Advertisement

Molecular Medicine

, Volume 20, Issue 1, pp 93–108 | Cite as

Conditional Knockout of the RNA-Binding Protein HuR in CD4+ T Cells Reveals a Gene Dosage Effect on Cytokine Production

  • Matthew M. Gubin
  • Patsharaporn Techasintana
  • Joseph D. Magee
  • Garrett M. Dahm
  • Robert Calaluce
  • Jennifer L. Martindale
  • Maryln S. Whitney
  • Craig L. Franklin
  • Cindy Besch-Williford
  • John W. Hollingsworth
  • Kotb Abdelmohsen
  • Myriam Gorospe
  • Ulus Atasoy
Research Article

Abstract

The posttranscriptional mechanisms by which RNA binding proteins (RBPs) regulate T-cell differentiation and cytokine production in vivo remain unclear. The RBP HuR binds to labile mRNAs, usually leading to increases in mRNA stability and/or translation. Previous work demonstrated that HuR binds to the mRNAs encoding the Th2 transcription factor trans-acting T-cell-specific transcription factor (GATA-3) and Th2 cytokines interleukin (IL)-4 and IL-13, thereby regulating their expression. By using a novel conditional HuR knockout (KO) mouse in which HuR is deleted in activated T cells, we show that Th2-polarized cells from heterozygous HuR conditional (OX40-Cre HuRfl/+) KO mice had decreased steady-state levels of Gata3, Il4 and Il13 mRNAs with little changes at the protein level. Surprisingly, Th2-polarized cells from homozygous HuR conditional (OX40-Cre HuRfl/fl) KO mice showed increased Il2, Il4 and Il13 mRNA and protein via different mechanisms. Specifically, Il4 was transcriptionally upregulated in HuR KO T cells, whereas Il2 and Il13 mRNA stabilities increased. Additionally, when using the standard ovalbumin model of allergic airway inflammation, HuR conditional KO mice mounted a robust inflammatory response similar to mice with wild-type HuR levels. These results reveal a complex differential posttranscriptional regulation of cytokines by HuR in which gene dosage plays an important role. These findings may have significant implications in allergies and asthma, as well as autoimmune diseases and infection.

Notes

Acknowledgments

This work was supported by National Institutes of Health grants R01AI080870-01 and R21AI079341-01 (to U Atasoy). M Gorospe, K Abdelmohsen and JL Martindale were kindly supported by the National Institute on Aging Intramural Research Program, National Institutes of Health (NIA, IRP, NIH).

Supplementary material

10020_2014_2001093_MOESM1_ESM.pdf (2.8 mb)
Supplementary material, approximately 2.75 MB.

References

  1. 1.
    Zhu J, Yamane H, Paul WE. (2010) Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 28:445–89.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gutcher I, Becher B. (2007) APC-derived cytokines and T cell polarization in autoimmune inflammation. J. Clin. Invest. 117:1119–27.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cheadle C, et al. (2005) Stability regulation of mRNA and the control of gene expression. Ann. N. Y. Acad. Sci. 1058:196–204.CrossRefPubMedGoogle Scholar
  4. 4.
    Cheadle C, et al. (2005) Control of gene expression during T cell activation: alternate regulation of mRNA transcription and mRNA stability. BMC Genomics. 6: 75.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Vavassori S, Covey LR. (2009) Post-transcriptional regulation in lymphocytes: the case of CD154. RNA Biol. 6:259–65.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Raghavan A, et al. (2004) Patterns of coordinate down-regulation of ARE-containing transcripts following immune cell activation. Genomics. 84:1002–13.CrossRefPubMedGoogle Scholar
  7. 7.
    Raghavan A, et al. (2002) Genome-wide analysis of mRNA decay in resting and activated primary human T lymphocytes. Nucleic Acids Res. 30:5529–38.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Glisovic T, Bachorik JL, Yong J, Dreyfuss G. (2008) RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett. 582:1977–86.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Pullmann R Jr, et al. (2007) Analysis of turnover and translation regulatory RNA-binding protein expression through binding to cognate mRNAs. Mol. Cell. Biol. 27:6265–78.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Anderson P. (2008) Post-transcriptional control of cytokine production. Nat. Immunol. 9:353–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Chen CY, Xu N, Shyu AB. (2002) Highly selective actions of HuR in antagonizing AU-rich elementmediated mRNA destabilization. Mol. Cell. Biol. 22:7268–78.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Atasoy U, Watson J, Patel D, Keene JD. (1998) ELAV protein HuA (HuR) can redistribute between nucleus and cytoplasm and is upregulated during serum stimulation and T cell activation. J. Cell. Sci. 111:3145–56.PubMedGoogle Scholar
  13. 13.
    Taylor GA, et al. (1996) A pathogenetic role for TNF alpha in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity. 4:445–54.CrossRefPubMedGoogle Scholar
  14. 14.
    Bhattacharya S, Giordano T, Brewer G, Malter JS. (1999) Identification of AUF-1 ligands reveals vast diversity of early response gene mRNAs. Nucleic Acids Res. 27:1464–72.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lai WS, Parker JS, Grissom SF, Stumpo DJ, Blackshear PJ. (2006) Novel mRNA targets for tristetraprolin (TTP) identified by global analysis of stabilized transcripts in TTP-deficient fibroblasts. Mol. Cell. Biol. 26:9196–208.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Meisner NC, Filipowicz W. (2011) Properties of the regulatory RNA-binding protein HuR and its role in controlling miRNA repression. Adv. Exp. Med. Biol. 700:106–23.CrossRefPubMedGoogle Scholar
  17. 17.
    Kim HH, et al. (2009) HuR recruits let-7/RISC to repress c-Myc expression. Genes Dev. 23:1743–8.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Yamasaki S, Stoecklin G, Kedersha N, Simarro M, Anderson P. (2007) T-cell intracellular antigen-1 (TIA-1)-induced translational silencing promotes the decay of selected mRNAs. J. Biol. Chem. 282:30070–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Moulton VR, Kyttaris VC, Juang YT, Chowdhury B, Tsokos GC. (2008) The RNA-stabilizing protein HuR regulates the expression of zeta chain of the human T cell receptor-associated CD3 complex. J. Biol. Chem. 283:20037–44.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ramgolam VS, et al. (2010) T cell LFA-1 engagement induces HuR-dependent cytokine mRNA stabilization through a Vav-1, Rac1/2, p38MAPK and MKK3 signaling cascade. PLoS One. 5:e14450.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Stellato C, et al. (2011) Coordinate regulation of GATA-3 and Th2 cytokine gene expression by the RNA-binding protein HuR. J. Immunol. 187:441–9.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Casolaro V, et al. (2008) Posttranscriptional regulation of IL-13 in T cells: role of the RNA-binding protein HuR. J. Allergy Clin. Immunol. 121:853–59, e854.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Yarovinsky TO, Butler NS, Monick MM, Hunninghake GW. (2006) Early exposure to IL-4 stabilizes IL-4 mRNA in CD4+ T cells via RNA-binding protein HuR. J. Immunol. 177:4426–35.CrossRefPubMedGoogle Scholar
  24. 24.
    Bosnjak B, Stelzmueller B, Erb KJ, Epstein MM. (2011) Treatment of allergic asthma: modulation of Th2 cells and their responses. Respir. Res. 12:114.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Komai M, et al. (2003) Role of Th2 responses in the development of allergen-induced airway remodelling in a murine model of allergic asthma. Br. J. Pharmacol. 138:912–20.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Katsanou V, et al. (2009) The RNA-binding protein Elavl1/HuR is essential for placental branching morphogenesis and embryonic development. Mol. Cell. Biol. 29:2762–76.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Papadaki O, et al. (2009) Control of thymic T cell maturation, deletion and egress by the RNA-binding protein HuR. J. Immunol. 182:6779–88.CrossRefPubMedGoogle Scholar
  28. 28.
    Galban S, et al. (2008) RNA-binding proteins HuR and PTB promote the translation of hypoxia-inducible factor 1alpha. Mol. Cell. Biol. 28:93–107.CrossRefPubMedGoogle Scholar
  29. 29.
    Gutcher I, et al. (2011) Autocrine transforming growth factor-beta1 promotes in vivo Th17 cell differentiation. Immunity. 34:396–408.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Klinger M, et al. (2009) Thymic OX40 expression discriminates cells undergoing strong responses to selection ligands. J. Immunol. 182:4581–9.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Seko Y, Azmi H, Fariss R, Ragheb JA. (2004) Selective cytoplasmic translocation of HuR and site-specific binding to the interleukin-2 mRNA are not sufficient for CD28-mediated stabilization of the mRNA. J. Biol. Chem. 279:33359–67.CrossRefPubMedGoogle Scholar
  32. 32.
    Meisner NC, et al. (2004) mRNA openers and closers: modulating AU-rich element-controlled mRNA stability by a molecular switch in mRNA secondary structure. Chembiochemistry. 5:1432–47.CrossRefGoogle Scholar
  33. 33.
    Galban S, Gorospe M. (2009) Factors interacting with HIF-1alpha mRNA: novel therapeutic targets. Curr. Pharm. Des. 15:3853–60.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Whitehead GS, Walker JK, Berman KG, Foster WM, Schwartz DA. (2003) Allergen-induced airway disease is mouse strain dependent. Am. J. Physiol. Lung Cell. Mol. Physiol. 285:L32–42.CrossRefPubMedGoogle Scholar
  35. 35.
    Frush S, et al. (2011) The role of the extracellular matrix protein mindin in airway response to environmental airways injury. Environ. Health Perspect. 119:1403–8.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Li Z, Potts-Kant EN, Garantziotis S, Foster WM, Hollingsworth JW. (2011) Hyaluronan signaling during ozone-induced lung injury requires TLR4, MyD88, and TIRAP. PLoS One. 6:e27137.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Yamane H, Zhu J, Paul WE. (2005) Independent roles for IL-2 and GATA-3 in stimulating naive CD4+ T cells to generate a Th2-inducing cytokine environment. J. Exp. Med. 202:793–804.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Cote-Sierra J, et al. (2004) Interleukin 2 plays a central role in Th2 differentiation. Proc. Natl. Acad. Sci. U. S. A. 101:3880–5.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Zhu J, Cote-Sierra J, Guo L, Paul WE. (2003) Stat5 activation plays a critical role in Th2 differentiation. Immunity. 19:739–48.CrossRefPubMedGoogle Scholar
  40. 40.
    Guo L, et al. (2002) In TH2 cells the Il4 gene has a series of accessibility states associated with distinctive probabilities of IL-4 production. Proc. Natl. Acad. Sci. U. S. A. 99:10623–8.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Zhu J, Guo L, Watson CJ, Hu-Li J, Paul WE. (2001) Stat6 is necessary and sufficient for IL-4’s role in Th2 differentiation and cell expansion. J. Immunol. 166:7276–81.CrossRefPubMedGoogle Scholar
  42. 42.
    Yagi R, Zhu J, Paul WE. (2011) An updated view on transcription factor GATA3-mediated regulation of Th1 and Th2 cell differentiation. Int. Immunol. 23:415–20.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Zhu J, Yamane H, Cote-Sierra J, Guo L, Paul WE. (2006) GATA-3 promotes Th2 responses through three different mechanisms: induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Th1 cell-specific factors. Cell Res. 16:3–10.CrossRefPubMedGoogle Scholar
  44. 44.
    Chang N, et al. (2010) HuR uses AUF1 as a cofactor to promote p16INK4 mRNA decay. Mol. Cell. Biol. 30:3875–86.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Meisner NC, Filipowicz W. (2010) Properties of the regulatory RNA-binding protein HuR and its role in controlling miRNA repression. Adv. Exp. Med. Biol. 700:106–23.CrossRefPubMedGoogle Scholar
  46. 46.
    Guo X, Wu Y, Hartley RS. (2009) MicroRNA-125a represses cell growth by targeting HuR in breast cancer. RNA Biol. 6:575–83.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Leung AK, Sharp PA. (2007) microRNAs: a safeguard against turmoil? Cell. 130:581–5.CrossRefPubMedGoogle Scholar
  48. 48.
    Leung AK, Sharp PA. (2006) Function and localization of microRNAs in mammalian cells. Cold Spring Harb. Symp. Quant. Biol. 71:29–38.CrossRefPubMedGoogle Scholar
  49. 49.
    Kumar M, et al. (2011) Let-7 microRNA-mediated regulation of IL-13 and allergic airway inflammation. J. Allergy Clin. Immunol. 128:1077–1085.e10.CrossRefPubMedGoogle Scholar
  50. 50.
    Abate-Shen C, Shen MM. (2005) An unusual gene dosage effect of p27kip1 in a mouse model of prostate cancer. Cell Cycle. 4:e45–7.CrossRefPubMedGoogle Scholar
  51. 51.
    Gao H, et al. (2004) A critical role for p27kip1 gene dosage in a mouse model of prostate carcinogenesis. Proc. Natl. Acad. Sci. U. S. A. 101:17204–9.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Cohen JC, Lundblad LK, Bates JH, Levitzky M, Larson JE. (2004) The “Goldilocks effect” in cystic fibrosis: identification of a lung phenotype in the cftr knockout and heterozygous mouse. BMC Gen. 5:21.CrossRefGoogle Scholar
  53. 53.
    Shen R, Kaplan MH. (2002) The homeostasis but not the differentiation of T cells is regulated by p27(Kip1). J. Immunol. 169:714–21.CrossRefPubMedGoogle Scholar
  54. 54.
    Kullmann M, Gopfert U, Siewe B, Hengst L. (2002) ELAV/Hu proteins inhibit p27 translation via an IRES element in the p27 5′UTR. Genes Dev. 16:3087–99.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Ziegeler G, et al. (2010) Embryonic lethal abnormal vision-like HuR-dependent mRNA stability regulates post-transcriptional expression of cyclin-dependent kinase inhibitor p27Kip1. J. Biol. Chem. 285:15408–19.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Lopez de Silanes I, Zhan M, Lal A, Yang X, Gorospe M. (2004) Identification of a target RNA motif for RNA-binding protein HuR. Proc. Natl. Acad. Sci. U. S. A. 101:2987–992.CrossRefPubMedGoogle Scholar
  57. 57.
    Katsanou V, et al. (2005) HuR as a negative posttranscriptional modulator in inflammation. Mol. Cell. 19:777–89.CrossRefPubMedGoogle Scholar
  58. 58.
    Yiakouvaki A, et al. (2012) Myeloid cell expression of the RNA-binding protein HuR protects mice from pathologic inflammation and colorectal carcinogenesis. J. Clin. Invest. 122:48–61.CrossRefPubMedGoogle Scholar
  59. 59.
    Calaluce R, et al. (2010) The RNA binding protein HuR differentially regulates unique subsets of mRNAs in estrogen receptor negative and estrogen receptor positive breast cancer. BMC Cancer. 10:126.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Gubin MM, et al. (2010) Overexpression of the RNA binding protein HuR impairs tumor growth in triple negative breast cancer associated with deficient angiogenesis. Cell Cycle. 9:3337–46.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Nials AT, Uddin S. (2008) Mouse models of allergic asthma: acute and chronic allergen challenge. Dis. Models Mech. 1:213–20.CrossRefGoogle Scholar
  62. 62.
    Jacobsen EA, et al. (2008) Allergic pulmonary inflammation in mice is dependent on eosinophilinduced recruitment of effector T cells. J. Exp. Med. 205:699–710.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Walsh ER, et al. (2011) Computational and experimental analysis reveals a requirement for eosinophil-derived IL-13 for the development of allergic airway responses in C57BL/6 mice. J. Immunol. 186:2936–49.CrossRefPubMedGoogle Scholar
  64. 64.
    Chen J, et al. (2013) Posttranscriptional gene regulation of IL-17 by the RNA-binding protein HuR is required for initiation of experimental autoimmune encephalomyelitis. J. Immunol. 191:5441–50.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Author(s) 2014

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, and provide a link to the Creative Commons license. You do not have permission under this license to share adapted material derived from this article or parts of it.

The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this license, visit (https://doi.org/creativecommons.org/licenses/by-nc-nd/4.0/)

Authors and Affiliations

  • Matthew M. Gubin
    • 1
  • Patsharaporn Techasintana
    • 1
  • Joseph D. Magee
    • 1
  • Garrett M. Dahm
    • 1
  • Robert Calaluce
    • 1
  • Jennifer L. Martindale
    • 2
  • Maryln S. Whitney
    • 1
  • Craig L. Franklin
    • 1
  • Cindy Besch-Williford
    • 1
  • John W. Hollingsworth
    • 3
  • Kotb Abdelmohsen
    • 2
  • Myriam Gorospe
    • 2
  • Ulus Atasoy
    • 1
    • 4
  1. 1.University of MissouriColumbiaUSA
  2. 2.National Institute on Aging, National Institutes of HealthBaltimoreUSA
  3. 3.Department of MedicineDuke UniversityDurhamUSA
  4. 4.ColumbiaUSA

Personalised recommendations