Advertisement

Molecular Medicine

, Volume 17, Issue 9–10, pp 1107–1118 | Cite as

Severe Alterations in Lipid Composition of Frontal Cortex Lipid Rafts from Parkinson’s Disease and Incidental Parkinson’s Disease

  • Noemí Fabelo
  • Virginia Martín
  • Gabriel Santpere
  • Raquel Marín
  • Laia Torrent
  • Isidre Ferrer
  • Mario Díaz
Research Article

Abstract

Lipid rafts are cholesterol- and sphingomyelin-enriched microdomains that provide a highly saturated and viscous physico-chemical microenvironment to promote protein-lipid and protein-protein interactions. We purified lipid rafts from human frontal cortex from normal, early motor stages of Parkinson’s disease (PD) and incidental Parkinson’s disease (iPD) subjects and analyzed their lipid composition. We observed that lipid rafts from PD and iPD cortices exhibit dramatic reductions in their contents of n-3 and n-6 long-chain polyunsaturated fatty acids, especially docosahexaenoic acid (22:6-n3) and arachidonic acid (20:4n-6). Also, saturated fatty acids (16:0 and 18:0) were significantly higher than in control brains. Paralleling these findings, unsaturation and peroxidability indices were considerably reduced in PD and iPD lipid rafts. Lipid classes were also affected in PD and iPD lipid rafts. Thus, phosphatidylserine and phosphatidylinositol were increased in PD and iPD, whereas cerebrosides and sulfatides and plasmalogen levels were considerably diminished. Our data pinpoint a dramatic increase in lipid raft order due to the aberrant biochemical structure in PD and iPD and indicate that these abnormalities of lipid rafts in the frontal cortex occur at early stages of PD pathology. The findings correlate with abnormal lipid raft signaling and cognitive decline observed during the development of these neurodegenerative disorders.

Notes

Acknowledgments

This study was supported by grants SAF2007-66148-C02-02 and SAF2010-22114-C02-01/02 from the Spanish Ministry of Science and Innovation and FIS-PI080582 from the Spanish Ministry of Health.

References

  1. 1.
    Forno LS. (1996) Neuropathology of Parkinson’s disease. J. Neuropathol. Exp. Neurol. 55:259–72.CrossRefPubMedGoogle Scholar
  2. 2.
    Jellinger K, Mizuno Y. (2003) Parkinson’s disease. In: Neurodegeneration: The Molecular Pathology of Dementia and Movement Disorders. Dickson D (ed.), Basel, Switzerland: ISN Neuropath Press, pp. 159–87.Google Scholar
  3. 3.
    Iwatsubo T. (2003) Aggregation of α-synuclein in the pathogenesis of Parkinson’s disease. J. Neurol. 250 Suppl 3:11–4.Google Scholar
  4. 4.
    Braak H, del Tredici K. (2008) Cortico-basal ganglia-cortical circuitry in Parkinson’s disease reconsidered. Exp. Neurol. 212:226–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Jellinger KA. (2004) Lewy body-related synucleinopathy in the aged human brain. J. Neural. Transm. 111:1219–35.CrossRefPubMedGoogle Scholar
  6. 6.
    Saito Y, et al. (2004) Lewy body-related a-synucleinopathy in aging. J. Neuropathol. Exp. Neurol. 63:742–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Jellinger KA. (2008) A critical reappraisal of current staging of Lewy-related pathology in human brain. Acta. Neuropathol. 116:1–16.CrossRefPubMedGoogle Scholar
  8. 8.
    Jellinger KA. (2009) A critical evaluation of current staging of alpha-synuclein pathology in Lewy body disorders. Biochim. Biophys. Acta. 1792:730–40.CrossRefPubMedGoogle Scholar
  9. 9.
    Braak H, et al. (2002) Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages). J. Neurol. 249 Suppl 3:1–5.CrossRefGoogle Scholar
  10. 10.
    Braak H, et al. (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging. 24:197–211.CrossRefPubMedGoogle Scholar
  11. 11.
    Dickson DW, et al. (2008) Evidence that incidental Lewy body disease is pre-symptomatic Parkinson’s disease. Acta. Neuropathol. 115:437–44.CrossRefPubMedGoogle Scholar
  12. 12.
    Metzler-Baddeley C. (2007) A review of cognitive impairments in dementia with Lewy bodies relative to Alzheimer’s disease and Parkinson’s disease with dementia. Cortex. 43:583–600.CrossRefPubMedGoogle Scholar
  13. 13.
    Rango M, Bonifati C, Bresolin N. (2006) Parkinson’s disease and brain mitochondrial dysfunction: a functional phosphorus magnetic resonance spectroscopy study. J. Cereb. Blood Flow Metab. 26:283–90.CrossRefPubMedGoogle Scholar
  14. 14.
    Wallin A, et al. (2007) Posterior cortical brain dysfunction in cognitively impaired patients with Parkinson’s disease: a rCBF scintigraphic study. Acta. Neurol. Scand. 116:347–54.CrossRefPubMedGoogle Scholar
  15. 15.
    Tessa C, et al. (2008) A whole-brain analysis in de novo Parkinson disease. Am. J. Neuroradiol. 29:674–80.CrossRefPubMedGoogle Scholar
  16. 16.
    Parkkinen L, Kauppinen T, Pirttila T, Autere JM, Alafuzoff I. (2005) Alpha-synuclein pathology does not predict extrapyramidal symptoms or dementia. Ann. Neurol. 57:82–91.CrossRefPubMedGoogle Scholar
  17. 17.
    Ferrer I. (2009) Early involvement of the cerebral cortex in Parkinson’s disease: convergence of multiple metabolic defects. Prog. Neurobiol. 88:89–103.CrossRefPubMedGoogle Scholar
  18. 18.
    Navarro A, et al. (2009) Human brain cortex: mitochondrial oxidative damage and adaptive response in Parkinson’s disease and in dementia with Lewy bodies. Free Radic. Biol. Med. 46:1574–80.CrossRefPubMedGoogle Scholar
  19. 19.
    Sanchez-Ramos JR, Overvik E, Ames BN. (1994) A marker of oxyradical-mediated DNA damage (8-hydroxy-2′-deoxyguanosine) is increased in nigrostriatum of Parkinson’s disease brain. Neurodegeneration. 3:197–204.Google Scholar
  20. 20.
    Dalfó E, et al. (2005) Evidence of oxidative stress in the neocortex in incidental Lewy body disease. J. Neuropathol. Exp. Neurol. 64:816–30.CrossRefPubMedGoogle Scholar
  21. 21.
    Gómez A, Ferrer I. (2009) Increased oxidation of certain glycolysis and energy metabolism enzymes in the frontal cortex in Lewy body diseases. J. Neurosci. Res. 87:1002–13.CrossRefPubMedGoogle Scholar
  22. 22.
    Brown DA, London E. (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem. 275:17221–4.CrossRefPubMedGoogle Scholar
  23. 23.
    Pike LJ. (2003) Lipid rafts: bringing order to chaos. J. Lipid Res. 44:655–67.CrossRefPubMedGoogle Scholar
  24. 24.
    Pike LJ. (2009) The challenge of lipid rafts. J. Lipid Res. 50 (Suppl):S323–8.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ramírez CM, et al. (2009) VDAC and ERa interaction in caveolae from human cortex is altered in Alzheimer’s disease. Mol. Cell. Neurosci. 42:172–83.CrossRefPubMedGoogle Scholar
  26. 26.
    Marín R, et al. (2007) Voltage-dependent anion channel (VDAC) participates in amyloid beta-induced toxicity and interacts with plasma membrane estrogen receptor a in septal and hippocampal neurons. Mol. Membr. Biol. 24:148–60.CrossRefPubMedGoogle Scholar
  27. 27.
    Allen JA, Halverson-Tamboli RA, Rasenick MM. (2007) Lipid raft microdomains and neurotransmitter signalling. Nat. Rev. Neurosci. 8:128–40.CrossRefPubMedGoogle Scholar
  28. 28.
    Martín V, et al. (2010) Lipid alterations in lipid rafts from Alzheimer’s disease human brain cortex. J. Alzheimers Dis. 19:489–502.CrossRefPubMedGoogle Scholar
  29. 29.
    Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K. (2004) Stages in the development of Parkinson’s disease-related pathology. Cell. Tissue Res. 318:121–34.CrossRefPubMedGoogle Scholar
  30. 30.
    Mukherjee A, Arnaud L, Cooper JA. (2003) Lipid-dependent recruitment of neuronal Src to lipid rafts in the brain. J. Biol. Chem. 278:40806–14.CrossRefPubMedGoogle Scholar
  31. 31.
    Christie WW. (1982) Lipids Analysis. Oxford, UK: Pergamon Press.Google Scholar
  32. 32.
    Huberty CJ. (1994) Applied Discriminant Analysis. New York: Wiley-Interscience.Google Scholar
  33. 33.
    Christie WW, Han X. (2003) Lipid Analysis. 3rd ed. Bridgewater, UK: Oily Press.Google Scholar
  34. 34.
    Brites P, Waterham HR, Wanders RJ. (2004) Functions and biosynthesis of plasmalogens in health and disease. Biochim. Biophys. Acta. 1636:219–31.CrossRefPubMedGoogle Scholar
  35. 35.
    Ford DA, Gross RW. (1989) Plasmenylethanolamine is the major storage depot for arachidonic acid in rabbit vascular smooth muscle and is rapidly hydrolyzed after angiotensin II stimulation. Proc. Natl. Acad. Sci. U. S. A. 86:3479–83.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ferrer I. (2009) Altered mitochondria, energy metabolism, voltage-dependent anion channel, and lipid rafts converge to exhaust neurons in Alzheimer’s disease. J. Bioenerg. Biomembr. 41:425–31.CrossRefPubMedGoogle Scholar
  37. 37.
    McDonald AG. (1988) Application of the theory of homeoviscous adaptation to excitable membranes: pre-synaptic processes. Biochem. J. 256:313–27.CrossRefGoogle Scholar
  38. 38.
    Pamplona R, Barja G, Portero-Otín M. (2002) Membrane fatty acid unsaturation, protection against oxidative stress, and maximum life span: a homeoviscous-longevity adaptation? Ann. N. Y. Acad. Sci. 959:475–90.CrossRefPubMedGoogle Scholar
  39. 39.
    Nakamura MT, Nara TY. (2004) Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu. Rev. Nutr. 24:345–76.CrossRefPubMedGoogle Scholar
  40. 40.
    Fan YY, McMurray DN, Ly LH, Chapkin RS. (2003) Dietary (n-3) polyunsaturated fatty acids remodel mouse T-cell lipid rafts. J. Nutr. 133:1913–2190.CrossRefPubMedGoogle Scholar
  41. 41.
    Ma DW, et al. (2004) n-3 PUFA and membrane microdomains: a new frontier in bioactive lipid research. J. Nutr. Biochem. 15:700–6.CrossRefPubMedGoogle Scholar
  42. 42.
    Stillwell W, Wassall SR. (2003) Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem. Phys. Lipids. 126:1–27.CrossRefPubMedGoogle Scholar
  43. 43.
    Shaikh SR, Cherezov V, Caffrey M, Stillwell W, Wassall SR. (2003) Interaction of cholesterol with a docosahexaenoic acid-containing phosphatidylethanolamine: trigger for microdomain/raft formation? Biochemistry. 42:12028–37.CrossRefPubMedGoogle Scholar
  44. 44.
    Shaikh SR, Rockett BD, Salameh M, Carraway K. (2009) Docosahexaenoic acid modifies the clustering and size of lipid rafts and the lateral organization and surface expression of MHC class I of EL4 cells. J. Nutr. 139:1632–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Jenner P. (2003) Oxidative stress in Parkinson’s disease. Ann. Neurol. 53 (Suppl 3):S26–38.CrossRefPubMedGoogle Scholar
  46. 46.
    Kidd PM. (2000) Parkinson’s disease as multifactorial oxidative neurodegeneration: implications for integrative management. Altern. Med. Rev. 5:502–29.PubMedGoogle Scholar
  47. 47.
    Dexter DT, et al. (1986) Lipid peroxidation as a cause of nigral death in Parkinson’s disease. Lancet. 2:639–40.CrossRefPubMedGoogle Scholar
  48. 48.
    Yoritaka A, et al. (1996) Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc. Natl. Acad. Sci. U. S. A. 93:2696–701.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Dexter DT, et al. (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J. Neurochem. 52:381–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Dexter DT, et al. (1994) Indices of oxidative stress and mitochondrial function in individuals with incidental Lewy body disease. Ann. Neurol. 35:38–44.CrossRefPubMedGoogle Scholar
  51. 51.
    Hannun YA, Luberto C. (2000) Ceramide in the eukaryotic stress response. Trends Cell. Biol. 10:73–80.CrossRefPubMedGoogle Scholar
  52. 52.
    Cheng H, Xu J, McKeel DW Jr, Han X. (2003) Specificity and potential mechanism of sulfatide deficiency in Alzheimer’s disease: an electrospray ionization mass spectrometric study. Cell. Mol. Biol. (Noisy-le-grand). 49:809–18.Google Scholar
  53. 53.
    Ross BM, Mamalias N, Moszczynska A, Rajput AH, Kish SJ. (2001) Elevated activity of phospholipid biosynthetic enzymes in substantia nigra of patients with Parkinson’s disease. Neuroscience. 102:899–904.CrossRefPubMedGoogle Scholar
  54. 54.
    Sharon R, Bar-Joseph I, Mirick GE, Serhan CN, Selkoe DJ. (2003) Altered fatty acid composition of dopaminergic neurons expressing alpha-synuclein and human brains with alpha-synucleinopathies. J. Biol. Chem. 278:49874–81.CrossRefPubMedGoogle Scholar
  55. 55.
    Farooqui AA, Horrocks LA, Farooqui T. (2000) Deacylation and reacylation of neural membrane glycerophospholipids. J. Mol. Neurosci. 14:123–35.CrossRefPubMedGoogle Scholar
  56. 56.
    Farooqui AA, Horrocks LA, Farooqui T. (2000) Glycerophospholipids in the brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem. Phys. Lipids. 106:1–29.CrossRefPubMedGoogle Scholar
  57. 57.
    Farooqui AA, Ong WY, Horrocks LA. (2006) Inhibitors of brain phospholipase A2 activity: their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol. Rev. 58:591–620.CrossRefPubMedGoogle Scholar
  58. 58.
    Klivenyi P, et al. (1998) Mice deficient in group IV cytosolic phospholipase A2 are resistant to MPTP neurotoxicity. J. Neurochem. 71:2634–37.CrossRefPubMedGoogle Scholar
  59. 59.
    Swinnen JW, et al. (2003) Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane domains. Biochem. Biophys. Res. Commun. 302:898–903.CrossRefPubMedGoogle Scholar
  60. 60.
    Fortin DL, et al. (2004) Lipid rafts mediate the synaptic localization of alpha-synuclein. J. Neurosci. 24:6715–23.CrossRefPubMedGoogle Scholar
  61. 61.
    Kubo S, et al. (2005) A combinatorial code for the interaction of alpha-synuclein with membranes. J. Biol. Chem. 280:31664–72.CrossRefPubMedGoogle Scholar
  62. 62.
    Davidson WS, Jonas A, Clayton DF, George JM. (1998) Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J. Biol. Chem. 273:9443–9.CrossRefPubMedGoogle Scholar
  63. 63.
    Cosgrove JP, Church DF, Pryor WA. (1987) The kinetics of the autoxidation of polyunsaturated fatty acids. Lipids. 22:299–304.CrossRefPubMedGoogle Scholar

Copyright information

© The Feinstein Institute for Medical Research 2011
www.feinsteininstitute.org

Authors and Affiliations

  • Noemí Fabelo
    • 1
    • 2
  • Virginia Martín
    • 1
    • 2
  • Gabriel Santpere
    • 3
  • Raquel Marín
    • 1
    • 4
  • Laia Torrent
    • 3
  • Isidre Ferrer
    • 3
  • Mario Díaz
    • 1
    • 2
  1. 1.Instituto de Tecnologías Biomédicas, Universidad de La LagunaTenerifeSpain
  2. 2.Laboratory of Membrane Physiology and Biophysics, Departamento de Biología AnimalUniversidad de La LagunaTenerifeSpain
  3. 3.Institut Neuropatologia, Servei Anatomia Patologica, Hospital Universitari de BellvitgeUniversitat de Barcelona, Hospitalet de LlobregatCibernedSpain
  4. 4.Departamento de FisiologíaUniversidad de La LagunaTenerifeSpain

Personalised recommendations