Molecular Medicine

, Volume 20, Issue 1, pp 612–624 | Cite as

Poly(ADP-Ribose) Polymerase 1-Sirtuin 1 Functional Interplay Regulates LPS-Mediated High Mobility Group Box 1 Secretion

  • Thomas D. WalkoIII
  • Valentina Di Caro
  • Jon Piganelli
  • Timothy R. Billiar
  • Robert S. B. Clark
  • Rajesh K. Aneja
Research Article


Pathophysiological conditions that lead to the release of the prototypic damage-associated molecular pattern molecule high mobility group box 1 (HMGB1) also result in activation of poly(ADP-ribose) polymerase 1 (PARP1; now known as ADP-ribosyl transferase 1 [ARTD1]). Persistent activation of PARP1 promotes energy failure and cell death. The role of poly(ADP-ribosyl)ation in HMGB1 release has been explored previously; however, PARP1 is a versatile enzyme and performs several other functions including cross-talk with another nicotinamide adenine dinucleotide-(NAD+) dependent member of the Class III histone deacetylases (HDACs), sirtuin-1 (SIRT1). Previously, it has been shown that the hyperacetylation of HMGB1 is a seminal event prior to its secretion, a process that also is dependent on HDACs. Therefore, in this study, we seek to determine if PARP1 inhibition alters LPS-mediated HMGB1 hyperacetylation and subsequent secretion due to its effect on SIRT1. We demonstrate in an in vitro model that LPS treatment leads to hyperacetylated HMGB1with concomitant reduction in nuclear HDAC activity. Treatment with PARP1 inhibitors mitigates the LPS-mediated reduction in nuclear HDAC activity and decreases HMGB1 acetylation. By utilizing an NAD+-based mechanism, PARP1 inhibition increases the activity of SIRT1. Consequently, there is an increased nuclear retention and decreased extracellular secretion of HMGB1. We also demonstrate that PARP1 physically interacts with SIRT1. Further confirmation of this data was obtained in a murine model of sepsis, that is, administration of PJ-34, a specific PARP1 inhibitor, led to decreased serum HMGB1 concentrations in mice subjected to cecal ligation and puncture (CLP) as compared with untreated mice. In conclusion, our study provides new insights in understanding the molecular mechanisms of HMGB1 secretion in sepsis.



This work was supported by the National Institutes of Health (grant R01GM098474 to RK Aneja).


  1. 1.
    Wang H, Yang H, Czura CJ, Sama AE, Tracey KJ. (2001) HMGB1 as a late mediator of lethal systemic inflammation. Am. J. Respir. Crit. Care Med. 164:1768–73.CrossRefPubMedGoogle Scholar
  2. 2.
    Bianchi ME. (2007) DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 81:1–5.CrossRefGoogle Scholar
  3. 3.
    Castiglioni A, Canti V, Rovere-Querini P, Manfredi AA. High-mobility group box 1 (HMGB1) as a master regulator of innate immunity. Cell Tissue Res. 343:189-99.Google Scholar
  4. 4.
    Wang H, et al. (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science. 285:248–51.CrossRefGoogle Scholar
  5. 5.
    Yang H, et al. (2004) Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc. Natl. Acad. U. S. A. 101:296–301.CrossRefGoogle Scholar
  6. 6.
    Angus DC, et al. (2007) Circulating high-mobility group box 1 (HMGB1) concentrations are elevated in both uncomplicated pneumonia and pneumonia with severe sepsis. Crit. Care Med. 35:1061–7.CrossRefGoogle Scholar
  7. 7.
    Sunden-Cullberg J, et al. (2005) Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock. Crit. Care Med. 33:564–73.CrossRefGoogle Scholar
  8. 8.
    Yang R, et al. (2006) Anti-HMGB1 neutralizing antibody ameliorates gut barrier dysfunction and improves survival after hemorrhagic shock. Mol. Med. 12:105–14.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Liu S, et al. (2006) HMGB1 is secreted by immunostimulated enterocytes and contributes to cytomix-induced hyperpermeability of Caco-2 monolayers. Am. J. Physiol. Cell Physiol. 290:C990–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Aneja RK, et al. (2008) Preconditioning with high mobility group box 1 (HMGB1) induces lipopolysaccharide (LPS) tolerance. J. Leukoc. Biol. 84:1326–34.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ame JC, Spenlehauer C, de Murcia G. (2004) The PARP superfamily. Bioessays. 26:882–93.CrossRefPubMedGoogle Scholar
  12. 12.
    Bakondi E, et al. (2002) Detection of poly(ADP-ribose) polymerase activation in oxidatively stressed cells and tissues using biotinylated NAD substrate. J. Histochem. Cytochem. 50:91–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Butler AJ, Ordahl CP. (1999) Poly(ADP-ribose) polymerase binds with transcription enhancer factor 1 to MCAT1 elements to regulate muscle-specific transcription. Mol. Cell. Biol. 19:296–306.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Chiarugi A. (2002) Poly(ADP-ribose) polymerase: killer or conspirator? The ‘suicide hypothesis’ revisited. Trends Pharmacol. Sci. 23:122–9.CrossRefPubMedGoogle Scholar
  15. 15.
    de Murcia G, Menissier de Murcia J. (1994) Poly(ADP-ribose) polymerase: a molecular nicksensor. Trends Biochem. Sci. 19:172–6.CrossRefPubMedGoogle Scholar
  16. 16.
    de Murcia G, et al. (1994) Structure and function of poly(ADP-ribose) polymerase. Mol. Cell. Biochem. 138:15–24.CrossRefPubMedGoogle Scholar
  17. 17.
    Desmarais Y, Menard L, Lagueux J, Poirier GG. (1991) Enzymological properties of poly(ADP-ribose)polymerase: characterization of automodification sites and NADase activity. Biochim. Biophys. Acta. 1078:179–86.CrossRefPubMedGoogle Scholar
  18. 18.
    Hassa PO, Hottiger MO. (2002) The functional role of poly(ADP-ribose)polymerase 1 as novel coactivator of NF-kappaB in inflammatory disorders. Cell Mol. Life. Sci. 59:1534–53.CrossRefPubMedGoogle Scholar
  19. 19.
    Ogata N, Ueda K, Kawaichi M, Hayaishi O. (1981) Poly(ADP-ribose) synthetase, a main acceptor of poly(ADP-ribose) in isolated nuclei. J. Biol. Chem. 256:4135–7.PubMedGoogle Scholar
  20. 20.
    Oliver FJ, Menissier-de Murcia J, de Murcia G. (1999) Poly(ADP-ribose) polymerase in the cellular response to DNA damage, apoptosis, and disease. Am. J. Hum. Genet. 64:1282–8.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zingarelli B, Szabo C, Salzman AL. (1999) Blockade of poly(ADP-ribose) synthetase inhibits neutrophil recruitment, oxidant generation, and mucosal injury in murine colitis. Gastroenterology. 116:335–45.CrossRefPubMedGoogle Scholar
  22. 22.
    Zingarelli B, Salzman AL, Szabo C. (1998) Genetic disruption of poly (ADP-ribose) synthetase inhibits the expression of P-selectin and intercellular adhesion molecule-1 in myocardial ischemia/reperfusion injury. Circ. Res. 83:85–94.CrossRefPubMedGoogle Scholar
  23. 23.
    Zingarelli B, O’Connor M, Wong H, Salzman AL, Szabo C. (1996) Peroxynitrite-mediated DNA strand breakage activates poly-adenosine diphosphate ribosyl synthetase and causes cellular energy depletion in macrophages stimulated with bacterial lipopolysaccharide. J. Immunol. 156:350–8.PubMedGoogle Scholar
  24. 24.
    Eliasson MJ, et al. (1997) Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat. Med. 3:1089–95.CrossRefPubMedGoogle Scholar
  25. 25.
    Liaudet L, et al. (2000) Protection against hemorrhagic shock in mice genetically deficient in poly(ADP-ribose)polymerase. Proc. Natl. Acad. Sci. U. S. A. 97:10203–8.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Pieper AA, et al. (1999) Poly(ADP-ribose) polymerase-deficient mice are protected from streptozotocin-induced diabetes. Proc. Natl. Acad. Sci. U. S. A. 96:3059–64.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Virag L, Szabo C. (2002) The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol. Rev. 54:375–429.CrossRefPubMedGoogle Scholar
  28. 28.
    Mota RA, et al. (2008) Poly(ADP-ribose) polymerase-1 inhibition increases expression of heat shock proteins and attenuates heat stroke-induced liver injury. Crit. Care Med. 36:526–34.CrossRefPubMedGoogle Scholar
  29. 29.
    Jagtap P, et al. (2002) Novel phenanthridinone inhibitors of poly (adenosine 5′-diphosphateribose) synthetase: potent cytoprotective and antishock agents. Crit. Care Med. 30:1071–82.CrossRefPubMedGoogle Scholar
  30. 30.
    Liaudet L, et al. (2001) Suppression of poly (ADP-ribose) polymerase activation by 3-aminobenzamide in a rat model of myocardial infarction: long-term morphological and functional consequences. Br. J. Pharmacol. 133:1424–30.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Oliver FJ, et al. (1999) Resistance to endotoxic shock as a consequence of defective NF-kappaB activation in poly (ADP-ribose) polymerase-1 deficient mice. Embo. J. 18:4446–54.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Soriano FG, et al. (2002) Resistance to acute septic peritonitis in poly(ADP-ribose) polymerase-1-deficient mice. Shock. 17:286–92.CrossRefPubMedGoogle Scholar
  33. 33.
    Stern Y, Salzman A, Cotton RT, Zingarelli B. (1999) Protective effect of 3-aminobenzamide, an inhibitor of poly (ADP-ribose) synthetase, against laryngeal injury in rats. Am. J. Respir. Crit. Care Med. 160:1743–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Szabo C, et al. (1997) Inhibition of poly (ADP-ribose) synthetase attenuates neutrophil recruitment and exerts antiinflammatory effects. J. Exp. Med. 186:1041–9.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Szabo E, et al. (2001) Peroxynitrite production, DNA breakage, and poly(ADP-ribose) polymerase activation in a mouse model of oxazolone-induced contact hypersensitivity. J. Invest. Dermatol. 117:74–80.CrossRefPubMedGoogle Scholar
  36. 36.
    Valenzuela MT, et al. (2002) PARP-1 modifies the effectiveness of p53-mediated DNA damage response. Oncogene. 21:1108–16.CrossRefPubMedGoogle Scholar
  37. 37.
    Veres B, et al. (2003) Decrease of the inflammatory response and induction of the Akt/protein kinase B pathway by poly-(ADP-ribose) polymerase 1 inhibitor in endotoxin-induced septic shock. Biochem. Pharmacol. 65:1373–82.CrossRefPubMedGoogle Scholar
  38. 38.
    Virag L, Salzman AL, Szabo C. (1998) Poly(ADP-ribose) synthetase activation mediates mitochondrial injury during oxidant-induced cell death. J. Immunol. 161:3753–9.PubMedGoogle Scholar
  39. 39.
    Virag L, Szabo C. (1999) Inhibition of poly(ADP-ribose) synthetase (PARS) and protection against peroxynitrite-induced cytotoxicity by zinc chelation. Br. J. Pharmacol. 126:769–77.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Virag L, Szabo C. (2000) BCL-2 protects peroxynitrite-treated thymocytes from poly(ADP-ribose) synthase (PARS)-independent apoptotic but not from PARS-mediated necrotic cell death. Free Radic. Biol. Med. 29:704–13.CrossRefPubMedGoogle Scholar
  41. 41.
    Virag L, Szabo C. (2001) Purines inhibit poly(ADP-ribose) polymerase activation and modulate oxidant-induced cell death. FASEB J. 15:99–107.CrossRefPubMedGoogle Scholar
  42. 42.
    Zingarelli B, Cuzzocrea S, Zsengeller Z, Salzman AL, Szabo C. (1997) Protection against myocardial ischemia and reperfusion injury by 3-aminobenzamide, an inhibitor of poly (ADP-ribose) synthetase. Cardiovasc. Res. 36:205–15.CrossRefPubMedGoogle Scholar
  43. 43.
    Zingarelli B, et al. (2004) Differential regulation of activator protein-1 and heat shock factor-1 in myocardial ischemia and reperfusion injury: role of poly(ADP-ribose) polymerase-1. Am. J. Physiol. Heart Circ. Physiol. 286:H1408–15.CrossRefPubMedGoogle Scholar
  44. 44.
    Zingarelli B, O’Connor M, Hake PW. (2003) Inhibitors of poly (ADP-ribose) polymerase modulate signal transduction pathways in colitis. Eur. J. Pharmacol. 469:183–94.CrossRefPubMedGoogle Scholar
  45. 45.
    D’Amours D, Desnoyers S, D’Silva I, Poirier GG. (1999) Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem. J. 342 (Pt 2): 249–68.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hassa PO, Covic M, Hasan S, Imhof R, Hottiger MO. (2001) The enzymatic and DNA binding activity of PARP-1 are not required for NF-kappa B coactivator function. J. Biol. Chem. 276:45588–97.CrossRefPubMedGoogle Scholar
  47. 47.
    Oei SL, Griesenbeck J, Ziegler M, Schweiger M. (1998) A novel function of poly(ADP-ribosyl)ation: silencing of RNA polymerase II-dependent transcription. Biochemistry. 37:1465–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Andreone TL, O’Connor M, Denenberg A, Hake PW, Zingarelli B. (2003) Poly(ADP-ribose) polymerase-1 regulates activation of activator protein-1 in murine fibroblasts. J. Immunol. 170:2113–20.CrossRefPubMedGoogle Scholar
  49. 49.
    Cervellera MN, Sala A. (2000) Poly(ADP-ribose) Polymerase Is a B-MYB Coactivator. J. Biol. Chem. 275:10692–6.CrossRefPubMedGoogle Scholar
  50. 50.
    Hassa PO, Buerki C, Lombardi C, Imhof R, Hottiger MO. (2003) Transcriptional coactivation of nuclear factor-kappaB-dependent gene expression by p300 is regulated by poly(ADP)-ribose polymerase-1. J. Biol. Chem. 278:45145–53.CrossRefPubMedGoogle Scholar
  51. 51.
    Hassa PO, Hottiger MO. (1999) A role of poly (ADP-ribose) polymerase in NF-kappaB transcriptional activation. Biol. Chem. 380:953–9.CrossRefGoogle Scholar
  52. 52.
    Kannan P, Yu Y, Wankhade S, Tainsky MA. (1999) PolyADP-ribose polymerase is a coactivator for AP-2-mediated transcriptional activation. Nucleic Acids Res. 27:866–74.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Kraus WL, Lis JT. (2003) PARP goes transcription. Cell. 113:677–83.CrossRefGoogle Scholar
  54. 54.
    Ditsworth D, Zong WX, Thompson CB. (2007) Activation of poly(ADP)-ribose polymerase (PARP-1) induces release of the pro-inflammatory mediator HMGB1 from the nucleus. J. Biol. Chem. 282:17845–54.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Davis K, et al. (2012) Poly(ADP-ribosyl)ation of high mobility group box 1 (HMGB1) protein enhances inhibition of efferocytosis. Mol. Med. 18:359–69.CrossRefPubMedGoogle Scholar
  56. 56.
    Bai P, Canto C. (2012) The role of PARP-1 and PARP-2 enzymes in metabolic regulation and disease. Cell Metab. 16:290–5.CrossRefPubMedGoogle Scholar
  57. 57.
    Kolthur-Seetharam U, Dantzer F, McBurney MW, de Murcia G, Sassone-Corsi P. (2006) Control of AIF-mediated cell death by the functional interplay of SIRT1 and PARP-1 in response to DNA damage. Cell Cycle. 5:873–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Rajamohan SB, et al. (2009) SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADP-ribose) polymerase 1. Mol. Cell. Biol. 29:4116–29.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Wang ZQ, et al. (1995) Mice lacking ADPRT and poly(ADP-ribosyl)ation develop normally but are susceptible to skin disease. Genes. Dev. 9:509–20.CrossRefPubMedGoogle Scholar
  60. 60.
    Robert SM, Sjodin H, Fink MP, Aneja RK. (2010) Preconditioning with high mobility group box 1 (HMGB1) induces lipoteichoic acid (LTA) tolerance. J. Immunother. 33:663–71.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Gardella S, et al. (2002) The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep. 3:995–1001.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Evankovich J, et al. (2010) High mobility group box 1 release from hepatocytes during ischemia and reperfusion injury is mediated by decreased histone deacetylase activity. J. Biol. Chem. 285:39888–97.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Soderberg O, et al. (2006) Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods. 3:995–1000.CrossRefPubMedGoogle Scholar
  64. 64.
    Gallucci S, Matzinger P. (2001) Danger signals: SOS to the immune system. Curr. Opin. Immunol. 13:114–9.CrossRefPubMedGoogle Scholar
  65. 65.
    Yang H, et al. (2004) Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc. Natl. Acad. Sci. U. S. A. 101:296–301.CrossRefGoogle Scholar
  66. 66.
    Bonaldi T, et al. (2003) Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 22:5551–60.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Youn JH, Shin J-S. (2006) Nucleocytoplasmic shuttling of HMGB1 is regulated by phosphorylation that redirects it toward secretion. J. Immunol. 177:7889–97.CrossRefGoogle Scholar
  68. 68.
    Hassa PO, et al. (2005) Acetylation of poly(ADP-ribose) polymerase-1 by p300/CREB-binding protein regulates coactivation of NF-kappaB-dependent transcription. J. Biol. Chem. 280:40450–64.CrossRefPubMedGoogle Scholar
  69. 69.
    Bonaldi T, et al. (2003) Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 22:5551–60.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Anderson MG, Scoggin KE, Simbulan-Rosenthal CM, Steadman JA. (2000) Identification of poly(ADP-ribose) polymerase as a transcriptional coactivator of the human T-cell leukemia virus type 1 Tax protein. J. Virol. 74:2169–77.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Pavri R, et al. (2005) PARP-1 determines specificity in a retinoid signaling pathway via direct modulation of mediator. Mol. Cell. 18:83–96.CrossRefPubMedGoogle Scholar
  72. 72.
    Aguilar-Quesada R, et al. (2007) Modulation of transcription by PARP-1: consequences in carcinogenesis and inflammation. Curr. Med. Chem. 14:1179–87.CrossRefPubMedGoogle Scholar
  73. 73.
    De Lucia F, Mennella MR, Quesada P, Farina B. (1996) Poly(ADPribosyl)ation system in transcriptionally active rat testis chromatin fractions. J. Cell Biochem. 63:334–41.CrossRefPubMedGoogle Scholar
  74. 74.
    Rouleau M, Aubin RA, Poirier GG. (2004) Poly(ADP-ribosyl)ated chromatin domains: access granted. J. Cell Sci. 117:815–25.CrossRefPubMedGoogle Scholar
  75. 75.
    Martinez-Zamudio R, Ha HC. (2012) Histone ADP-ribosylation facilitates gene transcription by directly remodeling nucleosomes. Mol. Cell. Biol. 32:2490–502.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Petrilli V, et al. (2004) Noncleavable poly(ADP-ribose) polymerase-1 regulates the inflammation response in mice. J. Clin. Invest. 114:1072–81.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Zhang J. (2003) Are poly(ADP-ribosyl)ation by PARP-1 and deacetylation by Sir2 linked? Bioessays. 25:808–14.CrossRefPubMedGoogle Scholar
  78. 78.
    Pillai JB, Isbatan A, Imai S, Gupta MP. (2005) Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity. J. Biol. Chem. 280:43121–30.CrossRefPubMedGoogle Scholar
  79. 79.
    Luna A, Aladjem MI, Kohn KW. (2013) SIRT1/PARP1 crosstalk: connecting DNA damage and metabolism. Genome Integr. 4:6.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Ame JC, et al. (1999) PARP-2, A novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. J. Biol. Chem. 274:17860–8.CrossRefPubMedGoogle Scholar
  81. 81.
    Alvarez-Gonzalez R, Mendoza-Alvarez H. (1995) Dissection of ADP-ribose polymer synthesis into individual steps of initiation, elongation, and branching. Biochimie. 77:403–7.CrossRefPubMedGoogle Scholar
  82. 82.
    Houtkooper RH, Canto C, Wanders RJ, Auwerx J. (2010) The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr. Rev. 31:194–223.CrossRefPubMedGoogle Scholar

Copyright information

© The Author(s) 2014

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, and provide a link to the Creative Commons license. You do not have permission under this license to share adapted material derived from this article or parts of it.

The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this license, visit (

Authors and Affiliations

  • Thomas D. WalkoIII
    • 1
  • Valentina Di Caro
    • 1
  • Jon Piganelli
    • 2
  • Timothy R. Billiar
    • 3
  • Robert S. B. Clark
    • 4
  • Rajesh K. Aneja
    • 4
  1. 1.Department of Critical Care MedicineUniversity of Pittsburgh School of Medicine and Children’s Hospital of PittsburghPittsburghUSA
  2. 2.Department of ImmunologyUniversity of Pittsburgh School of Medicine and Children’s Hospital of PittsburghPittsburghUSA
  3. 3.Department of SurgeryUniversity of Pittsburgh School of Medicine and Children’s Hospital of PittsburghPittsburghUSA
  4. 4.Departments of Critical Care Medicine and PediatricsUniversity of Pittsburgh School of Medicine and Children’s Hospital of PittsburghPittsburghUSA

Personalised recommendations