Molecular Medicine

, Volume 20, Issue 1, pp 707–719 | Cite as

Expression of Blimp-1 in Dendritic Cells Modulates the Innate Inflammatory Response in Dextran Sodium Sulfate-Induced Colitis

  • Sun Jung Kim
  • Jordan Goldstein
  • Kimberly Dorso
  • Miriam Merad
  • Lloyd Mayer
  • James M. Crawford
  • Peter K. Gregersen
  • Betty Diamond
Research Article


A single nucleotide polymorphism of PRDM1, the gene encoding Blimp-1, is strongly associated with inflammatory bowel disease. Here, we demonstrate that Blimp-1 in CD103+ dendritic cells (DCs) critically contributes to the regulation of macrophage homeostasis in the colon. Dextran sodium sulfate (DSS)-exposed Blimp-1cko mice with a deletion of Blimp-1 in CD103+ DCs and CD11chi macrophages exhibited severe inflammatory symptoms, pronounced weight loss, high mortality, robust infiltration of neutrophils in epithelial regions of the colon, an increased expression of proinflammatory cytokines and a significant decrease in CD103+ DCs in the colon compared with DSS exposed wild-type (WT) mice. Purified colonic macrophages from Blimp-1cko mice expressed increased levels of matrix metalloproteinase 8, 9 and 12 mRNA. WT macrophages cocultured with colonic DCs but not bone marrow-derived DCs from Blimp-1cko produced increased matrix metalloproteinases in an interleukin (IL)-1β- and IL-6-dependent manner. Treatment of Blimp-1cko mice with anti-IL-1β and anti-IL-6 abrogated the exaggerated clinical response. Overall, these data demonstrate that Blimp-1 expression in DCs can alter an innate inflammatory response by modulating the activation of myeloid cells. This is a novel mechanism of contribution of Blimp-1 for the pathogenesis of inflammatory bowel diseases, implicating another therapeutic target for the development of inflammatory bowel disease.



We thank M Bogunovic for teaching the intestinal myeloid cell isolation technique and G Honig for helping with the assessment of systemic bacteremia. We thank H Borrero and C Colon at the Flow Cytometry core facility.

Supplementary material

10020_2014_2001707_MOESM1_ESM.pdf (380 kb)
Supplementary material, approximately 379 KB.


  1. 1.
    Bouma G, Strober W. (2003) The immunological and genetic basis of inflammatory bowel disease. Nat. Rev. Immunol. 3:521–33.CrossRefPubMedGoogle Scholar
  2. 2.
    Barrett JC, et al. (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat. Genet. 40:955–62.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Franke A, et al. (2010) Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat. Genet. 42:1118–25.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Jostins L, et al. (2012) Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 491:119–24.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hampe J, et al. (2007) A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet. 39:207–11.CrossRefPubMedGoogle Scholar
  6. 6.
    Berg DJ, et al. (1996) Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) TH1-like responses. J. Clin. Invest. 98:1010–20.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Blumberg RS, Saubermann LJ, Strober W. (1999) Animal models of mucosal inflammation and their relation to human inflammatory bowel disease. Curr. Opin. Immunol. 11:648–56.CrossRefPubMedGoogle Scholar
  8. 8.
    Yang I, et al. (2013) Intestinal microbiota composition of interleukin-10 deficient C57BL/6J mice and susceptibility to Helicobacter hepaticus-induced colitis. PLoS One. 8:e70783.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Vijay-Kumar M, et al. (2007) Deletion of TLR5 results in spontaneous colitis in mice. J. Clin. Invest. 117:3909–21.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Wang Y, et al. (2007) Rig-I-/- mice develop colitis associated with downregulation of G alpha i2. Cell Res. 17:858–68.CrossRefPubMedGoogle Scholar
  11. 11.
    Elinav E, et al. (2011) NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell. 145:745–57.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Fukata M, et al. (2007) Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology. 133:1869–81.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Shaw MH, Kamada N, Kim YG, Nunez G. (2012) Microbiota-induced IL-1beta, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine. J. Exp. Med. 209:251–8.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Saitoh T, et al. (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature. 456:264–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Varol C, Zigmond E, Jung S. (2010) Securing the immune tightrope: mononuclear phagocytes in the intestinal lamina propria. Nat. Rev. Immunol. 10:415–26.CrossRefPubMedGoogle Scholar
  16. 16.
    Hume DA, Mabbott N, Raza S, Freeman TC. (2013) Can DCs be distinguished from macrophages by molecular signatures? Nat. Immunol. 14:187–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Edelson BT, et al. (2010) Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8alpha+ conventional dendritic cells. J. Exp. Med. 207:823–36.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Cerovic V, et al. (2013) Intestinal CD103(−) dendritic cells migrate in lymph and prime effector T cells. Mucosal Immunol. 6:104–13.CrossRefPubMedGoogle Scholar
  19. 19.
    Tamoutounour S, et al. (2012) CD64 distinguishes macrophages from dendritic cells in the gut and reveals the Th1-inducing role of mesenteric lymph node macrophages during colitis. Eur. J. Immunol. 42:3150–66.CrossRefPubMedGoogle Scholar
  20. 20.
    Coombes JL, et al. (2007) A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J. Exp. Med. 204:1757–64.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Siddiqui KR, Laffont S, Powrie F. (2010) E-cadherin marks a subset of inflammatory dendritic cells that promote T cell-mediated colitis. Immunity. 32:557–67.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hadis U, et al. (2011) Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity. 34:237–46.CrossRefPubMedGoogle Scholar
  23. 23.
    Denning TL, Wang YC, Patel SR, Williams IR, Pulendran B. (2007) Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat. Immunol. 8:1086–94.CrossRefPubMedGoogle Scholar
  24. 24.
    Ellinghaus D, et al. (2013) Association between variants of PRDM1 and NDP52 and Crohn’s disease, based on exome sequencing and functional studies. Gastroenterology. 145:339–47.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Committee for the Update of the Guide for the Care and Use of Laboratory Animals, Institute for Laboratory Animal Research, Division on Earth and Life Studies, National Research Council of the National Academies. (2011) Guide for the Care and Use of Laboratory Animals. 8th edition. Washington (DC): National Academies Press.Google Scholar
  26. 26.
    Kim SJ, Zou YR, Goldstein J, Reizis B, Diamond B. (2011) Tolerogenic function of Blimp-1 in dendritic cells. J. Exp. Med. 208:2193–9.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kirkland D, et al. (2012) B cell-intrinsic MyD88 signaling prevents the lethal dissemination of commensal bacteria during colonic damage. Immunity. 36:228–38.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Papadakis KA, Targan SR. (2000) Role of cytokines in the pathogenesis of inflammatory bowel disease. Annu. Rev. Med. 51:289–98.CrossRefPubMedGoogle Scholar
  29. 29.
    Bruewer M, et al. (2003) Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. J. Immunol. 171:6164–72.CrossRefPubMedGoogle Scholar
  30. 30.
    Ravi A, Garg P, Sitaraman SV. (2007) Matrix metalloproteinases in inflammatory bowel disease: boon or a bane? Inflamm. Bowel Dis. 13:97–107.CrossRefPubMedGoogle Scholar
  31. 31.
    Medina C, Radomski MW. (2006) Role of matrix metalloproteinases in intestinal inflammation. J. Pharmacol. Exp. Ther. 318:933–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Cho JH. (2008) The genetics and immunopathogenesis of inflammatory bowel disease. Nat. Rev. Immunol. 8:458–66.CrossRefPubMedGoogle Scholar
  33. 33.
    Sands BE, Kaplan GG. (2007) The role of TNFalpha in ulcerative colitis. J. Clin. Pharmacol. 47:930–41.CrossRefPubMedGoogle Scholar
  34. 34.
    Martins GA, et al. (2006) Transcriptional repressor Blimp-1 regulates T cell homeostasis and function. Nat. Immunol. 7:457–65.CrossRefPubMedGoogle Scholar
  35. 35.
    Bankoti R, et al. (2013) B-lymphocyte induced maturation protein 1 (Blimp-1) is required to limit the number of IL17A-producing CD4+ T cells in vivo. (P1139). 190(Meeting Abstracts 1 Suppl):50.12.Google Scholar
  36. 36.
    Chiang MF, et al. (2013) Inducible deletion of the Blimp-1 gene in adult epidermis causes granulocyte-dominated chronic skin inflammation in mice. Proc. Natl. Acad. Sci. U. S. A. 110:6476–81.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Smythies LE, et al. (2005) Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J. Clin. Invest. 115:66–75.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kobayashi KS, et al. (2005) Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science. 307:731–4.CrossRefPubMedGoogle Scholar
  39. 39.
    Yen D, et al. (2006) IL-23 is essential for T cellmediated colitis and promotes inflammation via IL-17 and IL-6. J. Clin. Invest. 116:1310–6.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Stallmach A, et al. (2000) Comparable expression of matrix metalloproteinases 1 and 2 in pouchitis and ulcerative colitis. Gut. 47:415–22.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Bailey CJ, et al. (1994) Distribution of the matrix metalloproteinases stromelysin, gelatinases A and B, and collagenase in Crohn’s disease and normal intestine. J. Clin. Pathol. 47:113–6.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Dean RA, et al. (2008) Macrophage-specific metalloelastase (MMP-12) truncates and inactivates ELR+ CXC chemokines and generates CCL2, -7, -8, and -13 antagonists: potential role of the macrophage in terminating polymorphonuclear leukocyte influx. Blood. 112:3455–64.CrossRefPubMedGoogle Scholar
  43. 43.
    Koelink PJ, et al. (2014) Collagen degradation and neutrophilic infiltration: a vicious circle in inflammatory bowel disease. Gut. 63:578–87.CrossRefPubMedGoogle Scholar
  44. 44.
    Buell MG, Berin MC. (1994) Neutrophil-independence of the initiation of colonic injury: comparison of results from three models of experimental colitis in the rat. Dig. Dis. Sci. 39:2575–88.CrossRefPubMedGoogle Scholar
  45. 45.
    Farooq SM, et al. (2009) Therapeutic effect of blocking CXCR2 on neutrophil recruitment and dextran sodium sulfate-induced colitis. J. Pharmacol. Exp. Ther. 329:123–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Lord CA, et al. (2009) Blimp-1/PRDM1 mediates transcriptional suppression of the NLR gene NLRP12/Monarch-1. J. Immunol. 182:2948–58.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Netea MG, et al. (2005) IL-32 synergizes with nucleotide oligomerization domain (NOD) 1 and NOD2 ligands for IL-1beta and IL-6 production through a caspase 1-dependent mechanism. Proc. Natl. Acad. Sci. U. S. A. 102:16309–14.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Baumgart DC, et al. (2009) Exaggerated inflammatory response of primary human myeloid dendritic cells to lipopolysaccharide in patients with inflammatory bowel disease. Clin. Exp. Immunol. 157:423–36.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Author(s) 2014

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, and provide a link to the Creative Commons license. You do not have permission under this license to share adapted material derived from this article or parts of it.

The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this license, visit (

Authors and Affiliations

  • Sun Jung Kim
    • 1
    • 2
  • Jordan Goldstein
    • 1
  • Kimberly Dorso
    • 1
  • Miriam Merad
    • 3
  • Lloyd Mayer
    • 4
  • James M. Crawford
    • 5
  • Peter K. Gregersen
    • 2
    • 6
  • Betty Diamond
    • 1
    • 2
    • 7
  1. 1.The Center for Autoimmune and Musculoskeletal DiseasesThe Feinstein Institute for Medical ResearchManhassetUSA
  2. 2.Department of Molecular Medicine, School of MedicineHofstra UniversityHempsteadUSA
  3. 3.The Human Immunology CenterIcahn School of Medicine at Mount SinaiNew YorkUSA
  4. 4.The Immunology InstituteIcahn School of Medicine at Mount SinaiNew YorkUSA
  5. 5.Department of Pathology and Laboratory MedicineHofstra North Shore-LIJ School of MedicineHempsteadUSA
  6. 6.Center for Genomics and Human GeneticsThe Feinstein Institute for Medical ResearchManhassetUSA
  7. 7.ManhassetUSA

Personalised recommendations