Skip to main content
Log in

Similarities and Differences Between the Light and Heavy Chain Ig Variable Region Gene Repertoires in Chronic Lymphocytic Leukemia

  • Research Article
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Analyses of Ig VHDJH rearrangements expressed by B-CLL cells have provided insights into the antigen receptor repertoire of B-CLL cells and the maturation stages of B-lymphocytes that give rise to this disease. However, less information is available about the L chain V gene segments utilized by B-CLL cells and to what extent their characteristics resemble those of the H chain. We analyzed the VL and JL gene segments of 206 B-CLL patients, paying particular attention to frequency of use and association, mutation status, and LCDR3 characteristics. Approximately 40% of B-CLL cases express VL genes that differ significantly from their germline counterparts. Certain genes were virtually always mutated and others virtually never. In addition, preferential pairing of specific VL and JL segments was found. These findings are reminiscent of the expressed VH repertoire in B-CLL. However unlike the VH repertoire, VL gene use was not significantly different than that of normal B-lymphocytes. In addition, Vκ genes that lie more upstream on the germline locus were less frequently mutated than those at the 3′ end of the locus; this was not the case for Vλ genes and is not for VH genes. These similarities and differences between the IgH and IgL V gene repertoires expressed in B-CLL suggest some novel features while also reinforcing concepts derived from studies of the IgH repertoire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chiorazzi N, Ferrarini M. (2003) B cell chronic lymphocytic leukemia: lessons learned from studies of the B cell antigen receptor. Annu. Rev. Immunol. 21:841–94.

    Article  CAS  Google Scholar 

  2. Stevenson FK, Caligaris-Cappio F. (2004) Chronic lymphocytic leukemia: revelations from the B-cell receptor. Blood 103:4389–95.

    Article  CAS  Google Scholar 

  3. Chiorazzi N, Rai KR, Ferrarini M. (2005) Chronic lymphocytic leukemia. N. Engl. J. Med. 352:804–15.

    Article  CAS  Google Scholar 

  4. Schroeder HW, Jr., Dighiero G. (1994) The pathogenesis of chronic lymphocytic leukemia: analysis of the antibody repertoire. Immunol. Today 15:288–94.

    Article  CAS  Google Scholar 

  5. Fais F, Ghiotto F, Hashimoto S, et al. (1998) Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J. Clin. Invest. 102:1515–25.

    Article  CAS  Google Scholar 

  6. Damle RN, Wasil T, Fais F, et al. (1999) Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94: 1840–7.

    CAS  Google Scholar 

  7. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. (1999) Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 94:1848–54.

    CAS  Google Scholar 

  8. Damle RN, Ghiotto F, Valetto A, et al. (2002) B-cell chronic lymphocytic leukemia cells express a surface membrane phenotype of activated, antigen-experienced B lymphocytes. Blood 99:4087–93.

    Article  CAS  Google Scholar 

  9. Rosenwald A, Alizadeh AA, Widhopf G, et al. (2001) Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J. Exp. Med. 194:1639–47.

    Article  CAS  Google Scholar 

  10. Klein U, Tu Y, Stolovitzky GA, et al. (2001) Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J. Exp. Med. 194:1625–38.

    Article  CAS  Google Scholar 

  11. Johnson TA, Rassenti LZ, Kipps TJ. (1997) Ig VH1 genes expressed in B cell chronic lymphocytic leukemia exhibit distinctive molecular features. J. Immunol. 158:235–46.

    CAS  PubMed  Google Scholar 

  12. Krober A, Seiler T, Benner A, et al. (2002) V(H) mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood 100:1410–6.

    CAS  PubMed  Google Scholar 

  13. Widhopf GF, 2nd, Kipps TJ. (2001) Normal B cells express 51p1-encoded Ig heavy chains that are distinct from those expressed by chronic lymphocytic leukemia B cells. J. Immunol. 166:95–102.

    Article  CAS  Google Scholar 

  14. Tobin G, Thunberg U, Johnson A, et al. (2002) Somatically mutated Ig V(H)3-21 genes characterize a new subset of chronic lymphocytic leukemia. Blood 99:2262–4.

    Article  CAS  Google Scholar 

  15. Tobin G, Thunberg U, Johnson A, et al. (2003) Chronic lymphocytic leukemias utilizing the VH3-21 gene display highly restricted Vlambda2-14 gene use and homologous CDR3s: implicating recognition of a common antigen epitope. Blood 101:4952–7.

    Article  CAS  Google Scholar 

  16. Ghiotto F, Fais F, Valetto A, et al. (2004) Remarkably similar antigen receptors among a subset of patients with chronic lymphocytic leukemia. J. Clin. Invest. 113:1008–16.

    Article  CAS  Google Scholar 

  17. Messmer BT, Albesiano E, Efremov DG, et al. (2004) Multiple distinct sets of stereotyped antigen receptors indicate a role for antigen in promoting chronic lymphocytic leukemia. J. Exp. Med. 200:519–25.

    Article  CAS  Google Scholar 

  18. Tobin G, Thunberg U, Karlsson K, et al. (2004) Subsets with restricted immunoglobulin gene rearrangement features indicate a role for antigen selection in the development of chronic lymphocytic leukemia. Blood 104:2879–85.

    Article  CAS  Google Scholar 

  19. Widhopf GF, 2nd, Rassenti LZ, Toy TL, Gribben JG, Wierda WG, Kipps TJ. (2004) Chronic lymphocytic leukemia B cells of more than 1% of patients express virtually identical immunoglobulins. Blood 104:2499–504.

    Article  Google Scholar 

  20. Stamatopoulos K, Belessi C, Hadzidimitriou A, et al. (2005) Immunoglobulin light chain repertoire in chronic lymphocytic leukemia. Blood 106:3575–83.

    Article  CAS  Google Scholar 

  21. Morea V, Tramontano A, Rustici M, Chothia C, Lesk AM. (1998) Conformations of the third hypervariable region in the VH domain of immunoglobulins. J. Mol. Biol. 275:269–94.

    Article  CAS  Google Scholar 

  22. Xu JL, Davis MM. (2000) Diversity in the CDR3 region of V(H) is sufficient for most antibody specificities. Immunity 13:37–45.

    Article  CAS  Google Scholar 

  23. Hashimoto S, Dono M, Wakai M, et al. (1995) Somatic diversification and selection of immunoglobulin heavy and light chain variable region genes in IgG+ CD5+ chronic lymphocytic leukemia B cells. J. Exp. Med. 181:1507–17.

    Article  CAS  Google Scholar 

  24. Tomlinson I, Williams S, Corbett S, Cox J, Winter G. (1996) V BASE sequence directory. Cambridge, UK: MRC center for Protein Engineering.

    Google Scholar 

  25. Lefranc MP. (2004) IMGT-ONTOLOGY and IMGT databases, tools and Web resources for immunogenetics and immunoinformatics. Mol. Immunol. 40:647–60.

    Article  CAS  Google Scholar 

  26. Chang B, Casali P. (1994) The CDR1 sequences of a major proportion of human germline Ig VH genes are inherently susceptible to amino acid replacement. Immunol. Today 15:367–73.

    Article  CAS  Google Scholar 

  27. Deneys V, Mazzon AM, Marques JL, Benoit H, De Bruyere M. (2001) Reference values for peripheral blood B-lymphocyte subpopulations: a basis for multiparametric immunophenotyping of abnormal lymphocytes. J. Immunol. Methods 253:23–36.

    Article  CAS  Google Scholar 

  28. Fischer M, Klein U, Kuppers R. (1997) Molecular single-cell analysis reveals that CD5-positive peripheral blood B cells in healthy humans are characterized by rearranged Vκappa genes lacking somatic mutation. J. Clin. Invest. 100:1667–76.

    Article  CAS  Google Scholar 

  29. Foster SJ, Brezinschek HP, Brezinschek RI, Lipsky PE. (1997) Molecular mechanisms and selective influences that shape the kappa gene repertoire of IgM+ B cells. J. Clin. Invest. 99:1614–27.

    Article  CAS  Google Scholar 

  30. Bridges SL, Jr. (1998) Frequent N addition and clonal relatedness among immunoglobulin lambda light chains expressed in rheumatoid arthritis synovia and PBL, and the influence of V lambda gene segment utilization on CDR3 length. Mol. Med. 4:525–53.

    Article  CAS  Google Scholar 

  31. Farner NL, Dorner T, Lipsky PE. (1999) Molecular mechanisms and selection influence the generation of the human V lambda J lambda repertoire. J. Immunol. 162:2137–45.

    CAS  PubMed  Google Scholar 

  32. Ignatovich O, Tomlinson IM, Jones PT, Winter G. (1997) The creation of diversity in the human immunoglobulin V(lambda) repertoire. J. Mol. Biol. 268:69–77.

    Article  CAS  Google Scholar 

  33. Perlmutter RM, Kearney JF, Chang SP, Hood LE. (1985) Developmentally controlled expression of immunoglobulin VH genes. Science 227:1597–601.

    Article  CAS  Google Scholar 

  34. Schroeder HW, Jr., Hillson JL, Perlmutter RM. (1987) Early restriction of the human antibody repertoire. Science 238:791–3.

    Article  CAS  Google Scholar 

  35. Suzuki I, Pfister L, Glas A, Nottenburg C, Milner EC. (1995) Representation of rearranged VH gene segments in the human adult antibody repertoire. J. Immunol. 154:3902–11.

    CAS  PubMed  Google Scholar 

  36. Yancopoulos GD, Desiderio SV, Paskind M, Kearney JF, Baltimore D, Alt FW. (1984) Preferential utilization of the most JH-proximal VH gene segments in pre-B-cell lines. Nature 311:727–33.

    Article  CAS  Google Scholar 

  37. Li Z, Woo CJ, Iglesias-Ussel MD, Ronai D, Scharff MD. (2004) The generation of antibody diversity through somatic hypermutation and class switch recombination. Genes Dev. 18:1–11.

    Article  Google Scholar 

  38. Toellner KM, Jenkinson WE, Taylor DR, et al. (2002) Low-level hypermutation in T cell-independent germinal centers compared with high mutation rates associated with T cell-dependent germinal centers. J. Exp. Med. 195:383–9.

    Article  CAS  Google Scholar 

  39. Jukes TH, King JL. (1979) Evolutionary nucleotide replacements in DNA. Nature 281:605–6.

    Article  CAS  Google Scholar 

  40. Shlomchik MJ, Marshak-Rothstein A, Wolfowicz CB, Rothstein TL, Weigert MG. (1987) The role of clonal selection and somatic mutation in autoimmunity. Nature 328:805–11.

    Article  CAS  Google Scholar 

  41. Kirkham PM, Schroeder HW, Jr. (1994) Antibody structure and the evolution of immunoglobulin V gene segments. Semin. Immunol. 6:347–60.

    Article  CAS  Google Scholar 

  42. Messmer BT, Albesiano E, Messmer D, Chiorazzi N. (2004) The pattern and distribution of immunoglobulin VH gene mutations in chronic lymphocytic leukemia B cells are consistent with the canonical somatic hypermutation process. Blood 103:3490–95.

    Article  CAS  Google Scholar 

  43. Davis ZA, Orchard JA, Corcoran MM, Oscier DG. (2003) Divergence from the germ-line sequence in unmutated chronic lymphocytic leukemia is due to somatic mutation rather than polymorphisms. Blood 102:3075.

    Article  CAS  Google Scholar 

  44. Lam KP, Kuhn R, Rajewsky K. (1997) In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 90:1073–83.

    Article  CAS  Google Scholar 

  45. Nemazee D, Weigert M. (2000) Revising B cell receptors. J. Exp. Med. 191:1813–7.

    Article  CAS  Google Scholar 

  46. Dorner T, Foster SJ, Farner NL, Lipsky PE. (1998) Immunoglobulin kappa chain receptor editing in systemic lupus erythematosus. J. Clin. Invest. 102:688–94.

    Article  CAS  Google Scholar 

  47. Herve M, Xu K, Ng YS, et al. (2005) Unmutated and mutated chronic lymphocytic leukemias derive from self-reactive B cell precursors despite expressing different antibody reactivity. J. Clin. Invest. 115:1636–43.

    Article  CAS  Google Scholar 

  48. Chiorazzi N, Hatzi K, Albesiano E. (2005) B-cell chronic lymphocytic leukemia, a clonal disease of B lymphocytes with receptors that vary in specificity for (auto)antigens. Ann. N. Y. Acad. Sci. 1062:1–12.

    Article  CAS  Google Scholar 

  49. Wardemann H, Hammersen J, Nussenzweig MC. (2004) Human autoantibody silencing by immunoglobulin light chains. J. Exp. Med. 200:191–9.

    Article  CAS  Google Scholar 

  50. Schwartz RS, Stollar BD. (1994) Heavy-chain directed B-cell maturation: continuous clonal selection beginning at the pre-B cell stage. Immunol. Today 15:27–32.

    Article  CAS  Google Scholar 

  51. Diaw L, Magnac C, Pritsch O, Buckle M, Alzari PM, Dighiero G. (1997) Structural and affinity studies of IgM polyreactive natural autoantibodies. J. Immunol. 158:968–76.

    CAS  PubMed  Google Scholar 

  52. Ikematsu H, Kasaian MT, Schettino EW, Casali P. (1993) Structural analysis of the VH-D-JH segments of human polyreactive IgG mAb. Evidence for somatic selection. J. Immunol. 151:3604–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Brard F, Shannon M, Prak EL, Litwin S, Weigert M. (1999) Somatic mutation and light chain rearrangement generate autoimmunity in anti-singlestranded DNA transgenic MRL/lpr mice. J Exp Med 190: 691–704.

    Article  CAS  Google Scholar 

  54. Sekiguchi DR, Eisenberg RA, Weigert M. (2003) Secondary heavy chain rearrangement: a mechanism for generating anti-double-stranded DNA B cells. J Exp Med 197: 27–39.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

These studies were supported in part by the National Institutes of Health via RO1 grants from the National Cancer Institute (CA81554 and CA87956), a General Clinical Research Center Grant (M01 RR018535) from the National Center for Research Resources, and by Associazione Italiana per la Ricerca sul Cancro (AIRC) and FIRB (RBNE01A4Y9/004). The Karches Family Foundation, the Peter J. Sharp Foundation, the Marks Family Foundation, the Jean Walton Fund for Lymphoma & Myeloma Research, and the Joseph Eletto Leukemia Research Fund also provided support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Ghiotto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghiotto, F., Fais, F., Albesiano, E. et al. Similarities and Differences Between the Light and Heavy Chain Ig Variable Region Gene Repertoires in Chronic Lymphocytic Leukemia. Mol Med 12, 300–308 (2006). https://doi.org/10.2119/2006-00080.Ghiotto

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2119/2006-00080.Ghiotto

Navigation