Advertisement

Molecular Medicine

, Volume 20, Issue 1, pp 191–201 | Cite as

Molecular Mechanisms of Pulmonary Arterial Remodeling

  • Patrick Crosswhite
  • Zhongjie Sun
Review Article

Abstract

Pulmonary arterial hypertension (PAH) is characterized by a persistent elevation of pulmonary arterial pressure and pulmonary arterial remodeling with unknown etiology. Current therapeutics available for PAH are primarily directed at reducing the pulmonary blood pressure through their effects on the endothelium. It is well accepted that pulmonary arterial remodeling is primarily due to excessive pulmonary arterial smooth muscle cell (PASMC) proliferation that leads to narrowing or occlusion of the pulmonary vessels. Future effective therapeutics will be successful in reversing the vascular remodeling in the pulmonary arteries and arterioles. The purpose of this review is to provide updated information on molecular mechanisms involved in pulmonary arterial remodeling with a focus on growth factors, transcription factors, and epigenetic pathways in PASMC proliferation. In addition, this review will highlight novel therapeutic strategies for potentially reversing PASMC proliferation.

Notes

Acknowledgments

Funding was received from NIH R01 HL116863, HL102074 and HL105302 and AHA 11PRE7830040.

References

  1. 1.
    Anderson JR, Nawarskas JJ. (2010) Pharmacotherapeutic management of pulmonary arterial hypertension. Cardiol. Rev. 18:148–62.CrossRefPubMedGoogle Scholar
  2. 2.
    Morrell NW, et al. (2009) Cellular and molecular basis of pulmonary arterial hypertension. J. Am. Coll. Cardiol. 54:S20–31.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Giaid A, Saleh D. (1995) Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N. Engl. J. Med. 333:214–21.CrossRefPubMedGoogle Scholar
  4. 4.
    Szczeklik J, et al. (1978) Effects of prostaglandin E1 on pulmonary circulation in patients with pulmonary hypertension. Br. Heart J. 40:1397–401.CrossRefGoogle Scholar
  5. 5.
    Christman BW, et al. (1992) An imbalance between the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension. N. Engl. J. Med. 327:70–5.CrossRefPubMedGoogle Scholar
  6. 6.
    Stewart DJ, Levy RD, Cernacek P, Langleben D. (1991) Increased plasma endothelin-1 in pulmonary hypertension: marker or mediator of disease? Ann. Intern. Med. 114:464–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Launay JM, et al. (2002) Function of the serotonin 5-hydroxytryptamine 2B receptor in pulmonary hypertension. Nat. Med. 8:1129–35.CrossRefPubMedGoogle Scholar
  8. 8.
    Eddahibi S, et al. (2006) Cross talk between endothelial and smooth muscle cells in pulmonary hypertension: critical role for serotonin-induced smooth muscle hyperplasia. Circulation. 113:1857–64.CrossRefPubMedGoogle Scholar
  9. 9.
    Uchida S, et al. (2009) An integrated approach for the systematic identification and characterization of heart-enriched genes with unknown functions. BMC Genomics. 10:100.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Savoia C, et al. (2011) Vascular inflammation and endothelial dysfunction in experimental hypertension. Int. J. Hypertens. 2011:281240.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Crosswhite P, Sun Z. (2010) Nitric oxide, oxidative stress and inflammation in pulmonary arterial hypertension. J. Hypertens. 28:201–12.CrossRefGoogle Scholar
  12. 12.
    Balabanian K, et al. (2002) CX(3)C chemokine fractalkine in pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 165:1419–25.CrossRefPubMedGoogle Scholar
  13. 13.
    Gomez-Arroyo JG, et al. (2011) The monocrotaline model of pulmonary hypertension in perspective. Am. J. Physiol. Lung Cell. Mol. Physiol. 302:L363–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Ghamra ZW, Dweik RA. (2003) Primary pulmonary hypertension: an overview of epidemiology and pathogenesis. Cleve Clin. J. Med. 70 Suppl 1:S2–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Schermuly RT, Ghofrani HA, Wilkins MR, Grimminger F. (2011) Mechanisms of disease: pulmonary arterial hypertension. Nat. Rev. Cardiol. 8:443–55.CrossRefPubMedGoogle Scholar
  16. 16.
    Humbert M, et al. (2004) Cellular and molecular pathobiology of pulmonary arterial hypertension. J. Am. Coll. Cardiol. 43:13S–24S.CrossRefPubMedGoogle Scholar
  17. 17.
    Jeffery TK, Morrell NW. (2002) Molecular and cellular basis of pulmonary vascular remodeling in pulmonary hypertension. Prog. Cardiovasc. Dis. 45:173–202.CrossRefPubMedGoogle Scholar
  18. 18.
    Bouallegue A, Daou GB, Srivastava AK. (2007) Endothelin-1-induced signaling pathways in vascular smooth muscle cells. Curr. Vasc. Pharmacol. 5:45–52.CrossRefPubMedGoogle Scholar
  19. 19.
    Clapp LH, et al. (2002) Differential effects of stable prostacyclin analogs on smooth muscle proliferation and cyclic AMP generation in human pulmonary artery. Am. J. Respir. Cell Moll. Biol. 26:194–201.CrossRefGoogle Scholar
  20. 20.
    Owen NE. (1986) Effect of prostaglandin E1 on DNA synthesis in vascular smooth muscle cells. Am. J. Physiol. 250:C584–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Nilsson J, Olsson AG. (1984) Prostaglandin E1 inhibits DNA synthesis in arterial smooth muscle cells stimulated with platelet-derived growth factor. Atherosclerosis. 53:77–82.CrossRefPubMedGoogle Scholar
  22. 22.
    Jourdan KB, Evans TW, Lamb NJ, Goldstraw P, Mitchell JA. (1999) Autocrine function of inducible nitric oxide synthase and cyclooxygenase-2 in proliferation of human and rat pulmonary artery smooth-muscle cells: species variation. Am. J. Respir. Cell Mol. Biol. 21:105–10.CrossRefPubMedGoogle Scholar
  23. 23.
    Rich S, et al. (2010) Long-term effects of epoprostenol on the pulmonary vasculature in idiopathic pulmonary arterial hypertension. Chest. 138:1234–9.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Deng Z, et al. (2000) Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am. J. Hum. Genet. 67:737–44.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lane KB, et al. (2000) Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. Nat. Genet. 26:81–4.CrossRefPubMedGoogle Scholar
  26. 26.
    Trembath RC, et al. (2001) Clinical and molecular genetic features of pulmonary hypertension in patients with hereditary hemorrhagic telangiectasia. N. Engl. J. Med. 345:325–34.CrossRefPubMedGoogle Scholar
  27. 27.
    Chaouat A, et al. (2004) Endoglin germline mutation in a patient with hereditary haemorrhagic telangiectasia and dexfenfluramine associated pulmonary arterial hypertension. Thorax 59:446–8.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Massague J, Chen YG. (2000) Controlling TGF-beta signaling. Genes. Dev. 14:627–44.PubMedGoogle Scholar
  29. 29.
    Beppu H, et al. (2000) BMP type II receptor is required for gastrulation and early development of mouse embryos. Dev. Biol. 221:249–58.CrossRefPubMedGoogle Scholar
  30. 30.
    Du L, et al. (2003) Signaling molecules in nonfamilial pulmonary hypertension. N. Engl. J. Med. 348:500–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Markewitz BA, Farrukh IS, Chen Y, Li Y, Michael JR. (2001) Regulation of endothelin-1 synthesis in human pulmonary arterial smooth muscle cells. Effects of transforming growth factor-beta and hypoxia. Cardiovasc. Res. 49:200–6.CrossRefPubMedGoogle Scholar
  32. 32.
    Barst RJ. (2007) A review of pulmonary arterial hypertension: role of ambrisentan. Vasc. Health Risk Manag. 3:11–22.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Zuckerbraun BS, et al. (2007) Nitric oxide-induced inhibition of smooth muscle cell proliferation involves S-nitrosation and inactivation of RhoA. Am. J. Physiol. Cell Physiol. 292:C824–31.CrossRefPubMedGoogle Scholar
  34. 34.
    Landsberg JW, Yuan JX. (2004) Calcium and TRP channels in pulmonary vascular smooth muscle cell proliferation. News Physiol. Sci. 19:44–50.PubMedGoogle Scholar
  35. 35.
    Berridge MJ. (1993) Inositol trisphosphate and calcium signalling. Nature. 361:315–25.CrossRefGoogle Scholar
  36. 36.
    Yang XR, Lin MJ, Sham JS. (2010) Physiological functions of transient receptor potential channels in pulmonary arterial smooth muscle cells. Adv. Exp. Med. Biol. 661:109–22.CrossRefPubMedGoogle Scholar
  37. 37.
    Inoue R, et al. (2001) The transient receptor potential protein homologue TRP6 is the essential component of vascular alpha(1)-adrenoceptor-activated Ca(2+)-permeable cation channel. Circ. Res. 88:325–32.CrossRefPubMedGoogle Scholar
  38. 38.
    Slish DF, Welsh DG, Brayden JE. (2002) Diacylglycerol and protein kinase C activate cation channels involved in myogenic tone. Am. J. Physiol. Heart Circ. Physiol. 283:H2196–201.CrossRefPubMedGoogle Scholar
  39. 39.
    Yuan JX, et al. (1998) Dysfunctional voltage-gated K+ channels in pulmonary artery smooth muscle cells of patients with primary pulmonary hypertension. Circulation. 98:1400–6.CrossRefPubMedGoogle Scholar
  40. 40.
    Geraci MW, et al. (2001) Gene expression patterns in the lungs of patients with primary pulmonary hypertension: a gene microarray analysis. Circ. Res. 88:555–62.CrossRefPubMedGoogle Scholar
  41. 41.
    Joshi S, Sedivy V, Hodyc D, Herget J, Gurney AM. (2009) KCNQ modulators reveal a key role for KCNQ potassium channels in regulating the tone of rat pulmonary artery smooth muscle. J. Pharmacol Exp. Ther. 329:368–76.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Huang RP, et al. (1999) Tumor promotion by hydrogen peroxide in rat liver epithelial cells. Carcinogenesis. 20:485–92.CrossRefPubMedGoogle Scholar
  43. 43.
    Zhang S, et al. (2003) Bone morphogenetic proteins induce apoptosis in human pulmonary vascular smooth muscle cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 285:L740–54.CrossRefPubMedGoogle Scholar
  44. 44.
    McMurtry MS, et al. (2004) Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ. Res. 95:830–40.CrossRefPubMedGoogle Scholar
  45. 45.
    Liu H, Nishitoh H, Ichijo H, Kyriakis JM. (2000) Activation of apoptosis signal-regulating kinase 1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor thioredoxin. Mol. Cell. Biol. 20:2198–208.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kim GH, Ryan JJ, Marsboom G, Archer SL. (2011) Epigenetic mechanisms of pulmonary hypertension. Pulm. Circ. 1:347–56.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Xu XF, Cheng F, Du LZ. (2011) Epigenetic regulation of pulmonary arterial hypertension. Hypertens. Res. 34:981–6.CrossRefPubMedGoogle Scholar
  48. 48.
    Archer SL, et al. (2010) Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary arterial hypertension: a basis for excessive cell proliferation and a new therapeutic target. Circulation. 121:2661–71.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Xu XF, et al. (2011) Epigenetic regulation of the endothelial nitric oxide synthase gene in persistent pulmonary hypertension of the newborn rat. J. Hypertens. 28:2227–35.CrossRefGoogle Scholar
  50. 50.
    White K, Loscalzo J, Chan SY. (2012) Holding our breath: The emerging and anticipated roles of microRNA in pulmonary hypertension. Pulm. Circ. 2:278–90.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Parikh VN, et al. (2012) MicroRNA-21 integrates pathogenic signaling to control pulmonary hypertension: results of a network bioinformatics approach. Circulation. 125:1520–32.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Steiner MK, et al. (2009) Interleukin-6 overexpression induces pulmonary hypertension. Circ. Res. 104:236–44.CrossRefPubMedGoogle Scholar
  53. 53.
    Yang S, et al. (2012) miR-21 regulates chronic hypoxia-induced pulmonary vascular remodeling. Am. J. Physiol. Lung Cell. Mol. Physiol. 302:L521–9.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Sarkar J, et al. (2010) MicroRNA-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration. Am. J. Physiol. Lung Cell. Mol. Physiol. 299:L861–71.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kang K, et al. (2013) MicroRNA-124 suppresses the transactivation of nuclear factor of activated T cells by targeting multiple genes and inhibits the proliferation of pulmonary artery smooth muscle cells. J. Biol. Chem. 288:25414–27.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Jalali S, et al. (2012) Mir-206 regulates pulmonary artery smooth muscle cell proliferation and differentiation. PLoS One. 7:e46808.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Gou D, et al. (2012) miR-210 has an antiapoptotic effect in pulmonary artery smooth muscle cells during hypoxia. Am. J. Physiol. Lung Cell. Mol. Physiol. 303:L682–91.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Courboulin A, et al. (2011) Role for miR-204 in human pulmonary arterial hypertension. J. Exp. Med. 208:535–48.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Meloche J, et al. (2014) Role for DNA damage signaling in pulmonary arterial hypertension. Circulation. 129:786–97.CrossRefPubMedGoogle Scholar
  60. 60.
    Drake KM, et al. (2011) Altered microRNA processing in heritable pulmonary arterial hypertension: an important role for Smad-8. Am. J. Respir. Crit. Care Med. 184:1400–8.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Kim J, et al. (2013) An endothelial apelin-FGF link mediated by miR-424 and miR-503 is disrupted in pulmonary arterial hypertension. Nat. Med. 19:74–82.CrossRefPubMedGoogle Scholar
  62. 62.
    Grant JS, White K, MacLean MR, Baker AH. (2013) MicroRNAs in pulmonary arterial remodeling. Cell. Mol. Life Sci. 70:4479–94.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Meloche J, Paulin R, Provencher S, Bonnet S. (2013) Therapeutic potential of microRNA modulation in pulmonary arterial hypertension. Curr. Vasc. Pharmacol. 2013, May 13. [Epub ahead of print].Google Scholar
  64. 64.
    Paulin R, Courboulin A, Barrier M, Bonnet S. (2011) From oncoproteins/tumor suppressors to microRNAs, the newest therapeutic targets for pulmonary arterial hypertension. J Mol. Med. (Berl). 89:1089–101.CrossRefGoogle Scholar
  65. 65.
    Grimminger F, Schermuly RT. (2010) PDGF receptor and its antagonists: role in treatment of PAH. Adv. Exp. Med. Biol. 661:435–46.CrossRefPubMedGoogle Scholar
  66. 66.
    Grotendorst GR, Chang T, Seppa HE, Kleinman HK, Martin GR. (1982) Platelet-derived growth factor is a chemoattractant for vascular smooth muscle cells. J. Cell. Physiol. 113:261–6.CrossRefPubMedGoogle Scholar
  67. 67.
    Ross R, Glomset J, Kariya B, Harker L. (1974) A platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro. Proc. Natl. Acad. Sci. U. S. A. 71:1207–10.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Schermuly RT, et al. (2005) Reversal of experimental pulmonary hypertension by PDGF inhibition. J. Clin. Invest. 115:2811–21.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Humbert M, et al. (1998) Platelet-derived growth factor expression in primary pulmonary hypertension: comparison of HIV seropositive and HIV seronegative patients. Eur. Respir. J. 11:554–9.PubMedGoogle Scholar
  70. 70.
    Yu Y, et al. (2003) PDGF stimulates pulmonary vascular smooth muscle cell proliferation by upregulating TRPC6 expression. Am. J. Physiol. Cell Physiol. 284:C316–30.CrossRefPubMedGoogle Scholar
  71. 71.
    Balasubramaniam V, et al. (2003) Role of platelet-derived growth factor in vascular remodeling during pulmonary hypertension in the ovine fetus. Am. J. Physiol. Lung Cell. Mol. Physiol. 284:L826–33.CrossRefPubMedGoogle Scholar
  72. 72.
    Jankov RP, et al. (2005) A role for platelet-derived growth factor beta-receptor in a newborn rat model of endothelin-mediated pulmonary vascular remodeling. Am. J. Physiol. Lung Cell. Mol. Physiol. 288:L1162–70.CrossRefPubMedGoogle Scholar
  73. 73.
    Ghofrani HA, Seeger W, Grimminger F. (2005) Imatinib for the treatment of pulmonary arterial hypertension. N. Engl. J. Med. 353:1412–3.CrossRefPubMedGoogle Scholar
  74. 74.
    Hoeper MM, et al. (2013) Imatinib mesylate as add-on therapy for pulmonary arterial hypertension: results of the randomized IMPRES study. Circulation. 127:1128–38.CrossRefPubMedGoogle Scholar
  75. 75.
    Mucke H. (2013) The role of imatinib in the treatment of pulmonary hypertension. Drugs Today. (Barc). 49:203–11.Google Scholar
  76. 76.
    Clifford RL, Deacon K, Knox AJ. (2008) Novel regulation of vascular endothelial growth factor-A (VEGF-A) by transforming growth factor (beta)1: requirement for Smads, (beta)-CATENIN, AND GSK3(beta). J. Biol. Chem. 283:35337–53.CrossRefPubMedGoogle Scholar
  77. 77.
    Hassoun PM, et al. (2009) Inflammation, growth factors, and pulmonary vascular remodeling. J. Am. Coll. Cardiol. 54:S10–9.CrossRefPubMedGoogle Scholar
  78. 78.
    Partovian C, et al. (1998) Heart and lung VEGF mRNA expression in rats with monocrotaline- or hypoxia-induced pulmonary hypertension. Am. J. Physiol. 275:H1948–56.PubMedGoogle Scholar
  79. 79.
    Campbell AI, Zhao Y, Sandhu R, Stewart DJ. (2001) Cell-based gene transfer of vascular endothelial growth factor attenuates monocrotaline-induced pulmonary hypertension. Circulation. 104:2242–8.CrossRefPubMedGoogle Scholar
  80. 80.
    Partovian C, et al. (2000) Adenovirus-mediated lung vascular endothelial growth factor overexpression protects against hypoxic pulmonary hypertension in rats. Am. J. Respir. Cell Mol. Biol. 23:762–71.CrossRefPubMedGoogle Scholar
  81. 81.
    Mata-Greenwood E, Grobe A, Kumar S, Noskina Y, Black SM. (2005) Cyclic stretch increases VEGF expression in pulmonary arterial smooth muscle cells via TGF-beta1 and reactive oxygen species: a requirement for NAD(P)H oxidase. Am. J. Physiol. Lung Cell. Mol. Physiol. 289:L288–9.CrossRefPubMedGoogle Scholar
  82. 82.
    Mata-Greenwood E, Meyrick B, Soifer SJ, Fineman JR, Black SM. (2003) Expression of VEGF and its receptors Flt-1 and Flk-1/KDR is altered in lambs with increased pulmonary blood flow and pulmonary hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol 285: L222–31.CrossRefPubMedGoogle Scholar
  83. 83.
    Firth AL, Yao W, Remillard CV, Ogawa A, Yuan JX. (2010) Upregulation of Oct-4 isoforms in pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 298:L548–57.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Greco SJ, Liu K, Rameshwar P. (2007) Functional similarities among genes regulated by OCT4 in human mesenchymal and embryonic stem cells. Stem Cells. 25:3143–54.CrossRefPubMedGoogle Scholar
  85. 85.
    Yoshida T, Kaestner KH, Owens GK. (2008) Conditional deletion of Kruppel-like factor 4 delays downregulation of smooth muscle cell differentiation markers but accelerates neointimal formation following vascular injury. Circ. Res. 102:1548–57.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Freyd G, Kim SK, Horvitz HR. (1990) Novel cysteine-rich motif and homeodomain in the product of the Caenorhabditis elegans cell lineage gene lin-11. Nature. 344:876–9.CrossRefPubMedGoogle Scholar
  87. 87.
    Kwapiszewska G, et al. (2008) Fhl-1, a new key protein in pulmonary hypertension. Circulation. 118:1183–94.CrossRefPubMedGoogle Scholar
  88. 88.
    Bonnet S, et al. (2006) An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation. 113:2630–41.CrossRefPubMedGoogle Scholar
  89. 89.
    Semenza GL. (2005) Pulmonary vascular responses to chronic hypoxia mediated by hypoxia-inducible factor 1. Proc. Am. Thorac. Soc. 2:68–70.CrossRefPubMedGoogle Scholar
  90. 90.
    Li X, et al. (2009) Notch3 signaling promotes the development of pulmonary arterial hypertension. Nature Med. 15:1289–97.CrossRefPubMedGoogle Scholar
  91. 91.
    Campos AH, Wang W, Pollman MJ, Gibbons GH. (2002) Determinants of Notch-3 receptor expression and signaling in vascular smooth muscle cells: implications in cell-cycle regulation. Circ. Res. 91:999–1006.CrossRefPubMedGoogle Scholar
  92. 92.
    Morrow D, et al. (2005) Notch-mediated CBF-1/RBP-Jkappa-dependent regulation of human vascular smooth muscle cell phenotype in vitro. Am. J. Physiol. Cell Physiol. 289:C1188–96.CrossRefPubMedGoogle Scholar
  93. 93.
    Wang W, Prince CZ, Mou Y, Pollman MJ. (2002) Notch3 signaling in vascular smooth muscle cells induces c-FLIP expression via ERK/MAPK activation. Resistance to Fas ligand-induced apoptosis. J Biol. Chem. 277:21723–9.CrossRefPubMedGoogle Scholar
  94. 94.
    Berset T, Hoier EF, Battu G, Canevascini S, Hajnal A. (2001) Notch inhibition of RAS signaling through MAP kinase phosphatase LIP-1 during C. elegans vulval development. Science 291:1055–8.CrossRefPubMedGoogle Scholar
  95. 95.
    Lowery JW, et al. (2010) ID family protein expression and regulation in hypoxic pulmonary hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299:R1463–77.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Perk J, Iavarone A, Benezra R. (2005) Id family of helix-loop-helix proteins in cancer. Nat. Rev. Cancer. 5:603–14.CrossRefPubMedGoogle Scholar
  97. 97.
    Yang J, et al. (2010) Smad-dependent and smad-independent induction of id1 by prostacyclin analogues inhibits proliferation of pulmonary artery smooth muscle cells in vitro and in vivo. Circ. Res. 107:252–62.CrossRefPubMedGoogle Scholar

Copyright information

© The Author(s) 2014

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, and provide a link to the Creative Commons license. You do not have permission under this license to share adapted material derived from this article or parts of it.

The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this license, visit (https://doi.org/creativecommons.org/licenses/by-nc-nd/4.0/)

Authors and Affiliations

  1. 1.Department of Physiology, College of MedicineUniversity of Oklahoma Health Sciences Center (OUHSC), BMSB 662AOklahoma CityUSA

Personalised recommendations