Molecular Medicine

, Volume 21, Issue 1, pp 979–987 | Cite as

Erythropoietin for the Treatment of Subarachnoid Hemorrhage: A Feasible Ingredient for a successful Medical Recipe

  • Giovanni Grasso
  • Giovanni Tomasello
  • Marcello Noto
  • Concetta Alafaci
  • Francesco Cappello
Review Article


Subarachnoid hemorrhage (SAH) following aneurysm bleeding accounts for 6% to 8% of all cerebrovascular accidents. Although an aneurysm can be effectively managed by surgery or endovascular therapy, delayed cerebral ischemia is diagnosed in a high percentage of patients resulting in significant morbidity and mortality. Cerebral vasospasm occurs in more than half of all patients after aneurysm rupture and is recognized as the leading cause of delayed cerebral ischemia after SAH. Hemodynamic strategies and endovascular procedures may be considered for the treatment of cerebral vasospasm. In recent years, the mechanisms contributing to the development of vasospasm, abnormal reactivity of cerebral arteries and cerebral ischemia following SAH, have been investigated intensively. A number of pathological processes have been identified in the pathogenesis of vasospasm, including endothelial injury, smooth muscle cell contraction from spasmogenic substances produced by the sub-arachnoid blood clots, changes in vascular responsiveness and inflammatory response of the vascular endothelium. To date, the current therapeutic interventions remain ineffective as they are limited to the manipulation of systemic blood pressure, variation of blood volume and viscosity and control of arterial carbon dioxide tension. In this scenario, the hormone erythropoietin (EPO) has been found to exert neuroprotective action during experimental SAH when its recombinant form (rHuEPO) is administered systemically. However, recent translation of experimental data into clinical trials has suggested an unclear role of recombinant human EPO in the setting of SAH. In this context, the aim of the current review is to present current evidence on the potential role of EPO in cerebrovascular dysfunction following aneurysmal subarachnoid hemorrhage.



The study has been supported by FFR 2012 of the University of Palermo, Italy.


  1. 1.
    Jackowski A, Crockard A, Burnstock G, Russell RR, Kristek F. (1990) The time course of intracranial pathophysiological changes following experimental subarachnoid haemorrhage in the rat. J. Cereb. Blood Flow Metab. 10:835–49.CrossRefGoogle Scholar
  2. 2.
    Delgado TJ, Brismar J, Svendgaard NA. (1985) Subarachnoid haemorrhage in the rat: angiography and fluorescence microscopy of the major cerebral arteries. Stroke. 16:595–602.CrossRefGoogle Scholar
  3. 3.
    da Costa L, et al. (2015) Impaired cerebrovascular reactivity in the early phase of subarachnoid hemorrhage in good clinical grade patients does not predict vasospasm. Acta Neurochir. Suppl. 120:249–53.PubMedGoogle Scholar
  4. 4.
    Schmidt JM, et al. (2011) Cerebral perfusion pressure thresholds for brain tissue hypoxia and metabolic crisis after poor-grade subarachnoid hemorrhage. Stroke. 42:1351–6.CrossRefGoogle Scholar
  5. 5.
    McCormick PW, McCormick J, Zabramski JM, Spetzler RF. (1994) Hemodynamics of subarachnoid hemorrhage arrest. J. Neurosurg. 80:710–5.CrossRefGoogle Scholar
  6. 6.
    Dorsch N, Branston NM, Symon L, Jakubowski J. (1989) Intracranial pressure changes following primate subarachnoid haemorrhage. Neurol. Res. 11:201–4.CrossRefGoogle Scholar
  7. 7.
    Bederson JB, et al. (1998) Acute vasoconstriction after subarachnoid hemorrhage. Neurosurgery. 42:352–60; discussion 360–2.CrossRefGoogle Scholar
  8. 8.
    Sehba FA, Schwartz AY, Chereshnev I, Bederson JB. (2000) Acute decrease in cerebral nitric oxide levels after subarachnoid hemorrhage. J. Cereb. Blood Flow Metab. 20:604–611.CrossRefGoogle Scholar
  9. 9.
    Jelkmann W. (1994) Biology of erythropoietin. Clin. Investig. 72:S3–10.PubMedGoogle Scholar
  10. 10.
    Jacobs K, et al. (1985) Isolation and characterization of genomic and cDNA clones of human erythropoietin. Nature. 313:806–10.CrossRefGoogle Scholar
  11. 11.
    Jelkmann W. (1992) Erythropoietin: structure, control of production, and function. Physiol. Rev. 72:449–89.CrossRefGoogle Scholar
  12. 12.
    Rosenlof K, Fyhrquist F, Pekonen F. (1987) Receptors for recombinant erythropoietin in human bone marrow cells. Scand. J. Clin. Lab. Invest. 47:823–7.CrossRefGoogle Scholar
  13. 13.
    Ohashi H, Maruyama K, Liu YC, Yoshimura A. (1994) Ligand-induced activation of chimeric receptors between the erythropoietin receptor and receptor tyrosine kinases. Proc. Natl. Acad. Sci. U. S. A91:158–62.CrossRefGoogle Scholar
  14. 14.
    Fisher JW. (2003) Erythropoietin: physiology and pharmacology update. Exp. Biol. Med. (Maywood). 228:1–14.CrossRefGoogle Scholar
  15. 15.
    Digicaylioglu M, et al. (1995) Localization of specific erythropoietin binding sites in defined areas of the mouse brain. Proc. Natl. Acad. Sci. U. S. A. 92:3717–20.CrossRefGoogle Scholar
  16. 16.
    Masuda S, et al. (1994) A novel site of erythropoietin production. Oxygen-dependent production in cultured rat astrocytes. J. Biol. Chem. 269:19488–93.PubMedGoogle Scholar
  17. 17.
    Juul SE, Yachnis AT, Rojiani AM, Christensen RD. (1999) Immunohistochemical localization of erythropoietin and its receptor in the developing human brain. Pediatr. Dev. Pathol. 2:148–58.CrossRefGoogle Scholar
  18. 18.
    Chin K, et al. (2000) Production and processing of erythropoietin receptor transcripts in brain. Brain Res. Mol. Brain Res. 81:29–42.CrossRefGoogle Scholar
  19. 19.
    Grasso G, et al. (2005) Erythropoietin and erythropoietin receptor expression after experimental spinal cord injury encourages therapy by exogenous erythropoietin. Neurosurgery. 56:821–7; discussion 821–7.CrossRefGoogle Scholar
  20. 20.
    Nagai A, et al. (2001) Erythropoietin and erythropoietin receptors in human CNS neurons, astrocytes, microglia, and oligodendrocytes grown in culture. J. Neuropathol. Exp. Neurol. 60:386–92.CrossRefGoogle Scholar
  21. 21.
    Bernaudin M, et al. (1999) A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J. Cereb. Blood Flow Metab. 19:643–51.CrossRefGoogle Scholar
  22. 22.
    Marti HH, et al. (1996) Erythropoietin gene expression in human, monkey and murine brain. Eur. J. Neurosci. 8:666–76.CrossRefGoogle Scholar
  23. 23.
    Tan CC, Eckardt KU, Firth JD, Ratcliffe PJ. (1992) Feedback modulation of renal and hepatic erythropoietin mRNA in response to graded anemia and hypoxia. Am. J. Physiol. 263: F474–81.CrossRefGoogle Scholar
  24. 24.
    Siren AL, et al. (2001) Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc. Natl. Acad. Sci. U. S. A. 98:4044–9.CrossRefGoogle Scholar
  25. 25.
    Beleslin-Cokic BB, et al. (2011) Erythropoietin and hypoxia increase erythropoietin receptor and nitric oxide levels in lung microvascular endothelial cells. Cytokine. 54:129–135.CrossRefGoogle Scholar
  26. 26.
    Kawakami M, Iwasaki S, Sato K, Takahashi M. (2000) Erythropoietin inhibits calcium-induced neurotransmitter release from clonal neuronal cells. Biochem. Biophys. Res. Commun. 279:293–7.CrossRefGoogle Scholar
  27. 27.
    Koshimura K, Murakami Y, Sohmiya M, Tanaka J, Kato Y. (1999) Effects of erythropoietin on neuronal activity. J. Neurochem. 72:2565–72.CrossRefGoogle Scholar
  28. 28.
    Martinez-Estrada OM, et al. (2003) Erythropoietin protects the in vitro blood-brain barrier against VEGF-induced permeability. Eur J. Neurosci. 18:2538–2544.CrossRefGoogle Scholar
  29. 29.
    Li W, et al. (2004) Beneficial effect of erythropoietin on experimental allergic encephalomyelitis. Ann. Neurol. 56:767–77.CrossRefGoogle Scholar
  30. 30.
    Franke K, Gassmann M, Wielockx B. (2013) Erythrocytosis: the HIF pathway in control. Blood 122:1122–8.CrossRefGoogle Scholar
  31. 31.
    Brines M, Cerami A. (2008) Erythropoietin-mediated tissue protection: reducing collateral damage from the primary injury response. J. Intern. Med. 264:405–32.CrossRefGoogle Scholar
  32. 32.
    Leist M, et al. (2004) Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science. 305:239–42.CrossRefGoogle Scholar
  33. 33.
    Brines M, et al. (2008) Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin. Proc. Natl. Acad. Sci. U. S. A. 105:10925–30.CrossRefGoogle Scholar
  34. 34.
    Digicaylioglu M, Lipton SA. (2001) Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-kappaB signalling cascades. Nature. 412:641–7.CrossRefGoogle Scholar
  35. 35.
    Bao H, et al. (1999) Protein kinase B (c-Akt), phosphatidylinositol 3-kinase, and STAT5 are activated by erythropoietin (EPO) in HCD57 erythroid cells but are constitutively active in an EPO-independent, apoptosis-resistant subclone (HCD57-SREI cells). Blood. 93:3757–73.PubMedGoogle Scholar
  36. 36.
    Grasso G. (2001) Neuroprotective effect of recombinant human erythropoietin in experimental subarachnoid hemorrhage. J. Neurosurg. Sci 45:7–14.PubMedGoogle Scholar
  37. 37.
    Grasso G, et al. (2002) Beneficial effects of systemic administration of recombinant human erythropoietin in rabbits subjected to subarachnoid hemorrhage. Proc. Natl. Acad. Sci. U. S. A. 99:5627–31.CrossRefGoogle Scholar
  38. 38.
    Grasso G, et al. (2002) Does administration of recombinant human erythropoietin attenuate the increase of S-100 protein observed in cerebrospinal fluid after experimental subarachnoid hemorrhage? J. Neurosurg. 96:565–70.CrossRefGoogle Scholar
  39. 39.
    Grasso G, et al. (2006) Amelioration of spinal cord compressive injury by pharmacological preconditioning with erythropoietin and a nonerythropoietic erythropoietin derivative. J. Neurosurg. Spine. 4:310–8.CrossRefGoogle Scholar
  40. 40.
    Gorio A, et al. (2002) Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. Proc. Natl. Acad. Sci. U. S. A. 99:9450–5.CrossRefGoogle Scholar
  41. 41.
    Bahlmann FH, et al. (2004) Erythropoietin regulates endothelial progenitor cells. Blood. 103:921–6.CrossRefGoogle Scholar
  42. 42.
    d’Uscio LV, Katusic ZS. (2008) Erythropoietin increases endothelial biosynthesis of tetrahydrobiopterin by activation of protein kinase B alpha/Akt1. Hypertension. 52:93–9.CrossRefGoogle Scholar
  43. 43.
    Genc S, Koroglu TF, Genc K. (2004) Erythropoietin and the nervous system. Brain Res. 1000:19–31.CrossRefGoogle Scholar
  44. 44.
    Sessa WC. (2004) eNOS at a glance. J. Cell Sci. 117:2427–9.CrossRefGoogle Scholar
  45. 45.
    Cai H, Davis ME, Drummond GR, Harrison DG. (2001) Induction of endothelial NO synthase by hydrogen peroxide via a Ca(2+)/calmodulin-dependent protein kinase II/janus kinase 2-dependent pathway. Arterioscler. Thromb. Vasc. Biol. 21:1571–6.CrossRefGoogle Scholar
  46. 46.
    Duval M, Le Boeuf F, Huot J, Gratton JP. (2007) Src-mediated phosphorylation of Hsp90 in response to vascular endothelial growth factor (VEGF) is required for VEGF receptor-2 signaling to endothelial NO synthase. Mol. Biol. Cell. 18:4659–68.CrossRefGoogle Scholar
  47. 47.
    Merla R, et al. (2007) The central role of adenosine in statin-induced ERK1/2, Akt, and eNOS phosphorylation. Am. J. Physiol. Heart Circ. Physiol. 293:H1918–28.CrossRefGoogle Scholar
  48. 48.
    Ignarro LJ. (1990) Biosynthesis and metabolism of endothelium-derived nitric oxide. Annu. Rev. Pharmacol. Toxicol. 30:535–60.CrossRefGoogle Scholar
  49. 49.
    Pluta RM, Afshar JK, Boock RJ, Oldfield EH. (1998) Temporal changes in perivascular concentrations of oxyhemoglobin, deoxyhemoglobin, and methemoglobin after subarachnoid hemorrhage. J. Neurosurg. 88:557–61.CrossRefGoogle Scholar
  50. 50.
    Kim P, Schini VB, Sundt TM Jr., Vanhoutte PM. (1992) Reduced production of cGMP underlies the loss of endothelium-dependent relaxations in the canine basilar artery after subarachnoid hemorrhage. Circ. Res. 70:248–56.CrossRefGoogle Scholar
  51. 51.
    Sabri M, Ai J, Lass E, D’Abbondanza J, Macdonald RL. (2013) Genetic elimination of eNOS reduces secondary complications of experimental subarachnoid hemorrhage. J. Cereb. Blood Flow Metab. 33:1008–14.CrossRefGoogle Scholar
  52. 52.
    Sehba FA, Bederson JB. (2011) Nitric oxide in early brain injury after subarachnoid hemorrhage. Acta Neurochir. Suppl. 110:99–103.PubMedGoogle Scholar
  53. 53.
    Brines M, et al. (2004) Erythropoietin mediates tissue protection through an erythropoietin and common beta-subunit heteroreceptor. Proc. Natl. Acad. Sci. U. S. A. 101:14907–12.CrossRefGoogle Scholar
  54. 54.
    Arcasoy MO. (2008) The non-haematopoietic biological effects of erythropoietin. Br. J. Haematol. 141:14–31.CrossRefGoogle Scholar
  55. 55.
    Sautina L, et al. (2010) Induction of nitric oxide by erythropoietin is mediated by the {beta} common receptor and requires interaction with VEGF receptor 2. Blood. 115:896–905.CrossRefGoogle Scholar
  56. 56.
    Su KH, et al. (2011) beta Common receptor integrates the erythropoietin signaling in activation of endothelial nitric oxide synthase. J. Cell. Physiol. 226:3330–9.CrossRefGoogle Scholar
  57. 57.
    Carlini RG, et al. (1999) Effect of recombinant human erythropoietin on endothelial cell apoptosis. Kidney Int. 55:546–53.CrossRefGoogle Scholar
  58. 58.
    Urao N, et al. (2006) Erythropoietin-mobilized endothelial progenitors enhance reendothelialization via Akt-endothelial nitric oxide synthase activation and prevent neointimal hyperplasia. Circ. Res. 98:1405–13.CrossRefGoogle Scholar
  59. 59.
    Lacombe C, Mayeux P. (1999) The molecular biology of erythropoietin. Nephrol. Dial. Transplant. 14 Suppl 2:22–8.CrossRefGoogle Scholar
  60. 60.
    d’Uscio LV, et al. (2007) Essential role of endothelial nitric oxide synthase in vascular effects of erythropoietin. Hypertension. 49:1142–8.CrossRefGoogle Scholar
  61. 61.
    Santhanam AV, d’Uscio LV, Peterson TE, Katusic ZS. (2008) Activation of endothelial nitric oxide synthase is critical for erythropoietin-induced mobilization of progenitor cells. Peptides. 29:1451–5.CrossRefGoogle Scholar
  62. 62.
    Fiordaliso F, et al. (2005) A nonerythropoietic derivative of erythropoietin protects the myocardium from ischemia-reperfusion injury. Proc. Natl. Acad. Sci. U. S. A. 102:2046–51.CrossRefGoogle Scholar
  63. 63.
    Burger D, et al. (2006) Erythropoietin protects cardiomyocytes from apoptosis via upregulation of endothelial nitric oxide synthase. Cardiovasc. Res. 72:51–9.CrossRefGoogle Scholar
  64. 64.
    Gao E, et al. (2007) Darbepoetin alfa, a long-acting erythropoietin analog, offers novel and delayed cardioprotection for the ischemic heart. Am. J. Physiol. Heart Circ Physiol 293:H60–8.CrossRefGoogle Scholar
  65. 65.
    Lee ST, et al. (2006) Erythropoietin reduces perihematomal inflammation and cell death with eNOS and STAT3 activations in experimental intracerebral hemorrhage. J. Neurochem. 96:1728–39.CrossRefGoogle Scholar
  66. 66.
    Cherian L, Chacko G, Goodman JC, Robertson CS. (1999) Cerebral hemodynamic effects of phenylephrine and L-arginine after cortical impact injury. Crit. Care Med. 27:2512–2517.CrossRefGoogle Scholar
  67. 67.
    Cherian L, Goodman JC, Robertson C. (2011) Improved cerebrovascular function and reduced histological damage with darbepoietin alfa administration after cortical impact injury in rats. J. Pharmacol. Exp. Ther. 337:451–6.CrossRefGoogle Scholar
  68. 68.
    Banerjee D, Rodriguez M, Nag M, Adamson JW. (2000) Exposure of endothelial cells to recombinant human erythropoietin induces nitric oxide synthase activity. Kidney Int. 57:1895–1904.CrossRefGoogle Scholar
  69. 69.
    Migliori M, et al. (1999) Nitric oxide-dependent renal vasodilatation is not altered in rat with rHuEpo-induced hypertension. Kidney Blood Press Res. 22:140–5.CrossRefGoogle Scholar
  70. 70.
    Santhanam AV, et al. (2005) Role of endothelial NO synthase phosphorylation in cerebrovascular protective effect of recombinant erythropoietin during subarachnoid hemorrhage-induced cerebral vasospasm. Stroke. 36:2731–7.CrossRefGoogle Scholar
  71. 71.
    Morishita E, Masuda S, Nagao M, Yasuda Y, Sasaki R. (1997) Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death. Neuroscience. 76:105–16.CrossRefGoogle Scholar
  72. 72.
    Sadamoto Y, et al. (1998) Erythropoietin prevents place navigation disability and cortical infarction in rats with permanent occlusion of the middle cerebral artery. Biochem. Biophys. Res. Commun. 253:26–32.CrossRefGoogle Scholar
  73. 73.
    Sakanaka M, et al. (1998) In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc. Natl. Acad. Sci. U. S. A. 95:4635–40.CrossRefGoogle Scholar
  74. 74.
    Wang R, et al. (2014) Intra-artery infusion of recombinant human erythropoietin reduces blood-brain barrier disruption in rats following cerebral ischemia and reperfusion. Int. J. Neurosci. 125:693–702.CrossRefGoogle Scholar
  75. 75.
    Dang S, et al. (2011) Neuroprotection by local intra-arterial infusion of erythropoietin after focal cerebral ischemia in rats. Neurol. Res. 33:520–8.CrossRefGoogle Scholar
  76. 76.
    Wang L, et al. (2015) Recombinant human erythropoietin improves the neurofunctional recovery of rats following traumatic brain injury via an increase in circulating endothelial progenitor cells. Transl. Stroke Res. 6:50–9.CrossRefGoogle Scholar
  77. 77.
    Grasso G, et al. (2007) Neuroprotection by erythropoietin administration after experimental traumatic brain injury. Brain Res. 1182:99–105.CrossRefGoogle Scholar
  78. 78.
    Cervellini I, Ghezzi P, Mengozzi M. (2013) Therapeutic efficacy of erythropoietin in experimental autoimmune encephalomyelitis in mice, a model of multiple sclerosis. Methods Mol. Biol. 982:163–73.CrossRefGoogle Scholar
  79. 79.
    Brines ML, et al. (2000) Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc. Natl. Acad. Sci. U. S. A. 97:10526–31.CrossRefGoogle Scholar
  80. 80.
    Alafaci C, et al. (2000) Effect of recombinant human erythropoietin on cerebral ischemia following experimental subarachnoid hemorrhage. Eur. J. Pharmacol. 406:219–25.CrossRefGoogle Scholar
  81. 81.
    Buemi M, et al. (2000) In vivo evidence that erythropoietin has a neuroprotective effect during subarachnoid hemorrhage. Eur. J. Pharmacol. 392:31–4.CrossRefGoogle Scholar
  82. 82.
    Grasso G. (2003) Erythropoiesis and neuroprotection: two sides of the same coin? Lancet Neurol. 2:332.CrossRefGoogle Scholar
  83. 83.
    Grasso G. (2004) An overview of new pharmacological treatments for cerebrovascular dysfunction after experimental subarachnoid hemorrhage. Brain Res. Brain Res. Rev. 44:49–63.CrossRefGoogle Scholar
  84. 84.
    Grasso G. (2006) Erythropoietin: a new paradigm for neuroprotection. J. Neurosurg. Anesthesiol 18:91–2.CrossRefGoogle Scholar
  85. 85.
    Grasso G, Buemi M, Giambartino F. (2015) The role of erythropoietin in aneurysmal subarachnoid haemorrhage: from bench to bedside. Acta Neurochir. Suppl. 120:75–80.PubMedGoogle Scholar
  86. 86.
    Grasso G, Sfacteria A. (2010) Erythropoietin and subarachnoid hemorrhage. J. Neurosurg. 112:699–700.CrossRefGoogle Scholar
  87. 87.
    Grasso G, et al. (2007) The role of erythropoietin in neuroprotection: therapeutic perspectives. Drug News Perspect. 20:315–20.CrossRefGoogle Scholar
  88. 88.
    Grasso G, Tomasello F. (2012) Erythropoietin for subarachnoid hemorrhage: is there a reason for hope? World Neurosurg. 77:46–8.CrossRefGoogle Scholar
  89. 89.
    Springborg JB, et al. (2002) A single subcutaneous bolus of erythropoietin normalizes cerebral blood flow autoregulation after subarachnoid haemorrhage in rats. Br. J. Pharmacol. 135:823–9.CrossRefGoogle Scholar
  90. 90.
    Murphy AM, Xenocostas A, Pakkiri P, Lee TY. (2008) Hemodynamic effects of recombinant human erythropoietin on the central nervous system after subarachnoid hemorrhage: reduction of microcirculatory impairment and functional deficits in a rabbit model. J. Neurosurg. 109:1155–64.CrossRefGoogle Scholar
  91. 91.
    Chen G, Zhang S, Shi J, Ai J, Hang C. (2009) Effects of recombinant human erythropoietin (rhEPO) on JAK2/STAT3 pathway and endothelial apoptosis in the rabbit basilar artery after subarachnoid hemorrhage. Cytokine. 45:162–8.CrossRefGoogle Scholar
  92. 92.
    Kertmen H, et al. (2014) The comparative effects of recombinant human erythropoietin and darbepoetin-alpha on cerebral vasospasm following experimental subarachnoid hemorrhage in the rabbit. Acta Neurochir. (Wien). 156:951–62.CrossRefGoogle Scholar
  93. 93.
    Springborg JB, et al. (2007) Erythropoietin in patients with aneurysmal subarachnoid haemorrhage: a double blind randomised clinical trial. Acta Neurochir. (Wien). 149:1089–101; discussion 1101.CrossRefGoogle Scholar
  94. 94.
    Tseng MY, et al. (2009) Acute systemic erythropoietin therapy to reduce delayed ischemic deficits following aneurysmal subarachnoid hemorrhage: a Phase II randomized, double-blind, placebo-controlled trial. Clinical article. J. Neurosurg. 111:171–80.CrossRefGoogle Scholar
  95. 95.
    Jia L, Chopp M, Zhang L, Lu M, Zhang Z. (2010) Erythropoietin in combination of tissue plasminogen activator exacerbates brain hemorrhage when treatment is initiated 6 hours after stroke. Stroke. 41:2071–6.CrossRefGoogle Scholar
  96. 96.
    Najjar SS, et al. (2011) Intravenous erythropoietin in patients with ST-segment elevation myocardial infarction: REVEAL: a randomized controlled trial. JAMA. 305:1863–72.CrossRefGoogle Scholar
  97. 97.
    Brines M, et al. (2014) ARA 290, a nonerythropoietic peptide engineered from erythropoietin, improves metabolic control and neuropathic symptoms in patients with type 2 diabetes. Mol. Med. 20:658–66.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, and provide a link to the Creative Commons license. You do not have permission under this license to share adapted material derived from this article or parts of it.

The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this license, visit (

Authors and Affiliations

  • Giovanni Grasso
    • 1
  • Giovanni Tomasello
    • 2
  • Marcello Noto
    • 3
  • Concetta Alafaci
    • 4
  • Francesco Cappello
    • 2
  1. 1.Neurosurgical Clinic, Department of Experimental Biomedicine and Clinical NeurosciencesPoliclinico Universitario di PalermoPalermoItaly
  2. 2.Section of Anatomy, Department of Experimental Biomedicine and Clinical NeurosciencesEuro-Mediterranean Institute of Science and Technology (IEMEST)PalermoItaly
  3. 3.AOU Policlinico of PalermoPalermoItaly
  4. 4.Department of NeurosurgeryUniversity of MessinaMessinaItaly

Personalised recommendations