Advertisement

Molecular Medicine

, Volume 18, Issue 11, pp 1466–1472 | Cite as

miR-133a Regulates Vitamin K 2,3-Epoxide Reductase Complex Subunit 1 (VKORC1), a Key Protein in the Vitamin K Cycle

  • Virginia Pérez-Andreu
  • Raúl Teruel
  • Javier Corral
  • Vanessa Roldán
  • Nuria García-Barberá
  • Salam Salloum-Asfar
  • María José Gómez-Lechón
  • Stephane Bourgeois
  • Panos Deloukas
  • Mia Wadelius
  • Vicente Vicente
  • Rocío González-Conejero
  • Constantino Martínez
Research Article

Abstract

Regulation of key proteins by microRNAs (miRNAs) is an emergent field in biomedicine. Vitamin K 2,3-epoxide reductase complex subunit 1 (VKORC1) is a relevant molecule for cardiovascular diseases, since it is the target of oral anticoagulant drugs and plays a role in soft tissue calcification. The objective of this study was to determine the influence of miRNAs on the expression of VKORC1. Potential miRNAs targeting VKORC1 mRNA were searched by using online algorithms. Validation studies were carried out in HepG2 cells by using miRNA precursors; direct miRNA interaction was investigated with reporter assays. In silicostudies identified two putative conserved binding sites for miR-133a and miR-137 on VKORC1 mRNA. Ex vivo studies showed that only miR-133a was expressed in liver; transfection of miRNA precursors of miR-133a in HepG2 cells reduced VKORC1 mRNA expression in a dose-dependent manner, as assessed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) as well as protein expression. Reporter assays in HEK293T cells showed that miR-133a interacts with the 3′UTR of VKORC1. Additionally, miR-133a levels correlated inversely with VKORC1 mRNA levels in 23 liver samples from healthy subjects. In conclusion, miR-133a appears to have a direct regulatory effect on expression of VKORC1 in humans; this regulation may have potential importance for anticoagulant therapy or aortic calcification.

Notes

Acknowledgments

This work was supported by research grants from Instituto Carlos III and European Regional Development Fund (FEDER; PI11/00566), Instituto Carlos III (Spanish Cooperative Cardiovascular Disease Research Network [RECAVA]; RD06/0014/0039), Fundación Séneca (07703/GERM/07), Spanish Foundation of Thrombosis and Haemostasis (FEHH), Río Hortega contract from Instituto Carlos III (VPA), FPI fellowship from the Spanish Ministry of Science and Innovation (BES-2007-16973 to R Teruel,). C Martínez is an investigator from Fundación para la Formación e Investigación Sanitarias de la Región de Murcia (FFIS).

Supplementary material

10020_2012_18111466_MOESM1_ESM.pdf (338 kb)
Supplementary material, approximately 338 KB.

References

  1. 1.
    Rieder MJ, et al. (2005) Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N. Engl. J. Med. 352:2285–93.CrossRefGoogle Scholar
  2. 2.
    Stafford DW. (2005) The vitamin K cycle. J. Thromb. Haemost. 3:1873–8.CrossRefGoogle Scholar
  3. 3.
    Teichert M, et al. (2008) Vitamin K epoxide reductase complex subunit 1 (VKORC1) polymorphism and aortic calcification: the Rotterdam Study. Arterioscler. Thromb. Vasc. Biol. 28:771–6.CrossRefGoogle Scholar
  4. 4.
    Oldenburg J, Marinova M, Muller-Reible C, Watzka M. (2008) The vitamin K cycle. Vitam. Horm. 78:35–62.CrossRefGoogle Scholar
  5. 5.
    Salem DN, O’Gara PT, Madias C, Pauker SG. (2008) Valvular and structural heart disease: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest. 133:593S–629S.CrossRefGoogle Scholar
  6. 6.
    Klein TE, et al. (2009) Estimation of the warfarin dose with clinical and pharmacogenetic data. N. Engl. J. Med. 360:753–64.CrossRefGoogle Scholar
  7. 7.
    Perez-Andreu V, et al. (2009) Pharmacogenetic relevance of CYP4F2 V433M polymorphism on acenocoumarol therapy. Blood. 113:4977–9.CrossRefGoogle Scholar
  8. 8.
    Bartel DP. (2009) MicroRNAs: target recognition and regulatory functions. Cell. 136:215–33.CrossRefGoogle Scholar
  9. 9.
    Esteller M. (2011) Non-coding RNAs in human disease. Nat. Rev. Genet. 12:861–74.CrossRefGoogle Scholar
  10. 10.
    Mishra PJ, et al. (2007) A miR-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance. Proc. Natl. Acad. Sci. U. S. A. 104:13513–8.CrossRefGoogle Scholar
  11. 11.
    Han M, Toli J, Abdellatif M. (2011) MicroRNAs in the cardiovascular system. Curr. Opin. Cardiol. 26:181–9.CrossRefGoogle Scholar
  12. 12.
    Small EM, Olson EN. (2011) Pervasive roles of microRNAs in cardiovascular biology. Nature. 469:336–42.CrossRefGoogle Scholar
  13. 13.
    Kruger J, Rehmsmeier M. (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res. 34:W451–4.CrossRefGoogle Scholar
  14. 14.
    Teruel R, et al. (2011) Identification of miRNAs as potential modulators of tissue factor expression in patients with systemic lupus erythematosus and antiphospholipid syndrome. J. Thromb. Haemost. 9:1985–92.CrossRefGoogle Scholar
  15. 15.
    Shomron N. (2010) MicroRNAs and pharmacogenomics. Pharmacogenomics. 11:629–32.CrossRefGoogle Scholar
  16. 16.
    Tzur G, et al. (2009) Comprehensive gene and microRNA expression profiling reveals a role for microRNAs in human liver development. PLoS One. 4:e7511.CrossRefGoogle Scholar
  17. 17.
    Brodersen P, Voinnet O. (2009) Revisiting the principles of microRNA target recognition and mode of action. Nat. Rev. Mol. Cell Biol. 10:141–8.CrossRefGoogle Scholar
  18. 18.
    Chen K, et al. (2008) Polymorphisms in micro-RNA targets: a gold mine for molecular epidemiology. Carcinogenesis. 29:1306–11.CrossRefGoogle Scholar
  19. 19.
    Ryan BM, Robles AI, Harris CC. (2010) Genetic variation in microRNA networks: the implications for cancer research. Nat. Rev. Cancer. 10:389–402.CrossRefGoogle Scholar
  20. 20.
    Sun G, et al. (2009) SNPs in human miRNA genes affect biogenesis and function. RNA. 15:1640–51.CrossRefGoogle Scholar
  21. 21.
    Croce CM. (2009) Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet. 10:704–14.CrossRefGoogle Scholar
  22. 22.
    Luo G, et al. (1997) Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature. 386:78–81.CrossRefGoogle Scholar
  23. 23.
    Koos R, et al. (2009) Relation of circulating Matrix Gla-Protein and anticoagulation status in patients with aortic valve calcification. Thromb. Haemost. 101:706–13.PubMedGoogle Scholar
  24. 24.
    Townley-Tilson WH, Callis TE, Wang D. (2010) MicroRNAs 1, 133, and 206: critical factors of skeletal and cardiac muscle development, function, and disease. Int. J. Biochem. Cell Biol. 42:1252–5.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, and provide a link to the Creative Commons license. You do not have permission under this license to share adapted material derived from this article or parts of it.

The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this license, visit (https://doi.org/creativecommons.org/licenses/by-nc-nd/4.0/)

Authors and Affiliations

  • Virginia Pérez-Andreu
    • 1
  • Raúl Teruel
    • 1
  • Javier Corral
    • 1
  • Vanessa Roldán
    • 1
  • Nuria García-Barberá
    • 1
  • Salam Salloum-Asfar
    • 1
  • María José Gómez-Lechón
    • 2
    • 3
  • Stephane Bourgeois
    • 4
  • Panos Deloukas
    • 4
  • Mia Wadelius
    • 5
  • Vicente Vicente
    • 1
  • Rocío González-Conejero
    • 1
  • Constantino Martínez
    • 1
    • 6
  1. 1.Regional Blood Transfusion CenterUniversity of MurciaMurciaSpain
  2. 2.Unity of Experimental PathologyInvestigation Center, La Fe HospitalValenciaSpain
  3. 3.CIBERehdValenciaSpain
  4. 4.Wellcome Trust Sanger InstituteHinxtonUK
  5. 5.Department of Medical Sciences, Clinical PharmacologyUppsala UniversityUppsalaSweden
  6. 6.Centro Regional de HemodonaciónMurciaSpain

Personalised recommendations