Molecular Medicine

, Volume 19, Issue 1, pp 276–285 | Cite as

The Multiple Chemokine-Binding Bovine Herpesvirus 1 Glycoprotein G (BHV1gG) Inhibits Polymorphonuclear Cell but Not Monocyte Migration into Inflammatory Sites

  • Zheng Liu
  • Ramalingam Bethunaickan
  • Ranjit Sahu
  • Max Brenner
  • Teresina Laragione
  • Percio S. Gulko
  • Anne Davidson
Research Article


Chemokines facilitate the recruitment of inflammatory cells into tissues, contributing to target organ injury in a wide range of inflammatory and autoimmune diseases. Targeting either single chemokines or chemokine receptors alters the progression of disease in animal models of rheumatoid arthritis and lupus with varying degrees of efficacy, but clinical trials in humans have been less successful. Given the redundancy of chemokine-chemokine receptor interactions, targeting of more than one chemokine may be required to inhibit active inflammatory disease. To test the effects of multiple chemokine blockade in inflammation, we generated an adenovirus expressing bovine herpesvirus 1 glycoprotein G (BHV1gG), a viral chemokine antagonist that binds to a wide spectrum of murine and human chemokines, fused to the fragment crystallizable (Fc) portion of murine immunoglobulin (IgG)2a. Administration of the adenovirus significantly inhibited thioglycollate-induced migration of polymorphonuclear leukocytes into the peritoneal cavity of BALB/c mice and reduced both clinical severity and articular damage in K/BxN serum transfer-induced arthritis. However, treatment with BHV1gG-Ig fusion protein did not prevent monocyte infiltration into the peritoneum in the thioglycollate model and did not prevent renal monocyte infiltration or nephritis in lupus-prone NZB/W mice. These observations suggest that the simultaneous inhibition of multiple chemokines by BHV1gG has the potential to interfere with acute inflammatory responses mediated by polymorphonuclear leukocytes, but is less effective in chronic inflammatory disease mediated by macrophages.



This work was supported by NIDDK R01 DK085241-01 and Rheuminations.


  1. 1.
    Iwamoto T, Okamoto H, Toyama Y, Momohara S. (2008) Molecular aspects of rheumatoid arthritis: chemokines in the joints of patients. FEBS. J. 275:4448–55.CrossRefPubMedGoogle Scholar
  2. 2.
    Jacobs JP, et al. (2010) Deficiency of CXCR2, but not other chemokine receptors, attenuates autoantibody-mediated arthritis in a murine model. Arthritis Rheum. 62:1921–32.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Laragione T, Brenner M, Sherry B, Gulko PS. (2011) CXCL10 and its receptor CXCR3 regulate synovial fibroblast invasion in rheumatoid arthritis. Arthritis Rheum. 63:3274–83.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Zheng B, et al. (2005) CXCL13 neutralization reduces the severity of collagen-induced arthritis. Arthritis Rheum. 52:620–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Yellin M, et al. (2012) A phase II, randomized, double-blind, placebo-controlled study evaluating the efficacy and safety of MDX-1100, a fully human anti-CXCL10 monoclonal antibody, in combination with methotrexate in patients with rheumatoid arthritis. Arthritis Rheum. 64:1730–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Takeuchi T, Kameda H. (2012) What is the future of CCR5 antagonists in rheumatoid arthritis? Arthritis Res. Ther. 14:114.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Vergunst CE, et al. (2008) Modulation of CCR2 in rheumatoid arthritis: a double-blind, randomized, placebo-controlled clinical trial. Arthritis Rheum. 58:1931–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Lebre MC, et al. (2011) Why CCR2 and CCR5 blockade failed and why CCR1 blockade might still be effective in the treatment of rheumatoid arthritis. PLoS One. 6:e21772.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Schiffer L, et al. (2008) Activated renal macrophages are markers of disease onset and disease remission in lupus nephritis. J. Immunol. 180:1938–47.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Perez de Lema G, et al. (2005) Chemokine receptor Ccr2 deficiency reduces renal disease and prolongs survival in MRL/lpr lupus-prone mice. J. Am. Soc. Nephrol. 16:3592–601.CrossRefPubMedGoogle Scholar
  11. 11.
    Tesch GH, Maifert S, Schwarting A, Rollins BJ, Kelley VR. (1999) Monocyte chemoattractant protein 1-dependent leukocytic infiltrates are responsible for autoimmune disease in MRL-Fas(lpr) mice. J. Exp. Med. 190:1813–24.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Steinmetz OM, et al. (2009) CXCR3 mediates renal Th1 and Th17 immune response in murine lupus nephritis. J. Immunol. 183:4693–704.CrossRefPubMedGoogle Scholar
  13. 13.
    Anders HJ, et al. (2004) Late onset of treatment with a chemokine receptor CCR1 antagonist prevents progression of lupus nephritis in MRL-Fas(lpr) mice. J. Am. Soc. Nephrol. 15:1504–13.CrossRefPubMedGoogle Scholar
  14. 14.
    Inoue A, et al. (2005) Antagonist of fractalkine (CX3CL1) delays the initiation and ameliorates the progression of lupus nephritis in MRL/lpr mice. Arthritis Rheum. 52:1522–33.CrossRefPubMedGoogle Scholar
  15. 15.
    Bryant NA, Davis-Poynter N, Vanderplasschen A, Alcami A. (2003) Glycoprotein G isoforms from some alphaherpesviruses function as broad-spectrum chemokine binding proteins. EMBO J. 22:833–46.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ramanujam M, et al. (2004) Mechanism of action of transmembrane activator and calcium modulator ligand interactor-Ig in murine systemic lupus erythematosus. J. Immunol. 173:3524–34.CrossRefPubMedGoogle Scholar
  17. 17.
    Mihara M, et al. (2000) CTLA4Ig inhibits T cell-dependent B-cell maturation in murine systemic lupus erythematosus. J. Clin. Invest. 106:91–101.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Santos LL, et al. (2011) Macrophage migration inhibitory factor regulates neutrophil chemotactic responses in inflammatory arthritis in mice. Arthritis Rheum. 63:960–70.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wiege K, et al. (2012) Defective macrophage migration in Galphai2- but not Galphai3-deficient mice. J. Immunol. 189:980–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Ghosn EE, et al. (2010) Two physically, functionally, and developmentally distinct peritoneal macrophage subsets. Proc. Natl. Acad. Sci. U. S. A. 107:2568–73.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Jirholt J, et al. (1998) Genetic linkage analysis of collagen-induced arthritis in the mouse. Eur. J. Immun. 28:3321–8.CrossRefGoogle Scholar
  22. 22.
    Liu Z, et al. (2011) Interferon-alpha accelerates murine systemic lupus erythematosus in a T cell-dependent manner. Arthritis Rheum. 63:219–29.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Shi K, et al. (2001) Lymphoid chemokine B cell-attracting chemokine-1 (CXCL13) is expressed in germinal center of ectopic lymphoid follicles within the synovium of chronic arthritis patients. J. Immunol. 166:650–5.CrossRefPubMedGoogle Scholar
  24. 24.
    Soto H, et al. (2008) Gene array analysis comparison between rat collagen-induced arthritis and human rheumatoid arthritis. Scand J. Immunol. 68:43–57.CrossRefPubMedGoogle Scholar
  25. 25.
    Kyburz D, Corr M. (2003) The KRN mouse model of inflammatory arthritis. Springer Semin. Immunopathol. 25:79–90.CrossRefPubMedGoogle Scholar
  26. 26.
    Alcami A. (2003) Viral mimicry of cytokines, chemokines and their receptors. Nat. Rev. 3:36–50.Google Scholar
  27. 27.
    Martin AP, Canasto-Chibuque C, Shang L, Rollins BJ, Lira SA. (2006) The chemokine decoy receptor M3 blocks CC chemokine ligand 2 and CXC chemokine ligand 13 function in vivo. J. Immunol. 177:7296–302.CrossRefPubMedGoogle Scholar
  28. 28.
    Martin AP, et al. (2007) The chemokine binding protein M3 prevents diabetes induced by multiple low doses of streptozotocin. J. Immunol. 178:4623–31.CrossRefPubMedGoogle Scholar
  29. 29.
    Wengner AM, Pitchford SC, Furze RC, Rankin SM. (2008) The coordinated action of G-CSF and ELR + CXC chemokines in neutrophil mobilization during acute inflammation. Blood. 111:42–9.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wegmann M. (2011) Targeting eosinophil biology in asthma therapy. Am. J. Respir. Cell Mol. Biol. 45:667–74.CrossRefPubMedGoogle Scholar
  31. 31.
    Henderson RB, Hobbs JA, Mathies M, Hogg N. (2003) Rapid recruitment of inflammatory monocytes is independent of neutrophil migration. Blood. 102:328–35.CrossRefPubMedGoogle Scholar
  32. 32.
    Takahashi M, Galligan C, Tessarollo L, Yoshimura T. (2009) Monocyte chemoattractant protein-1 (MCP-1), not MCP-3, is the primary chemokine required for monocyte recruitment in mouse peritonitis induced with thioglycollate or zymosan A. J. Immunol. 183:3463–71.CrossRefPubMedGoogle Scholar
  33. 33.
    LaFleur AM, Lukacs NW, Kunkel SL, Matsukawa A. (2004) Role of CC chemokine CCL6/C10 as a monocyte chemoattractant in a murine acute peritonitis. Mediators Inflamm. 13:349–55.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wang Y, et al. (2009) CCR2 and CXCR4 regulate peripheral blood monocyte pharmacodynamics and link to efficacy in experimental autoimmune encephalomyelitis. J. Inflamm. (Lond.). 6:32.CrossRefGoogle Scholar
  35. 35.
    Sadik CD, Kim ND, Alekseeva E, Luster AD. (2011) IL-17RA signaling amplifies antibody-induced arthritis. PLoS One. 6:e26342.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ji H, et al. (2002) Critical roles for interleukin 1 and tumor necrosis factor alpha in antibody-induced arthritis. J. Exp. Med. 196:77–85.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Monach PA, et al. (2010) Neutrophils in a mouse model of autoantibody-mediated arthritis: critical producers of Fc receptor gamma, the receptor for C5a, and lymphocyte function-associated antigen 1. Arthritis Rheum. 62:753–64.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Plater-Zyberk C, Hoogewerf AJ, Proudfoot AE, Power CA, Wells TN. (1997) Effect of a CC chemokine receptor antagonist on collagen induced arthritis in DBA/1 mice. Immunol. Lett. 57:117–20.CrossRefPubMedGoogle Scholar
  39. 39.
    Quinones MP, et al. (2005) The complex role of the chemokine receptor CCR2 in collagen-induced arthritis: implications for therapeutic targeting of CCR2 in rheumatoid arthritis. J Mol. Med. (Berl.). 83:672–81.CrossRefGoogle Scholar
  40. 40.
    Vierboom MP, et al. (2005) Inhibition of the development of collagen-induced arthritis in rhesus monkeys by a small molecular weight antagonist of CCR5. Arthritis Rheum. 52:627–36.CrossRefPubMedGoogle Scholar
  41. 41.
    Fleishaker DL, et al. (2012) Maraviroc, a chemokine receptor-5 antagonist, fails to demonstrate efficacy in the treatment of patients with rheumatoid arthritis in a randomized, doubleblind placebo-controlled trial. Arthritis Res. Ther. 14: R11.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gerlag DM, et al. (2010) Preclinical and clinical investigation of a CCR5 antagonist, AZD5672, in patients with rheumatoid arthritis receiving methotrexate. Arthritis Rheum. 62:3154–60.CrossRefPubMedGoogle Scholar
  43. 43.
    van Kuijk AW, etal. (2010) CCR5 blockade in rheumatoid arthritis: a randomised, doubleblind, placebo-controlled clinical trial. Ann. Rheum. Dis. 69:2013–6.CrossRefPubMedGoogle Scholar
  44. 44.
    Vergunst CE, et al. (2009) MLN3897 plus methotrexate in patients with rheumatoid arthritis: safety, efficacy, pharmacokinetics, and pharmacodynamics of an oral CCR1 antagonist in a phase IIa, double-blind, placebo-controlled, randomized, proof-of-concept study. Arthritis Rheum. 60:3572–81.CrossRefPubMedGoogle Scholar
  45. 45.
    Tak PP, et al. (2012) Chemokine receptor CCR1 antagonist CCX354-C treatment for rheumatoid arthritis: CARAT-2, a randomised, placebo controlled clinical trial. Ann. Rheum. Dis. 72:337–44.CrossRefPubMedGoogle Scholar
  46. 46.
    Szekanecz Z, Koch AE, Tak PP. (2011) Chemokine and chemokine receptor blockade in arthritis, a prototype of immune-mediated inflammatory diseases. Neth. J. Med. 69:356–66.PubMedGoogle Scholar
  47. 47.
    Zhao Q. (2010) Dual targeting of CCR2 and CCR5: therapeutic potential for immunologic and cardiovascular diseases. J. Leukoc. Biol. 88:41–55.CrossRefPubMedGoogle Scholar
  48. 48.
    Cassese G, et al. (2001) Inflamed kidneys of NZB/W mice are a major site for the homeostasis of plasma cells. Eur. J. Immunol. 31:2726–32.CrossRefPubMedGoogle Scholar
  49. 49.
    Liu Z, et al. (2011) Interferon alpha accelerates murine SLE in a T cell dependent manner. Arthritis Rheum. 63:219–29.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Schiffer L, et al. (2003) Short term administration of costimulatory blockade and cyclophosphamide induces remission of systemic lupus erythematosus nephritis in NZB/W F1 mice by a mechanism downstream of renal immune complex deposition. J. Immunol. 171:489–97.CrossRefPubMedGoogle Scholar
  51. 51.
    Moser K, et al. (2012) CXCR3 promotes the production of IgG1 autoantibodies but is not essential for the development of lupus nephritis in NZB/NZW mice. Arthritis Rheum. 64:1237–46.CrossRefPubMedGoogle Scholar
  52. 52.
    Turner JE, et al. (2012) Protective role for CCR5 in murine lupus nephritis. Am. J. Physiol. Renal Physiol 302: F1503–15.CrossRefPubMedGoogle Scholar
  53. 53.
    Kulkarni O, et al. (2009) Anti-Ccl2 Spiegelmer permits 75% dose reduction of cyclophosphamide to control diffuse proliferative lupus nephritis and pneumonitis in MRL-Fas(lpr) mice. J. Pharmacol. Exp. Ther. 328:371–7.CrossRefPubMedGoogle Scholar

Copyright information

© The Author(s) 2013

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, and provide a link to the Creative Commons license. You do not have permission under this license to share adapted material derived from this article or parts of it.

The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this license, visit (

Authors and Affiliations

  • Zheng Liu
    • 1
  • Ramalingam Bethunaickan
    • 1
  • Ranjit Sahu
    • 1
  • Max Brenner
    • 2
  • Teresina Laragione
    • 2
  • Percio S. Gulko
    • 2
  • Anne Davidson
    • 1
  1. 1.Center for Autoimmune and Musculoskeletal DiseasesThe Feinstein Institute for Medical ResearchManhassetUSA
  2. 2.Center for Genomics and Human GeneticsThe Feinstein Institute for Medical ResearchManhassetUSA

Personalised recommendations