suppl. A48–52Google Scholar
  486. 486.
    Trazodone (Desyrel). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 514Google Scholar
  487. 487.
    Fluphenazine (Prolixin). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 520Google Scholar
  488. 488.
    Risperidone (Rispendal). Physicans Desk Reference. 48th ed. Montvale: Medical Economics, 1994: A24–A28Google Scholar
  489. 489.
    Fischer R, Griffin R, Rockey MA. Gustatory chemoreception in man: multidisciplinary aspects and perspectives. Perspect Biol Med 1966; 9: 549–77PubMedGoogle Scholar
  490. 490.
    Duffield JW. Side effects of lithium carbonate. BMJ 1973; 1: 491PubMedGoogle Scholar
  491. 491.
    Bressier B. An unusual side-effect of lithium. Psychosomatics 1980; 21: 688–9Google Scholar
  492. 492.
    Rogers GA. Flavor altered by lithium. Am J Psychiatr 1981; 138:261PubMedGoogle Scholar
  493. 493.
    Lithium (Eskalith). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2257Google Scholar
  494. 494.
    Greenberg AJ, Kane JM, Keller MB, et al. Comparison of standard and low serum levels of lithium for maintenance treatment of bipolar disorders. N Engl J Med 1989; 321: 1489–93Google Scholar
  495. 495.
    Gallizia G, Diversi G. Psychopharmaka und Geschmach. Monatschr Ohrenhlk Laryngol Rhinol 1968; 102: 230–1Google Scholar
  496. 496.
    Fieve RR. Moodswing. The third revolution in psychiatry. New York: Bantam Books, 1975: 203Google Scholar
  497. 497.
    Juergens SM. Problems with benzodiazepines in elderly patients. Mayo Clin Proc 1993; 68: 818–820PubMedGoogle Scholar
  498. 498.
    Cartlidge NE, Hudgson P, Weightman D. A comparison of baclofen and diazepam in the treatment of spasticity. J Neurol Soc 1974; 23: 17–24Google Scholar
  499. 499.
    Lingjaerrde O. Benzodiazepines in the treatment of schizophrenia: an updated survey. Acta Psychiatr Scand 1991; 84:453–9Google Scholar
  500. 500.
    Fischer R, Griffin F, Archer AC, et al. Weber ratio in gustatory chemoreception: an indication of systemic (drug) reactivity. Nature 1965; 207: 1049–53PubMedGoogle Scholar
  501. 501.
    Barondes SH. Thinking about prozac. Science 1994; 263: 1102–3PubMedGoogle Scholar
  502. 502.
    Baclofen (Lioresal). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 985Google Scholar
  503. 503.
    Turner P, Cattell WR, Patterson SS. Bamifylline hydrochloride, a new xanthine derivative in chronic bronchitis. J New Drugs 1966; 5: 333–6Google Scholar
  504. 504.
    Cyclobenzaprine (Flexaril). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1455Google Scholar
  505. 505.
    Dantrolene (Dantrium). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1806Google Scholar
  506. 506.
    Methocarbamol (Robaxin). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1899Google Scholar
  507. 507.
    Sulindac (Clinoril). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1415Google Scholar
  508. 508.
    Amphetamine/Dextroamphetamine (Obetrol). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1843Google Scholar
  509. 509.
    Fenfluramine (Pondimin). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1894Google Scholar
  510. 510.
    Mazindol (Sanorex). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2078Google Scholar
  511. 511.
    Phendimetrazine (Bontril). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 778Google Scholar
  512. 512.
    Ahokas AJ, Payne JG, Goetzi FR. The influence of amphetamine sulfate upon the acuity of the sense of taste for sucrose and upon the sensation complex of appetite and satiety. Perm Fnd Med Bull 1950: 107–12Google Scholar
  513. 513.
    Herxheimer A. Amphetamine and taste in man. In: Herxheiner A, editor. Symposium on drugs and sensory functions. Boston: Little, Brown and Co., 1968: 131–9Google Scholar
  514. 514.
    Mata F. Effect of dextroamphetamine on bitter taste threshold. J Neuropsych 1963; 4: 315–20Google Scholar
  515. 515.
    Guild AA. Olfactory acuity in normal and obese human subjects: diurnal variations and the effect of D-amphetamine sulfate. J Laryngol 1956; 70: 408–14Google Scholar
  516. 516.
    Turner P. Amphetamines and smell threshold in man. In: Herxheiner A, editor. Drugs and sensory functions. London: Churchill, 1968Google Scholar
  517. 517.
    Goetzl FR, Stone F. The influence of amphetamine sulfate upon olfactory acuity and appetite. Gastroenterology 1948; 10: 708–13PubMedGoogle Scholar
  518. 518.
    Phentermine (Fastin). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2258Google Scholar
  519. 519.
    Calne DB, Williams AC, Neophytides A, et al. Long term treatment of Parkinsonism with bromocryptine. Lancet 1978; 1: 735–8PubMedGoogle Scholar
  520. 520.
    Mania-Farnell BL, Farbman AI, Bruch RC. Bromocryptime, a dopamine D2 receptor agonist, inhibits adenylyl cyclase activity in rat olfactory epithelium. Neuroscience 1993; 57: 173–80PubMedGoogle Scholar
  521. 521.
    A second report on levodopa. Med Lett 1969; 11:1Google Scholar
  522. 522.
    Barbeau A. L-Dopa therapy: past, present and future. Ariz Med 1970; 27: 1–6PubMedGoogle Scholar
  523. 523.
    Walzholz U, Schoenfelder H. Fortschritte in der Behandlung der Parkinson-syndrome mit L-dopa durch Kombination mit einem decarboxylase-henne Ergebnisse: einem Langzeitstudie. Nervanartz 1972; 43: 531–2Google Scholar
  524. 524.
    Ziegfried J, Zumstein H. Changes in taste under L-Dopa therapy. Z Neurol 1971; 200: 345–8Google Scholar
  525. 525.
    L-dopa (Larodopa). Nutley: Roche Laboratories, 1938Google Scholar
  526. 526.
    Haga M, Tomita H. Zinc chelation capacity of drugs causing taste disturbance [in Japanese]. Micrometal Metab 1979; 7: 41–52Google Scholar
  527. 527.
    Neundorfor B, Valdivieso T. Parosmie und aromatische anosmie unter L-Dopa Therapie. Nervenartz 1977; 48: 283–4Google Scholar
  528. 528.
    Pergolide (Perman). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 572Google Scholar
  529. 529.
    Trihexyphenidyl (Artane). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1153Google Scholar
  530. 530.
    Blom S. Trigeminal neuralgia: its treatment with a new anticon-vulsant drug. Lancet 1962; 1: 839–40PubMedGoogle Scholar
  531. 531.
    Nagao M, Furakawa T, Nagasawa T. Clinical results with Tegretol on trigeminal neuralgia. Prospect Dent Field 1967; 29: 1258–64Google Scholar
  532. 532.
    Barajas Garcia-Talavera F. Ageusia in a patient treated with carbamazepine. Neurologia 1988; 31: 126–7Google Scholar
  533. 533.
    Halbreich U. Tegretol dependency and diversion of the sense of taste. Isr Ann Psychiatr 1974; 12: 325–32Google Scholar
  534. 534.
    Ono T, Ishii Y, Ushio M. et al. Clinical results on 5-carbonyl-dibenzozepin (Tegretol) on trigeminal neuralgia. Dent Outlook 1962; 25: 155Google Scholar
  535. 535.
    Carbamazapine (Tegretol). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 585Google Scholar
  536. 536.
    Felbamate (Felbatol). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2473–6Google Scholar
  537. 537.
    Turner P. Some observations on centrally-acting drugs in man. Proc R Soc Med 1965; 58: 913–4PubMedGoogle Scholar
  538. 538.
    Takeda M, Kitao K. Effect of monoamines on the taste buds in the mouse. Cell Tissue Res 1980; 210: 71–8PubMedGoogle Scholar
  539. 539.
    Soni NK, Chatterji P. Gustotoxicity of bleomycin. J Otol Rhino Laryngol Relat Spec 1985; 47: 101–4Google Scholar
  540. 540.
    Bleomycin (Blenoxane). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 653Google Scholar
  541. 541.
    Rozencweig M, Van Hoff DD, Abele R, et al. Cis-platin. Cancer Chemother 1979; 1: 107–25Google Scholar
  542. 542.
    Howell SB, editor. Platinum and other metal coordination compounds in cancer chemotherapy. New York: Plenum, 1993Google Scholar
  543. 543.
    Schiller JH, Rozental J, Tutsch KD, et al. Inadvertent administration of 480 mg/m2 of cisplatin. Am J Med 1989; 86: 624–5PubMedGoogle Scholar
  544. 544.
    Hoffman DL, Howard Jr JR, Sarma R, et al. Encephalopathy, myelopathy, optic neuropathy and anosmia associated with intravenous cytosine arabinoside. Clin Neuropharmacol 1993; 16: 258–262PubMedGoogle Scholar
  545. 545.
    Cytarabine (Cytosar-U). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2405Google Scholar
  546. 546.
    Guthrie S, Way S. Treatment of advanced carcinoma of the cervix with adriamycin and methotrexate combined. Obstet Gynecol 1974; 44: 586–9PubMedGoogle Scholar
  547. 547.
    Doxorubicin (Adriamycin). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 459Google Scholar
  548. 548.
    Bedikian AY, Valdivieso M, Bodey GP, et al. Phase 1 clinical studies with gallium nitrate. Cancer Treat Rep 1978; 62: 1449–53PubMedGoogle Scholar
  549. 549.
    Fluorouracil (Efudex). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1907Google Scholar
  550. 550.
    Interferon alfa 2a, recombinant (Roferon-A). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1947Google Scholar
  551. 551.
    Interferon alfa 2b (Intron-A). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2147Google Scholar
  552. 552.
    Interleukin 2 (Proleukin). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 801Google Scholar
  553. 553.
    Lomustine-CCNU (Cee NU). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 654Google Scholar
  554. 554.
    Duhra P, Foulds IS. Methotrexate-induced impairment of taste acuity, Clin Exp Dermatol 1988; 13: 126–7PubMedGoogle Scholar
  555. 555.
    State FA, Hamed MS, Bonok AA. Effect of vincristine on the histological structure of taste buds. Acta Anat (Basel) 1977; 99: 445–9Google Scholar
  556. 556.
    Vincristine (Oncovin). Physicans Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1253–5Google Scholar
  557. 557.
    Journey LJ, Geory P, Goldstein MN. Effect of vincristine on the fine structures of hela cells during mitosis. J Natl Cancer Inst 1965; 33: 355–61Google Scholar
  558. 558.
    Richards JF, Jones RGW, Beer CT. The effect of vinblastine on the nucleic acid metabolism of thymic cell suspensions. Proc Am Assoc Cancer Res 1963; 4: 57–62Google Scholar
  559. 559.
    Creasey WA, Markiw MF. Biochemical effects of vinca alkaloids. Biochem Biophys Acta 1974; 87: 601–9Google Scholar
  560. 560.
    Azathioprine (Imuran). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 703Google Scholar
  561. 561.
    Mulder NH, Smith JM, Kreumer WMI, et al. Effect of chemotherapy on taste sensation in patients with disseminated multiple myeloma. Oncology 1983; 40: 36–8PubMedGoogle Scholar
  562. 562.
    Reyes ES, Talley RW, O’Bryan RM, et al. Clinical evolution of 1 -3-bis(2-chloroethyl)-1 -nitrosurea (BCNU;NSC-409962) with fluoxymesterone (NSC-12165) in the treatment of solid tumors. Cancer Chemother Rep 1973; 57: 225–30PubMedGoogle Scholar
  563. 563.
    Rees RB, Bennett JA, Marback HI, et al. Methotrexate and psoriasis. Arch Dermatol 1967; 95: 2–11PubMedGoogle Scholar
  564. 564.
    Roenigk HH, Fowler-Bergfeld W, Curtis GH. Methotrexate for psoriasis in weekly oral dose. Arch Dermatol 1969; 99: 86–93PubMedGoogle Scholar
  565. 565.
    Nyffers A. Benefits and adverse drug experiences during longterm methotrexate treatment of 248 psoriatics. Dan Med J 1978; 25: 208–11Google Scholar
  566. 566.
    Rapuzzi G, Bruschi ML, Ricagno G. Importanza dei nucleosidi citidina et uridina mella funzione dei chemocettori gustavi I, II. Bull Soc Ital Biol Sperimental 1967; 43: 1540–4Google Scholar
  567. 567.
    Hollstein M, Sidransky D, Vogelstein B, et al. P53 mutation in human cancers. Science 1991; 253: 49–53PubMedGoogle Scholar
  568. 568.
    Sturzbacher HW, Maimets T, Chumakov P. P53 interacts with P34 in mammalian cells: implications for cell cycle control and oncogenesis. Oncogene 1990; 5: 795–801Google Scholar
  569. 569.
    DeWys WD, Walters K. Abnormalities of taste sensation in cancer patients. Cancer 1975; 36: 1888–96PubMedGoogle Scholar
  570. 570.
    Bartoshuk LM. Chemosensory alterations and cancer therapies. NCI Monogr 1990;9: 179–94PubMedGoogle Scholar
  571. 571.
    Kalmus H, Farnsworth D. Impairment and recovery of taste following irradiation of the oropharynx. J Laryngol Otol 1959; 73: 180–2PubMedGoogle Scholar
  572. 572.
    MacCarthy-Levinthal EM. Post radiation mouth blindness. Lancet 1959; 2: 1138–9Google Scholar
  573. 573.
    Conger AD. Loss and recovery of taste acuity in patients irradiated to the oral cavity. Radiat Res 1973; 53: 338–47PubMedGoogle Scholar
  574. 574.
    Mossman KL, Henkin RI. Radiation induced changes in taste acuity in cancer patients. Int J Radiat Oncol Biol Phys 1978; 4: 663–70PubMedGoogle Scholar
  575. 575.
    Mossman KL, Chencharick JD, Scheer AC, et al. Radiation-induced changes in gustatory function. Int J Radiat Oncol Biol Phys 1979; 5: 521–8PubMedGoogle Scholar
  576. 576.
    Sato K. Quantitative examination of taste deficiency due to radiation therapy. Radiat Med 1984; 2: 61–70PubMedGoogle Scholar
  577. 577.
    Uphir D. Changes in smell acuity induced by radiation exposure of the olfactory mucosa. Arch Otolaryngol Head Neck Surg 1988; 114: 853–5Google Scholar
  578. 578.
    Carmichael KA, Jennings AS, Doty RL. Reversible anosmia after pituitary irradiation. Ann Intern Med 1984; 100: 532–3PubMedGoogle Scholar
  579. 579.
    Mossman KL, Martini AJ, Henkin RL Radiation-induced changes in sodium preference and fluid intake in the rat. Int J Radiat Oncol Biol Phys 1979; 36: 191–6Google Scholar
  580. 580.
    Henkin RI. Prevention and treatment of hypogeusia due to head and neck irradiation. JAMA 1972; 220: 870–1Google Scholar
  581. 581.
    Bolze MS, Fosmire GJ, Stryker JA, et al. Taste acuity, plasma zinc levels and weight loss during radiotherapy: a study of relationships. Radiology 1982; 144: 163–9PubMedGoogle Scholar
  582. 582.
    Silverman JE. Zinc supplementation and taste in head an neck cancer patients undergoing radiation therapy. J Oral Med 1983; 38: 141–61Google Scholar
  583. 583.
    Metoclopramide (Reglan). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1896Google Scholar
  584. 584.
    Granisetron (Kytril). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 324–5Google Scholar
  585. 585.
    Famotidine (Pepcid). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1510Google Scholar
  586. 586.
    Sucralfate (Carafate). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1293Google Scholar
  587. 587.
    Serby M, Flicker C, Rypma G, et al. Scopolamine and olfactory function. Biol Psychiat 1989; 28: 79–82Google Scholar
  588. 588.
    Scopolamine (Donnatal). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 1886Google Scholar
  589. 589.
    Sumatriptan (Imitrex). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 792Google Scholar
  590. 590.
    Nicotine. (Nicoderm, patch). Physicians Desk reference. 48th ed. Montvale: Medical Economics, 1994: 1308–10Google Scholar
  591. 591.
    Disulfiram (Antabuse). Physicians Desk Reference. 48th ed. Montvale: Medical Economics, 1994: 2511Google Scholar
  592. 592.
    Skoudy AP, Zilstorff-Pederson K. The influences of acetyl-cho-line-like substances, menthol and strychnine on olfactory receptors in man. Acta Physiol Scand 1954; 32: 252–8Google Scholar
  593. 593.
    Furcheimer I. Geruchs- und Geschmacksempfindungen nach introvenosen Injektionen von Salversan. Dermat Centralbld 1916; 19: 98–101Google Scholar
  594. 594.
    Kraupa-Runk M. Perverse Geruchs- und Geschmacksemfind-ungen nach Neosalversan Injektionen. Munch Med Wochschr 1916; 63: 46Google Scholar
  595. 595.
    Simons PWGP. Arsenic medication. Pharm Wkbld 1927; 74: 315–21Google Scholar
  596. 596.
    Albert A. Selective Toxicity. 7th ed. New York: Chapman and Hall, 1985: 206–65Google Scholar
  597. 597.
    Moyer TP. Testing for arsenic. Mayo Clin Proc 1993; 68: 1210–1PubMedGoogle Scholar
  598. 598.
    Seeber H. Nasal mucosal injuries and olfactory disorders caused by occupational exposure to chromium dust [in German; abstract in English]. Z Gesamte Hyg 1980; 26: 506–8PubMedGoogle Scholar
  599. 599.
    Seeber H. Taste disorders in chromium exposed workers [in German; abstract in English]. Z Gesamte Hyg 1990; 36: 33–4PubMedGoogle Scholar
  600. 600.
    Rossberg G, Schaupp H, Schmidt W. Gerucks- und Geschmackswermozen bei Arbeitern den chemischen und Metallver arbeitendem Industrie. Z Laryngol Rhinol 1966; 45: 571–90Google Scholar
  601. 601.
    Faleg G, Lenzi R, Marzi F. Le alterzoni dell’ olfatto nell’ intossicazione cronica professi male da mercurio. Folin Med (Napoli) 1959; 42: 1487–93Google Scholar
  602. 602.
    Shimada I. Two receptor sites in the labellar sugar receptor of the fleshfly. J Insect Pathol 1973; 21: 1675–80Google Scholar
  603. 603.
    Hara TJ, Law YMC, MacDonald S. Effects of mercury and copper on the olfactory response in rainbow trout, Salmo gairdneri. J Fish Res Board Can 1977; 33: 1568–73Google Scholar
  604. 604.
    Detheir VG. The physiology and histology of the contact che-moreceptor of the blowfly. Q Rev Biol 1955; 30: 348–71Google Scholar
  605. 605.
    Louria DC, Joselow MM, Browder AA. The human toxicity of certain trace elements. Ann Intern Med 1972; 76: 207–319Google Scholar
  606. 606.
    Chisholm Jr JJ, Kaplan E. Lead poisoning in childhood-comprehensive management and prevention. J Pediatr 1968; 73: 942–50Google Scholar
  607. 607.
    Nilson R. Aspects on the toxicity of cadmium and its compounds. Proceedings of the National Science and Ecological Research Council Stockholm 1970; 7: 19Google Scholar
  608. 608.
    Hastings L. Sensory neurotoxicology: use of the olfactory system in the assessment of toxicity. Neurotoxicol Teratol 1990; 121: 455–8Google Scholar
  609. 609.
    Takagi SF, Iino M, Yarita H, et al. Ionic stimulation of the olfactory epithelium in the bullfrog and the carp. Jpn J Physiol 1978; 28: 129–48PubMedGoogle Scholar
  610. 610.
    Rose CS. Olfactory impairment after occupational cadmium exposure. J Occup Med 1992; 34: 600–5PubMedGoogle Scholar
  611. 611.
    Yar’eva GY. The role of reactive groups in protein complexes in taste receptor stimulation. Biophys 1957; 2: 653–6Google Scholar
  612. 612.
    Pyatayev GT. State of the olfactory function in zinc production workers. Zn Ushn Nos Gorlov Bolezn 1971; 31: 17–21Google Scholar
  613. 613.
    Hunnicutt LG. The effect of zinc sulfate on the olfactory mucous membrane in dogs and monkeys. Trans Pacific Coast Oto Othalmol Soc 1939; 24: 72–80Google Scholar
  614. 614.
    Harding JW, Getchell TV, Margolis FL. Denervation of the primary olfactory pathway in mice V. Long-term effect of intranasal ZnSO4 irrigation on behavior, biochemistry and morphology. Brain Res 1978; 140: 271–85PubMedGoogle Scholar
  615. 615.
    McCurdy PR. Parenteral iron therapy. II. A new iron-sorbitol citric acid complex for intramuscular injection. Ann Int Med 1964; 61: 1053–64PubMedGoogle Scholar
  616. 616.
    Amoore JE. Effects of chemical exposure on olfaction in humans. In: Barrows CS, editor. Toxicology of the nasal passages. Washington DC: Hemisphere Publishing Co, 1986: 155–90Google Scholar
  617. 617.
    Schiffman SS, Nagle HT. Effects of environmental pollutants on taste and smell. Otolaryngol Hd Nk Surg 1992; 106: 693–700Google Scholar
  618. 618.
    Schiffman SS, Gatlin CA. Clinical physiology of taste and smell. Ann Rev Nutr 1993; 13: 405–36Google Scholar
  619. 619.
    Herberhold C. Funktionsprufungen und Störungen der Geruchsinnes. Arch Otorhinolaryngol 1975; 210: 67–164PubMedGoogle Scholar
  620. 620.
    Ryan CM. Cacosmia and neurobehavioral dysfunction as-ociated with occupational exposure to mixtures of organic solvents. Am J Psychiat 1988; 145: 1442–5PubMedGoogle Scholar
  621. 621.
    Laciak J, Sipa K. The importance of the sense of smelling in workers of some branches of the chemical industry [in Polish]. Med Pr 1958; 9: 85–90Google Scholar
  622. 622.
    Emmett EA. Parosmia and hyposmia induced by solvent exposure. Brit J Ind Med 1976; 33: 196–9Google Scholar
  623. 623.
    Schwartz BS, Ford P, Bolla KI, et al. Solvent-associated decrements in olfactory function in paint manufacturing workers. Am J Ind Med 1990; 18: 697–706PubMedGoogle Scholar
  624. 624.
    Sandmark B, Brown I, Lofgren L, et al. Olfactory function in painters exposed to organic solvents. Scand J Work Envior Health 1989; 15: 60–3Google Scholar
  625. 625.
    McNulty MJ, Cassnova-Schmitz M, Heck HD. Metabolism of dimethylamine in the nasal mucosa of the Fisher 344 rat. Drug Metab Dispos 1983; 11: 421–5PubMedGoogle Scholar
  626. 626.
    Conney AH. Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons. Cancer Res 1983; 42: 4875–917Google Scholar
  627. 627.
    Shultz WH. The reaction of the respiratory mechanism to chlorine. J Pharm Exp Ther 1918; 11: 180–1Google Scholar
  628. 628.
    Jiang XZ, Buchler LA, Morgan KT. Pathology of toxic responses to the RD50 concentratiom of chlorine gas in the nasal passages of rats and mice. Toxicol Appl Pharmacol 1983; 71: 225–36PubMedGoogle Scholar
  629. 629.
    Bardodej Z, Vyskocil J The problem of trichloroethylene in occupational medicine. Arch Ind Health 1966; 13: 581–2Google Scholar
  630. 630.
    von Oettingen WF. The halogenated hydrocarbons of industrial and toxicological importance. Amsterdam: Elsevier Publishing Co., 1964:259Google Scholar
  631. 631.
    Huff JE. New evidence on the old problems of trichloroethylene. Ind Med Surg 1971; 40: 25–32Google Scholar
  632. 632.
    Naus A, Pihrt J Disorders of smell caused by prolonged action of trichloroethylene vapors on the olfactory analyzer [in Czech]. Proc Lek 1960; 12: 14–7Google Scholar
  633. 633.
    Vyskocil J Effect of work with trichloroethylene upon the central nervous system. Lek Listy 1953; 8: 269–71PubMedGoogle Scholar
  634. 634.
    Buxton PH, Hayward M. Polyneuritis cranialis associated with industrial trichloroethylene poisoning. J Neurol Neurosurg Psychiat 1967; 30: 511–8PubMedGoogle Scholar
  635. 635.
    Salvini M, Binaschi S, Riva M. Evaluation of the psychophysical functions in humans exposed to trichloroethylene. Br J Ind Med 1971; 28: 293–5PubMedGoogle Scholar
  636. 636.
    Barrett L, Garrel S, Arsoc P, et al. Interet de l’etude des potentials evoques du trijumeau dans l’intoxication chronique au trichloroethylene: Resultats preliminaires. Toxicol Eur Res 1982; 4: 159–62Google Scholar
  637. 637.
    Ahlmark A, Forssman S. Effect of trichloroethylene on the organism. Acta Physiol Scand 1951; 22: 326–39PubMedGoogle Scholar
  638. 638.
    Bardodej Z, Berka I, Chalupa B, et al. Recent advances in our knowledge of the effects of trichloroethylene upon the health of workers. Prac Lek 1952; 4: 441–67PubMedGoogle Scholar
  639. 639.
    Friberg L, Kylin B, Nystrom A. Toxicities of trichloroethylene and tetrachlorethylene and Fujiwara’s pyridine-alkali reaction. Acta Pharmacol Toxicol 1953; 9: 303–12Google Scholar
  640. 640.
    McBirney RS. Trichloroethylene and dichloroethylene poisoning. Arch Ind Hyg Occup Med 1954; 10: 130–3Google Scholar
  641. 641.
    Kleinfeld M, Tabershaw IR. Trichloroethylene toxicity. Arch Ind Hyg Occup Med 1954; 10: 134–41Google Scholar
  642. 642.
    Hurtt H. Histopathology of acute toxic responses in selected tissues from rats exposed by inhalation to methyl bromide. Fundam Appl Toxicol 1987; 9: 352–65PubMedGoogle Scholar
  643. 643.
    Prah JD. Decrements in olfactory sensitivity due to ozone exposure. Percept Mot Skills 1979; 48: 317–8PubMedGoogle Scholar
  644. 644.
    Schwartz BS, Doty RL, Monroe CB, et al. Olfactory function in chemical workers exposed to acrylate and methacrylate vapors. Am J Publ Health 1989; 79: 613–8Google Scholar
  645. 645.
    Lenhardt E, Rollin H. Berufsbedingte Riechstörungen. HNO 1969; 17: 104–6Google Scholar
  646. 646.
    Chang JCF, Gross EA, Swenberg JA, et al. Nasal cavity deposition, histopathology and cell proliferation after single or repeated formaldehyde exposures in B6C3F1 mice and F-344 rats. Toxicol Appl Pharmacol 1983; 68: 161–76PubMedGoogle Scholar
  647. 647.
    Casanova-Schmitz M, David RM, Heck HD’A. Oxidation of formaldehyde and acetaldehyde by NAD+ -dependent dehy-drogenases in rat nasal mucosal homogenates. Biochem Pharmacol 1984; 33: 1137–42PubMedGoogle Scholar
  648. 648.
    Bucher JR, Boorman GA, Gupta BN, et al. Two hour methyl isocyanate exposure and 91- day recovery: a preliminary description of pathological changes in F344 rats. Environ Health Perspect 1987; 72: 71–75PubMedGoogle Scholar
  649. 649.
    Nathanson G. Acute CO poisoning: pathological changes of olfactory organ. Acta Otolaryngol 1929; 13: 409Google Scholar
  650. 650.
    Mergler D, Beauvois B. Olfactory threshold shift following controlled 7-hour exposure to toluene and/or xylene. Neurotoxicology 1992; 13: 211–5PubMedGoogle Scholar
  651. 651.
    Harada N, Fujii M, Dode H. Olfactory disorders in chemical plant workers exposed to SO2 and/or NH2. Jpn J Ind Health 1983; 59: 17–23Google Scholar
  652. 652.
    Ahlborg G. Hydrogen sulfide poisoning in shale oil industry. Arch Ind Hyg 1951; 3: 247–66Google Scholar
  653. 653.
    Glass DC. A review of the health effects of hydrogen sulphide exposure. Ann Occup Hyg 1990; 34: 323PubMedGoogle Scholar
  654. 654.
    Naus A. Alterations of the smell acuity caused by menthol. J Laryng 1968; 82: 1009–11PubMedGoogle Scholar
  655. 655.
    Naus A. Olphatic Properties of Industrial Matters. Prague: Charles University, 1976: 55–65Google Scholar
  656. 656.
    Kmita S. The influence of benzene (sic) vapors on the upper respiratory tract and on the organ of smell [in Polish]. Med Pr 1953; 4: 119–30PubMedGoogle Scholar
  657. 657.
    Popivanova P. Modification in gustatory and olfactory sensitivity in workers exposed to the effect of chemical agents. Acta Otol Rhinol Laryngol Belg 1980; 34: 556–61Google Scholar
  658. 658.
    Hotz P. Smell or taste disturbances, neurological symptoms and hydrocarbon exposure. Int Arch Occup Environ Health 1992; 63: 525–30PubMedGoogle Scholar
  659. 659.
    Spealman CR. Odors, odorants and deodorants in aviation. Ann NY Acad Med 1934; 58: 40–3Google Scholar
  660. 660.
    Koelsch F. Handbuch des Burufkrankheiten. 2nd ed. Jena: Gustav Fischer Verlag, 1959Google Scholar
  661. 661.
    Tagashira N, Harada Y. Olfaction and gustation in poisonous gas workers. In: Tomita H, editor. Japanese Symposium on Taste and Smell 14. Tokyo: Nihon University School of Medicine, 1980:77–80Google Scholar
  662. 662.
    Hill L. An address on gas poisoning read before the Medical Society of London. BMJ 1915; 2: 801–4PubMedGoogle Scholar
  663. 663.
    Morgan KT, Patterson DL, Gross EA. Response of the nasal mucociliary apparatus to airborne irritants. In: Barrow CS, editor. Toxicology of the nasal passages. New York: Hemisphere Publishing Co., 1986: 123–41Google Scholar
  664. 664.
    Cralley LV. The effect of irritant gases upon the rate of ciliary activity. J Ind Hyg Toxical 1942; 24: 193–8Google Scholar
  665. 665.
    Lambert RA. Experimental pathology of war gases, exclusive of mustard gas. In: Weed FW, MacAfee L, editors. The Medical Department of the US Army in the World War. Vol 14. Medical Aspects of gas warfare. Washington DC: US Government Print Office, 1926: 421–511Google Scholar
  666. 666.
    Smith RG, Battigelli MC, Cook RR, et al. Chlorine and hydrogen chloride. Washington DC: National Academy of Science (USA), 1976: 108Google Scholar
  667. 667.
    Ailing CC. Dysesthesia of the lingual and inferior aveolar nerves following third molar surgery. J Oral Maxillofac Surg 1986; 44: 454–7Google Scholar
  668. 668.
    Bruce RA, Fredrickson GC, Small GS. Age of patients and morbidity associated with mandibular third molar surgery. J Am Dent Assoc 1980; 101: 240–5PubMedGoogle Scholar
  669. 669.
    Goldberg MH, Nemarich AN, Marco II WP. Complications after mandibular third molar surgery: a statistical analysis of 500 consecutive procedures in private practice. J Am Dent Assoc 1985; 111: 277–9PubMedGoogle Scholar
  670. 670.
    Osborn TP, Fredrickson Jr G, Small IA, et al. A prospective study of complications related to mandibular third molar surgery. J Oral Maxillofac Surg 1985; 43: 767–9PubMedGoogle Scholar
  671. 671.
    Kipp DP, Goldstein BH, Weiss WW. Dysesthesia after mandibular third molar surgery: a retrospective study and analysis of 1377 surgical procedures. J Am Dent Assoc 1980; 100: 185–92PubMedGoogle Scholar
  672. 672.
    Van Gool AV, ten Bosch JJ, Boering G. Clinical consequences of complaints and complications after removal of the mandibular third molar. Int J Oral Surg 1977; 6: 29–37PubMedGoogle Scholar
  673. 673.
    Schwartz LJ. Lingual anesthesia following mandibular odontectomy. J Oral Surg 1973; 31: 918–20PubMedGoogle Scholar
  674. 674.
    Gregg JM. Surgical management of lingual nerve injuries. Oral Maxillofac Surg Clin North Am 1992; 4: 417–24Google Scholar
  675. 675.
    La Banc JP, Gregg JM. Trigeminal nerve injuries. Oral Maxillof. Surg Clin North Am 1992; 4: 277–83Google Scholar
  676. 676.
    Nickel, Jr AA. A retrospective study of paresthesia of the dental alveolar nerves. Anesth Prog 1990; 37: 42–5PubMedGoogle Scholar
  677. 677.
    Nickel Jr AA. Regional anesthesia. Oral Maxillofac. Surg Clin North Am 1993; 5: 17–24Google Scholar
  678. 678.
    Ragsdale DS, McPhee JC, Scheur T, et al. Molecular determinants of state-dependent block of Na+ channels by local anesthetics. Science 1994; 265: 1724–6PubMedGoogle Scholar
  679. 679.
    Lum CKL, Henkin RI. Sugar binding to purified fractions from bovine taste buds and epithelial tissue: relationships to bioactivity. Biochim Biophys Acta 1976; 421: 380–94PubMedGoogle Scholar
  680. 680.
    Beidier JL, Beidier LM, Henkin RI. On the molecular defect in gustin in patients with hypogeusia. Clin Res 1991; 39: 234AGoogle Scholar
  681. 681.
    Fredholm BB, Persson CGA. Xanthine derivatives as adenosine receptor antagonists. Eur J Pharmacol 1983; 81: 673–6Google Scholar
  682. 682.
    Santoyo H, Corona R, Sotello J. Total recovery of visual function after treatment for cerebral cystechcosis. N Engl J Med 1991; 324: 1137–9PubMedGoogle Scholar

Copyright information

© Adis International Limited 1994

Authors and Affiliations

  • Robert I. Henkin
    • 1
  1. 1.Center for Molecular Nutrition and Sensory DisordersTaste and Smell ClinicUSA

Personalised recommendations