Molecular Medicine

, Volume 18, Issue 1, pp 123–137 | Cite as

Multiple Mechanisms of Immune Suppression by B Lymphocytes

  • Matthew W. Klinker
  • Steven K. Lundy
Invited Review Article


Suppression of the immune system after the resolution of infection or inflammation is an important process that limits immune-mediated pathogenesis and autoimmunity. Several mechanisms of immune suppression have received a great deal of attention in the past three decades. These include mechanisms related to suppressive cytokines, interleukin (IL)-10 and transforming growth factor (TGF)-β, produced by regulatory cells, and mechanisms related to apoptosis mediated by death ligands, Fas ligand (FasL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), expressed by killer or cytotoxic cells. Despite many lines of evidence supporting an important role for B lymphocytes as both regulatory and killer cells in many inflammatory settings, relatively little attention has been given to understanding the biology of these cells, their relative importance or their usefulness as therapeutic targets. This review is intended to give an overview of the major mechanisms of immunosuppression used by B lymphocytes during both normal and inflammatory contexts. The more recent discoveries of expression of granzyme B, programmed death 1 ligand 2 (PD-L2) and regulatory antibody production by B cells as well as the interactions of regulatory and killer B cells with regulatory T cells, natural killer T (NKT) cells and other cell populations are discussed. In addition, new evidence on the basis of independent characterizations of regulatory and killer CD5+ B cells point toward the concept of a multipotent suppressor B cell with seemingly high therapeutic potential.



The authors wish to thank Dr. David Fox for critical review of the manuscript and Julie Olivero for administrative assistance. Financial support for MW Klinker was received from the Rackham Graduate School Merit Fellowship Program and Immunology Training Program grant from the National Institutes of Health (NIH). SK Lundy received support from the Edward T. and Ellen K. Dryer Foundation, the Arthritis Foundation and the NIH-National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) (5-K01-AR-053846). Additional support was received from the University of Michigan Rheumatic Diseases Core Center (grant NIH-NIAMS P30-AR-048310).


  1. 1.
    O’Garra A, et al. (1990) Production of cytokines by mouse B cells: B lymphomas and normal B cells produce interleukin 10. Int. Immunol. 2:821–32.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Nagata S, Suda T. (1995) Fas and Fas ligand: lpr and gld mutations. Immunol. Today. 16:39–43.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Wiley SR, et al. (1995) Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3:673–82.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Chowdhury D, Lieberman J. (2008) Death by a thousand cuts: granzyme pathways of programmed cell death. Annu. Rev. Immunol. 26:389–420.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Nimmerjahn F, Ravetch JV. (2008) Fcgamma receptors as regulators of immune responses. Nat. Rev. Immunol. 8:34–47.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Keir ME, Butte MJ, Freeman GJ, Sharpe AH. (2008) PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26:677–704.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Ouyang W, Rutz S, Crellin NK, Valdez PA, Hymowitz SG. (2011) Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu. Rev. Immunol. 29:71–109.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Couper KN, Blount DG, Riley EM. (2008) IL-10: the master regulator of immunity to infection. J. Immunol. 180:5771–7.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Ferrara JL. (1993) Cytokine dysregulation as a mechanism of graft versus host disease. Curr. Opin. Immunol. 5:794–9.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Palomares O, et al. (2010) Role of Treg in immune regulation of allergic diseases. Eur. J. Immunol. 40:1232–40.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Mauri C, Blair PA. (2010) Regulatory B cells in autoimmunity: developments and controversies. Nat. Rev. Rheumatol. 6:636–43.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    McHugh RS, Shevach EM. (2002) The role of suppressor T cells in regulation of immune responses. J. Allergy Clin. Immunol. 110:693–702.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Ben-Baruch A. (2006) Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators. Semin. Cancer Biol. 16:38–52.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Vieira P, et al. (1991) Isolation and expression of human cytokine synthesis inhibitory factor cDNA clones: homology to Epstein-Barr virus open reading frame BCRFI. Proc. Natl. Acad. Sci. U. S. A. 88:1172–6.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Mahnke K, Bedke T, Enk AH. (2007) Regulatory conversation between antigen presenting cells and regulatory T cells enhance immune suppression. Cell. Immunol. 250:1–13.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Shimamura T, Habu S, Hashimoto K, Sasaki S. (1984) Feedback suppression of the immune response in vivo. III. Lyt-1+ B cells are suppressorinducer cells. Cell. Immunol. 83:221–4.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Lopez DM, Blomberg BB, Padmanabhan RR, Bourguignon LY. (1989) Nuclear disintegration of target cells by killer B lymphocytes from tumor-bearing mice. FASEB J. 3:37–43.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    O’Garra A, et al. (1992) Ly-1 B (B-1) cells are the main source of B cell-derived interleukin 10. Eur. J. Immunol. 22:711–7.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Wolf SD, Dittel BN, Hardardottir F, Janeway CA Jr. (1996) Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. J. Exp. Med. 184:2271–8.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Sabat R, et al. (2010) Biology of interleukin-10. Cytokine Growth Factor Rev. 21:331–44.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    de Waal Malefyt R, Abrams J, Bennett B, Figdor CG, de Vries JE. (1991) Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J. Exp. Med. 174:1209–20.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Fiorentino DF, Zlotnik A, Mosmann TR, Howard M, O’Garra A. (1991) IL-10 inhibits cytokine production by activated macrophages. J. Immunol. 147:3815–22.PubMedPubMedCentralGoogle Scholar
  23. 23.
    de Waal Malefyt R, et al. (1991) Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J. Exp. Med. 174:915–24.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Ding L, Linsley PS, Huang LY, Germain RN, Shevach EM. (1993) IL-10 inhibits macrophage costimulatory activity by selectively inhibiting the up-regulation of B7 expression. J. Immunol. 151:1224–34.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Willems F, et al. (1994) Interleukin-10 inhibits B7 and intercellular adhesion molecule-1 expression on human monocytes. Eur. J. Immunol. 24:1007–9.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Del Prete G, et al. (1993) Human IL-10 is produced by both type 1 helper (Th1) and type 2 helper (Th2) T cell clones and inhibits their antigen-specific proliferation and cytokine production. J. Immunol. 150:353–60.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Groux H, Bigler M, de Vries JE, Roncarolo MG. (1996) Interleukin-10 induces a long-term antigen-specific anergic state in human CD4+ T cells. J. Exp. Med. 184:19–29.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Groux H, Bigler M, de Vries JE, Roncarolo MG. (1998) Inhibitory and stimulatory effects of IL-10 on human CD8+ T cells. J. Immunol. 160:3188–93.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM. (2002) B cells regulate autoimmunity by provision of IL-10. Nat. Immunol. 3:944–50.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Mizoguchi A, Mizoguchi E, Takedatsu H, Blumberg RS, Bhan AK. (2002) Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity. 16:219–30.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Mauri C, Gray D, Mushtaq N, Londei M. (2003) Prevention of arthritis by interleukin 10-producing B cells. J. Exp. Med. 197:489–501.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Hussain S, Delovitch TL. (2007) Intravenous transfusion of BCR-activated B cells protects NOD mice from type 1 diabetes in an IL-10-dependent manner. J. Immunol. 179:7225–32.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Haas KM, et al. (2010) Protective and pathogenic roles for B cells during systemic autoimmunity in NZB/W F1 mice. J. Immunol. 184:4789–800.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Watanabe R, et al. (2010) Regulatory B cells (B10 cells) have a suppressive role in murine lupus: CD19 and B10 cell deficiency exacerbates systemic autoimmunity. J. Immunol. 184:4801–9.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Yanaba K, Bouaziz JD, Matsushita T, Tsubata T, Tedder TF. (2009) The development and function of regulatory B cells expressing IL-10 (B10 cells) requires antigen receptor diversity and TLR signals. J. Immunol. 182:7459–72.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Yanaba K, et al. (2008) A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 28:639–50.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Hayakawa K, et al. (1999) Positive selection of natural autoreactive B cells. Science. 285:113–6.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Yang M, et al. (2010) Novel function of B cell-activating factor in the induction of IL-10-producing regulatory B cells. J. Immunol. 184:3321–5.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Bhattacharyya S, et al. (2011) NFATc1 affects mouse splenic B cell function by controlling the calcineurin-NFAT signaling network. J. Exp. Med. 208:823–39.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Matsumoto M, et al. (2011) The calcium sensors STIM1 and STIM2 control B cell regulatory function through interleukin-10 production. Immunity. 34:703–14.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Evans JG, et al. (2007) Novel suppressive function of transitional 2 B cells in experimental arthritis. J. Immunol. 178:7868–78.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Ding Q, et al. (2011) Regulatory B cells are identified by expression of TIM-1 and can be induced through TIM-1 ligation to promote tolerance in mice. J. Clin. Invest. 121:3645–56.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    DiLillo DJ, Matsushita T, Tedder TF. (2010) B10 cells and regulatory B cells balance immune responses during inflammation, autoimmunity, and cancer. Ann. N. Y. Acad. Sci. 1183:38–57.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Blair PA, et al. (2010) CD19+ CD24(hi) CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic Lupus Erythematosus patients. Immunity. 32:129–40.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Iwata Y, et al. (2011) Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood. 117:530–41.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Griffin DO, Holodick NE, Rothstein TL. (2011) Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+ CD27+ CD43+ CD70. J. Exp. Med. 208:67–80.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Rousset F, et al. (1992) Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes. Proc. Natl. Acad. Sci. U. S. A. 89:1890–3.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Trapani JA, Sutton VR. (2003) Granzyme B: proapoptotic, antiviral and antitumor functions. Curr. Opin. Immunol. 15:533–43.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Jahrsdorfer B, et al. (2006) B-chronic lymphocytic leukemia cells and other B cells can produce granzyme B and gain cytotoxic potential after interleukin-21-based activation. Blood. 108:2712–9.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Hagn M, et al. (2009) Human B cells secrete granzyme B when recognizing viral antigens in the context of the acute phase cytokine IL-21. J. Immunol. 183:1838–45.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Hagn M, et al. (2010) CD5+ B cells from individuals with systemic lupus erythematosus express granzyme B. Eur. J. Immunol. 40:2060–9.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Srivastava RK. (2001) TRAIL/Apo-2L: mechanisms and clinical applications in cancer. Neoplasia. 3:535–46.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Takahashi T, et al. (1994) Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 76:969–76.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Puck JM, Sneller MC. (1997) ALPS: an autoimmune human lymphoproliferative syndrome associated with abnormal lymphocyte apoptosis. Semin. Immunol. 9:77–84.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Song K, et al. (2000) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an inhibitor of autoimmune inflammation and cell cycle progression. J. Exp. Med. 191:1095–104.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Hahne M, et al. (1996) Activated B cells express functional Fas ligand. Eur. J. Immunol. 26:721–4.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Lundy SK. (2009) Killer B lymphocytes: the evidence and the potential. Inflamm. Res. 58:345–57.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Villunger A, et al. (1997) Constitutive expression of Fas (Apo-1/CD95) ligand on multiple myeloma cells: a potential mechanism of tumor-induced suppression of immune surveillance. Blood. 90:12–20.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Silvestris F, Tucci M, Cafforio P, Dammacco F. (2001) Fas-L up-regulation by highly malignant myeloma plasma cells: role in the pathogenesis of anemia and disease progression. Blood. 97:1155–64.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Kojima Y, et al. (2006) Fas and Fas ligand expression on germinal center type-diffuse large B-cell lymphoma is associated with the clinical outcome. Eur. J. Haematol. 76:465–72.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Tinhofer I, et al. (1998) Differential sensitivity of CD4+ and CD8+ T lymphocytes to the killing efficacy of Fas (Apo-1/CD95) ligand+ tumor cells in B chronic lymphocytic leukemia. Blood. 91:4273–81.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Tanner JE, Alfieri C. (1999) Epstein-Barr virus induces Fas (CD95) in T cells and Fas ligand in B cells leading to T-cell apoptosis. Blood. 94:3439–47.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Samuelsson A, Sonnerborg A, Heuts N, Coster J, Chiodi F. (1997) Progressive B cell apoptosis and expression of Fas ligand during human immunodeficiency virus type 1 infection. AIDS Res. Hum. Retroviruses. 13:1031–8.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Rich RF, Cook WJ, Green WR. (2006) Spontaneous in vivo retrovirus-infected T and B cells, but not dendritic cells, mediate antigen-specific Fas ligand/Fas-dependent apoptosis of antiretroviral CTL. Virology. 346:287–300.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Lundy SK, Lerman SP, Boros DL. (2001) Soluble egg antigen-stimulated T helper lymphocyte apoptosis and evidence for cell death mediated by FasL(+) T and B cells during murine Schistosoma mansoni infection. Infect. Immun. 69:271–80.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Lundy SK, Boros DL. (2002) Fas ligand-expressing B-1a lymphocytes mediate CD4(+)-T-cell apoptosis during schistosomal infection: induction by interleukin 4 (IL-4) and IL-10. Infect. Immun. 70:812–9.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Tian J, et al. (2001) Lipopolysaccharide-activated B cells down-regulate Th1 immunity and prevent autoimmune diabetes in nonobese diabetic mice. J. Immunol. 167:1081–9.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Bonardelle D, Benihoud K, Kiger N, Bobe P. (2005) B lymphocytes mediate Fas-dependent cytotoxicity in MRL/lpr mice. J. Leukoc. Biol. 78:1052–9.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Lundy SK, Fox DA. (2009) Reduced Fas ligand-expressing splenic CD5+ B lymphocytes in severe collagen-induced arthritis. Arthritis Res. Ther. 11:R128.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Lundy SK, Berlin AA, Martens TF, Lukacs NW. (2005) Deficiency of regulatory B cells increases allergic airway inflammation. Inflamm. Res. 54:514–21.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Minagawa R, et al. (2004) The critical role of Fas-Fas ligand interaction in donor-specific transfusion-induced tolerance to H-Y antigen. Transplantation. 78:799–806.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Takeda K, et al. (2002) Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J. Exp. Med. 195:161–9.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Sedger LM, et al. (2002) Characterization of the in vivo function of TNF-alpha-related apoptosis-inducing ligand, TRAIL/Apo2L, using TRAIL/Apo2L gene-deficient mice. Eur. J. Immunol. 32:2246–54.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Sedger LM, et al. (2010) Extreme lymphoproliferative disease and fatal autoimmune thrombocytopenia in FasL and TRAIL double-deficient mice. Blood. 115:3258–68.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Mariani SM, Krammer PH. (1998) Differential regulation of TRAIL and CD95 ligand in transformed cells of the T and B lymphocyte lineage. Eur. J. Immunol. 28:973–82.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Secchiero P, et al. (2005) Aberrant expression of TRAIL in B chronic lymphocytic leukemia (B-CLL) cells. J. Cell. Physiol. 205:246–52.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Silvestris F, Cafforio P, Tucci M, Grinello D, Dammacco F. (2003) Upregulation of osteoblast apoptosis by malignant plasma cells: a role in myeloma bone disease. Br. J. Haematol. 122:39–52.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Mariani SM, Krammer PH. (1998) Surface expression of TRAIL/Apo-2 ligand in activated mouse T and B cells. Eur. J. Immunol. 28:1492–8.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Kemp TJ, Moore JM, Griffith TS. (2004) Human B cells express functional TRAIL/Apo-2 ligand after CpG-containing oligodeoxynucleotide stimulation. J. Immunol. 173:892–99.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Agata Y, et al. (1996) Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int. Immunol. 8:765–72.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Ishida Y, Agata Y, Shibahara K, Honjo T. (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 11:3887–95.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Vibhakar R, Juan G, Traganos F, Darzynkiewicz Z, Finger LR. (1997) Activation-induced expression of human programmed death-1 gene in T-lymphocytes. Exp. Cell. Res. 232:25–8.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Yamazaki T, et al. (2002) Expression of programmed death 1 ligands by murine T cells and APC. J. Immunol. 169:5538–45.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Loke P, Allison JP. (2003) PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proc. Natl. Acad. Sci. U. S. A. 100:5336–41.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Akbari O, et al. (2010) PD-L1 and PD-L2 modulate airway inflammation and iNKT-cell-dependent airway hyperreactivity in opposing directions. Mucosal Immunol. 3:81–91.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Latchman Y, et al. (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2:261–8.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Tseng SY, et al. (2001) B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J. Exp. Med. 193:839–46.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Carter LL, et al. (2007) PD-1/PD-L1, but not PD-1/PD-L2, interactions regulate the severity of experimental autoimmune encephalomyelitis. J. Neuroimmunol. 182:124–34.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Singh AK, Stock P, Akbari O. (2011) Role of PD-L1 and PD-L2 in allergic diseases and asthma. Allergy. 66:155–62.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Zhong X, Tumang JR, Gao W, Bai C, Rothstein TL. (2007) PD-L2 expression extends beyond dendritic cells/macrophages to B1 cells enriched for V(H)11/V(H)12 and phosphatidylcholine binding. Eur. J. Immunol. 37:2405–10.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Zhong X, et al. (2009) A novel subpopulation of B-1 cells is enriched with autoreactivity in normal and lupus-prone mice. Arthritis Rheum. 60:3734–43.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Fehr J, Hofmann V, Kappeler U. (1982) Transient reversal of thrombocytopenia in idiopathic thrombocytopenic purpura by high-dose intravenous gamma globulin. N. Engl. J. Med. 306:1254–8.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Imbach P, et al. (1981) High-dose intravenous gammaglobulin for idiopathic thrombocytopenic purpura in childhood. Lancet. 1:1228–31.CrossRefGoogle Scholar
  94. 94.
    Parekh RB, et al. (1985) Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature. 316:452–7.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Kaneko Y, Nimmerjahn F, Ravetch JV. (2006) Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science. 313:670–3.CrossRefGoogle Scholar
  96. 96.
    Anthony RM, Wermeling F, Karlsson MC, Ravetch JV. (2008) Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc. Natl. Acad. Sci. U. S. A. 105:19571–8.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Anthony RM, Kobayashi T, Wermeling F, Ravetch JV. (2011) Intravenous gammaglobulin suppresses inflammation through a novel T(H)2 pathway. Nature. 475:110–3.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Bruhns P, Samuelsson A, Pollard JW, Ravetch JV. (2003) Colony-stimulating factor-1-dependent macrophages are responsible for IVIG protection in antibody-induced autoimmune disease. Immunity. 18:573–81.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Matsumoto A, Shikata K, Takeuchi F, Kojima N, Mizuochi T. (2000) Autoantibody activity of IgG rheumatoid factor increases with decreasing levels of galactosylation and sialylation. J. Biochem. 128:621–8.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Wang J, et al. (2011) Fc-glycosylation of IgG1 is modulated by B-cell stimuli. Mol. Cell. Proteomics. 10:M110.004655.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    You Y, et al. (2011) Marginal zone B cells regulate antigen capture by marginal zone macrophages. J. Immunol. 186:2172–81.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Herzenberg LA. (2000) B-1 cells: the lineage question revisited. Immunol. Rev. 175:9–22.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Shaw PX, et al. (2000) Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J. Clin. Invest. 105:1731–40.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Shaw PX, Goodyear CS, Chang MK, Witztum JL, Silverman GJ. (2003) The autoreactivity of anti-phosphorylcholine antibodies for atherosclerosis-associated neo-antigens and apoptotic cells. J. Immunol. 170:6151–7.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Chen Y, Park YB, Patel E, Silverman GJ. (2009) IgM antibodies to apoptosis-associated determinants recruit C1q and enhance dendritic cell phagocytosis of apoptotic cells. J. Immunol. 182:6031–43.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Chen Y, et al. (2009) Regulation of dendritic cells and macrophages by an anti-apoptotic cell natural antibody that suppresses TLR responses and inhibits inflammatory arthritis. J. Immunol. 183:1346–59.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Binder CJ, et al. (2003) Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat. Med. 9:736–43.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Binder CJ, et al. (2004) IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J. Clin. Invest. 114:427–37.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Shevach EM. (2009) Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity. 30:636–45.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Ashour HM, Niederkorn JY. (2006) Peripheral tolerance via the anterior chamber of the eye: role of B cells in MHC class I and II antigen presentation. J. Immunol. 176:5950–7.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Mann MK, Maresz K, Shriver LP, Tan Y, Dittel BN. (2007) B cell regulation of CD4+CD25+ T regulatory cells and IL-10 via B7 is essential for recovery from experimental autoimmune encephalomyelitis. J. Immunol. 178:3447–56.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Carter NA, et al. (2011) Mice lacking endogenous IL-10-producing regulatory B cells develop exacerbated disease and present with an increased frequency of Th1/Th17 but a decrease in regulatory T cells. J. Immunol. 186:5569–79.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Sun JB, Flach CF, Czerkinsky C, Holmgren J. (2008) B lymphocytes promote expansion of regulatory T cells in oral tolerance: powerful induction by antigen coupled to cholera toxin B subunit. J. Immunol. 181:8278–87.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Singh A, et al. (2008) Regulatory role of B cells in a murine model of allergic airway disease. J. Immunol. 180:7318–26.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Amu S, et al. (2010) Regulatory B cells prevent and reverse allergic airway inflammation via FoxP3-positive T regulatory cells in a murine model. J. Allergy Clin. Immunol. 125:1114–24.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Zhong X, et al. (2007) Reciprocal generation of Th1/Th17 and T(reg) cells by B1 and B2 B cells. Eur. J. Immunol. 37:2400–4.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Soukhareva N, Jiang Y, Scott DW. (2006) Treatment of diabetes in NOD mice by gene transfer of Ig-fusion proteins into B cells: role of T regulatory cells. Cell. Immunol. 240:41–6.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Ahangarani RR, et al. (2009) In vivo induction of type 1-like regulatory T cells using genetically modified B cells confers long-term IL-10-dependent antigen-specific unresponsiveness. J. Immunol. 183:8232–43.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Chen X, Jensen PE. (2007) Cutting edge: primary B lymphocytes preferentially expand allogeneic FoxP3+ CD4 T cells. J. Immunol. 179:2046–50.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Zheng J, et al. (2009) Efficient induction and expansion of human alloantigen-specific CD8 regulatory T cells from naive precursors by CD40-activated B cells. J. Immunol. 183:3742–50.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Mieza MA, et al. (1996) Selective reduction of V alpha 14+ NK T cells associated with disease development in autoimmune-prone mice. J. Immunol. 156:4035–40.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Gombert JM, et al. (1996) Early quantitative and functional deficiency of NK1+-like thymocytes in the NOD mouse. Eur. J. Immunol. 26:2989–98.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Chiba A, et al. (2004) Suppression of collagen-induced arthritis by natural killer T cell activation with OCH, a sphingosine-truncated analog of alpha-galactosylceramide. Arthritis Rheum. 50:305–13.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Miyamoto K, Miyake S, Yamamura T. (2001) A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature. 413:531–4.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Singh AK, et al. (2001) Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. J. Exp. Med. 194:1801–11.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Sonoda KH, Stein-Streilein J. (2002) CD1d on antigen-transporting APC and splenic marginal zone B cells promotes NKT cell-dependent tolerance. Eur. J. Immunol. 32:848–57.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Wei B, et al. (2005) Mesenteric B cells centrally inhibit CD4+ T cell colitis through interaction with regulatory T cell subsets. Proc. Natl. Acad. Sci. U. S. A. 102:2010–5.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Hayakawa Y, et al. (2001) Differential regulation of Th1 and Th2 functions of NKT cells by CD28 and CD40 costimulatory pathways. J. Immunol. 166:6012–8.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Varadhachary AS, Perdow SN, Hu C, Ramanarayanan M, Salgame P. (1997) Differential ability of T cell subsets to undergo activation-induced cell death. Proc. Natl. Acad. Sci. U. S. A. 94:5778–83.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Roberts AI, et al. (2003) The role of activation-induced cell death in the differentiation of T-helper-cell subsets. Immunol. Res. 28:285–93.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Irmler M, et al. (1997) Inhibition of death receptor signals by cellular FLIP. Nature. 388:190–5.CrossRefGoogle Scholar
  132. 132.
    Chao DT, Korsmeyer SJ. (1998) BCL-2 family: regulators of cell death. Annu. Rev. Immunol. 16:395–419.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Zhang L, Miller RG, Zhang J. (1996) Characterization of apoptosis-resistant antigen-specific T cells in vivo. J. Exp. Med. 183:2065–73.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Gupta S, Gollapudi S. (2008) CD95-mediated apoptosis in naive, central and effector memory subsets of CD4+ and CD8+ T cells in aged humans. Exp. Gerontol. 43:266–74.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Zhang X, et al. (1997) Unequal death in T helper cell (Th)1 and Th2 effectors: Th1, but not Th2, effectors undergo rapid Fas/FasL-mediated apoptosis. J. Exp. Med. 185:1837–49.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Akdis M, et al. (2003) T helper (Th) 2 predominance in atopic diseases is due to preferential apoptosis of circulating memory/effector Th1 cells. FASEB J. 17:1026–35.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Watanabe N, et al. (1997) Th1 and Th2 subsets equally undergo Fas-dependent and -independent activation-induced cell death. Eur. J. Immunol. 27:1858–64.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Refaeli Y, Van Parijs L, Alexander SI, Abbas AK. (2002) Interferon gamma is required for activation-induced death of T lymphocytes. J. Exp. Med. 196:999–1005.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Varadhachary AS, Peter ME, Perdow SN, Krammer PH, Salgame P. (1999) Selective up-regulation of phosphatidylinositol 3’-kinase activity in Th2 cells inhibits caspase-8 cleavage at the death-inducing complex: a mechanism for Th2 resistance from Fas-mediated apoptosis. J. Immunol. 163:4772–9.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Boise LH, et al. (1995) CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity. 3:87–98.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Kishimoto H, Sprent J. (1999) Strong TCR ligation without costimulation causes rapid onset of Fas-dependent apoptosis of naive murine CD4+ T cells. J. Immunol. 163:1817–26.PubMedPubMedCentralGoogle Scholar
  142. 142.
    Banz A, Pontoux C, Papiernik M. (2002) Modulation of Fas-dependent apoptosis: a dynamic process controlling both the persistence and death of CD4 regulatory T cells and effector T cells. J. Immunol. 169:750–7.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Singh N, et al. (2010) CD4+ CD25+ regulatory T cells resist a novel form of CD28- and Fas-dependent p53-induced T cell apoptosis. J. Immunol. 184:94–104.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Fritzsching B, et al. (2005) In contrast to effector T cells, CD4+ CD25+ FoxP3+ regulatory T cells are highly susceptible to CD95 ligand- but not to TCR-mediated cell death. J. Immunol. 175:32–6.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Rahman MK, et al. (2010) The pathogen recognition receptor NOD2 regulates human FOXP3+ T cell survival. J. Immunol. 184:7247–56.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Shi G, et al. (2009) Unlike Th1, Th17 cells mediate sustained autoimmune inflammation and are highly resistant to restimulation-induced cell death. J. Immunol. 183:7547–56.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Niederkorn JY, Mayhew E. (1995) Role of splenic B cells in the immune privilege of the anterior chamber of the eye. Eur. J. Immunol. 25:2783–7.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Leite-de-Moraes MC, et al. (2000) Fas/Fas ligand interactions promote activation-induced cell death of NK T lymphocytes. J. Immunol. 165:4367–71.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Wilson MT, et al. (2003) The response of natural killer T cells to glycolipid antigens is characterized by surface receptor down-modulation and expansion. Proc. Natl. Acad. Sci. U. S. A. 100:10913–8.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Martin F, Kearney JF. (2001) B1 cells: similarities and differences with other B cell subsets. Curr. Opin. Immunol. 13:195–201.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Yoshimoto M, et al. (2011) Embryonic day 9 yolk sac and intra-embryonic hemogenic endothelium independently generate a B-1 and marginal zone progenitor lacking B-2 potential. Proc. Natl. Acad. Sci. U. S. A. 108:1468–73.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Montecino-Rodriguez E, Leathers H, Dorshkind K. (2006) Identification of a B-1 B cell-specified progenitor. Nat. Immunol. 7:293–301.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Martin F, Oliver AM, Kearney JF. (2001) Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity. 14:617–29.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Allman D, Pillai S. (2008) Peripheral B cell subsets. Curr. Opin. Immunol. 20:149–57.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Sampalo A, Brieva JA. (2002) Humoral immunodeficiency in chronic lymphocytic leukemia: role of CD95/CD95L in tumoral damage and escape. Leuk. Lymphoma. 43:881–4.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Mullauer L, Mosberger I, Chott A. (1998) Fas ligand expression in nodal non-Hodgkin’s lymphoma. Mod. Pathol. 11:369–75.PubMedPubMedCentralGoogle Scholar
  157. 157.
    Amel Kashipaz MR, et al. (2003) Assessment of Be1 and Be2 cells in systemic lupus erythematosus indicates elevated interleukin-10 producing CD5+ B cells. Lupus. 12:356–63.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Blenman KR, et al. (2006) IL-10 regulation of lupus in the NZM2410 murine model. Lab. Invest. 86:1136–48.PubMedPubMedCentralGoogle Scholar
  159. 159.
    Chong WP, et al. (2004) Association of interleukin-10 promoter polymorphisms with systemic lupus erythematosus. Genes Immun. 5:484–92.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© The Author(s) 2012

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, and provide a link to the Creative Commons license. You do not have permission under this license to share adapted material derived from this article or parts of it.

The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this license, visit (

Authors and Affiliations

  1. 1.Department of Internal Medicine, Division of RheumatologyUniversity of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations