Molecular Medicine

, Volume 17, Issue 5–6, pp 333–352 | Cite as

Histone Deacetylase Inhibitors for Treating a Spectrum of Diseases Not Related to Cancer

  • Charles A. Dinarello
  • Gianluca Fossati
  • Paolo Mascagni
Review Article


This issue of Molecular Medicine contains 14 original research reports and state-of-the-art reviews on histone deacetylase inhibitors (HDACi’s), which are being studied in models of a broad range of diseases not related to the proapoptotic properties used to treat cancer. The spectrum of these diseases responsive to HDACi’s is for the most part due to several antiinflammatory properties, often observed in vitro but importantly also in animal models. One unifying property is a reduction in cytokine production as well as inhibition of cytokine postreceptor signaling. Distinct from their use in cancer, the reduction in inflammation by HDACi’s is consistently observed at low concentrations compared with the higher concentrations required for killing tumor cells. This characteristic makes HDACi’s attractive candidates for treating chronic diseases, since low doses are well tolerated. For example, low oral doses of the HDACi givinostat have been used in children to reduce arthritis and are well tolerated. In addition to the antiinflammatory properties, HDACi’s have shown promise in models of neurodegenerative disorders, and HDACi’s also hold promise to drive HIV-1 out of latently infected cells. No one molecular mechanism accounts for the non-cancer-related properties of HDACi’s, since there are 18 genes coding for histone deacetylases. Rather, there are mechanisms unique for the pathological process of specific cell types. In this overview, we summarize the preclinical data on HDACi’s for therapy in a wide spectrum of diseases unrelated to the treatment of cancer. The data suggest the use of HDACi’s in treating autoimmune as well as chronic inflammatory diseases.



CA Dinarello was supported by National Institutes of Health Grant AI-15614. The authors thank A. Grabiek and K. Reedquist for insights into HDAC gene deletion studies and A. Abbate for valuable interpretation of differences between left and right ventricular heart failure. We also thank each of the contributors to the 14 articles in this issue of Molecular Medicine. They have provided readers with their unique concepts on the mechanisms for using HDACi’s in treating diseases in their respective areas of expertise.


  1. 1.
    Dinarello CA. (2010) Anti-inflammatory agents: present and future. Cell. 140:935–50.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Mandrup-Poulsen T, Pickersgill L, Donath MY. (2010) Blockade of interleukin 1 in Type 1 diabetes mellitus. Nat. Rev. Endocrinol. 6:158–66.CrossRefGoogle Scholar
  3. 3.
    Donath MY, Shoelson SE. (2011) Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol.11:98–107.CrossRefGoogle Scholar
  4. 4.
    Dinarello CA, Donath MY, Mandrup-Poulsen T. (2010) Role of IL-1beta in Type 2 diabetes. Curr. Opin. Endocrinol. Diabetes Obes. 17:314–21.PubMedGoogle Scholar
  5. 5.
    Vojinovic J, et al. (2011) Safety and efficacy of an oral histone deacetylase inhibitor in systemiconset juvenile idiopathic arthritis. Arthritis Rheum. 63:1452–8.CrossRefGoogle Scholar
  6. 6.
    Lewis EC, et al. (2011) The oral histone deacetylase inhibitor ITF2357 reduces cytokines and protects islet β cells in vivo and in vitro. Mol. Med. 17:369–377.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Khan N, et al. (2008) Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem. J. 409:581–9.CrossRefGoogle Scholar
  8. 8.
    Wang WC. (2008) The pharmacotherapy of sickle cell disease. Expert Opin. Pharmacother. 9:3069–82.PubMedCrossRefGoogle Scholar
  9. 9.
    Hines P, Dover GL, Resar LM. (2008) Pulsed-dosing with oral sodium phenylbutyrate increases hemoglobin F in a patient with sickle cell anemia. Pediatric Blood Cancer. 50:357–59.PubMedCrossRefGoogle Scholar
  10. 10.
    Leoni F, et al. (2002) The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits antiinflammatory properties via suppression of cytokines. Proc. Natl. Acad. Sci. U. S. A. 99:2995–3000.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Leoni F, et al. (2005) The histone deacetylase inhibitor ITF2357 reduces production of proinflammatory cytokines in vitro and systemic inflammation in vivo. Mol. Med. 11:1–15.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Curtin M, Glaser K. (2003) Histone deacetylase inhibitors: the Abbott experience. Curr. Med. Chem. 10:2373–92.PubMedCrossRefGoogle Scholar
  13. 13.
    Montgomery RL, et al. (2007) Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev. 21:1790–802.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Haberland M, Mokalled MH, Montgomery RL, Olson EN. (2009) Epigenetic control of skull morphogenesis by histone deacetylase 8. Genes Dev. 23:1625–30.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Knutson SK, et al. (2008) Liver-specific deletion of histone deacetylase 3 disrupts metabolic transcriptional networks. EMBO J. 27:1017–28.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Klampfer L, Huang J, Swaby LA, Augenlicht L. (2004) Requirement of histone deacetylase activity for signaling by STAT1. J. Biol. Chem. 279:30358–68.PubMedCrossRefGoogle Scholar
  17. 17.
    Dinarello CA. (2011) Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood. 117:3720–32.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Hoffman HM, Wanderer AA. Inflammasome and IL-1beta-mediated disorders. Curr. Allergy Asthma Rep. 10:229-35.Google Scholar
  19. 19.
    Matalon S, et al. (2010) The histone deacetylase inhibitor ITF2357 decreases surface CXCR4 and CCR5 expression on CD4(+) T-cells and monocytes and is superior to valproic acid for latent HIV-1 expression in vitro. J. Acquit. Immune Defic. Syndr. 54:1–9.Google Scholar
  20. 20.
    Bosisio D, et al. (2008) Blocking TH17-polarizing cytokines by histone deacetylase inhibitors in vitro and in vivo. J. Leukoc. Biol. 84:1540–8.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Wang H, et al. (2011) Histone deacetylase inhibitor LAQ824 augments inflammatory responses in macrophages through transcriptional regulation of IL-10. J. Immunol. 186:3986–96.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Song W, et al. (2010) HDAC inhibition by LBH589 affects the phenotype and function of human myeloid dendritic cells. Leukemia. 25:161–8.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Grabiec AM, et al. (2010) Histone deacetylase inhibitors suppress inflammatory activation of rheumatoid arthritis patient synovial macrophages and tissue. J. Immunol. 184:2718–28.CrossRefGoogle Scholar
  24. 24.
    Grabiec AM, Tak PP, Reedquist KA. (2011) Histone deacetylase inhibitors suppress IL-6 production by rheumatoid arthritis fibroblast-like synoviocytes and macrophages via modulation of mRNA stability rather than blockade of NFκB signalling. Ann. Rheum. Dis. 70 Suppl 2:A30–31.CrossRefGoogle Scholar
  25. 25.
    Joosten LAB, Leoni F, Meghji S, Mascagni P. (2011) Inhibition of HDAC activity by ITF2357 ameliorates joint inflammation and prevents cartilage and bone destruction in experimental arthritis. Mol. Med. 17:391–396.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Vojinovic J, Damjanov N. (2011) HDAC inhibition in rheumatoid arthritis and juvenile idiopathic arthritis. Mol. Med. 17:397–403.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Chen CJ, et al. (2007) Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat. Med. 13:851–6.CrossRefGoogle Scholar
  28. 28.
    Cohen I, et al. (2010) Differential release of chromatin-bound IL-1alpha discriminates between necrotic and apoptotic cell death by the ability to induce sterile inflammation. Proc. Natl. Acad. Sci. U. S. A. 107:2574–9.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Scaffidi P, Misteli T, Bianchi ME. (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–5.CrossRefGoogle Scholar
  30. 30.
    Miossec P, Korn T, Kuchroo VK. (2009) Interleukin-17 and type 17 helper T cells. N. Engl. J. Med. 361:888–98.PubMedCrossRefGoogle Scholar
  31. 31.
    Donath MY, Storling J, Berchtold LA, Billestrup N, Mandrup-Poulsen T. (2008) Cytokines and beta-cell biology: from concept to clinical translation. Endocr. Rev. 29:334–50.PubMedCrossRefGoogle Scholar
  32. 32.
    Larsen L, et al. (2007) Inhibition of histone deacetylases prevents cytokine-induced toxicity in beta cells. Diabetologia. 50:779–89.CrossRefGoogle Scholar
  33. 33.
    Susick L, Veluthakal R, Suresh MV, Hadden T, Kowluru A. (2007) Regulatory roles for histone deacetylation in IL-1beta-induced nitric oxide release in pancreatic beta-cells. J. Cell Mol. Med. 5:5.Google Scholar
  34. 34.
    Christensen DP, et al. (2011) Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes mellitus. Mol. Med. 17:378–390.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Lundh M, et al. (2010) Lysine deacetylases are produced in pancreatic beta cells and are differentially regulated by proinflammatory cytokines. Diabetologia. 53:2569–78.CrossRefGoogle Scholar
  36. 36.
    Patel T, Patel V, Singh R, Jayaraman S. (2011) Chromatin remodeling resets the immune system to protect against autoimmune diabetes in mice. Immunol. Cell Biol. 2011, Feb 15 [Epub ahead of print].Google Scholar
  37. 37.
    Koulmanda M, et al. (2008) Curative and beta cell regenerative effects of alpha1-antitrypsin treatment in autoimmune diabetic NOD mice. Proc. Natl. Acad. Sci. U. S. A. 105:16242–7.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Matalon S, Rasmussen TA, Dinarello CA. (2011) Histone deacetylase inhibitors for purging HIV-1 from the latent reservoir. Mol. Med. 17:466–472.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Crazzolara R, et al. (2002) Histone deacetylase inhibitors potently repress CXCR4 chemokine receptor expression and function in acute lymphoblastic leukaemia. Br. J. Haematol. 119:965–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Larsen CM, et al. (2007) Interleukin-1-receptor antagonist in Type 2 diabetes mellitus. N. Engl. J. Med. 356:1517–26.CrossRefGoogle Scholar
  41. 41.
    Faraco G, et al. (2009) Histone deacetylase (HDAC) inhibitors reduce the glial inflammatory response in vitro and in vivo. Neurobiol Dis. 36:269–79.PubMedCrossRefGoogle Scholar
  42. 42.
    Green SR, Choudhary AK, Fleming IN. (2009) Combination of sapacitabine and HDAC inhibitors stimulates cell death in AML and other tumour types. Br. J. Cancer. 103:1391–9.CrossRefGoogle Scholar
  43. 43.
    Choi S, Reddy P. (2011) HDAC inhibition and graft versus host disease. Mol. Med. 17:404–416.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Reddy P, et al. (2008) Histone deacetylase inhibition modulates indoleamine 2,3-dioxygenasedependent DC functions and regulates experimental graft-versus-host disease in mice. J. Clin. Invest. 118:2562–73.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Choudhary C, et al. (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 325:834–40.CrossRefGoogle Scholar
  46. 46.
    Calao M, Burny A, Quivy V, Dekoninck A, Van Lint C. (2008) A pervasive role of histone acetyltransferases and deacetylases in an NF-kappaB-signaling code. Trends Biochem. Sci. 33:339–49.PubMedCrossRefGoogle Scholar
  47. 47.
    Chen LF, Mu Y, Greene WC. (2002) Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-kappaB. EMBO J. 21:6539–48.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Chen L, Fischle W, Verdin E, Greene WC. (2001) Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science. 293:1653–7.CrossRefGoogle Scholar
  49. 49.
    Kiernan R, et al. (2003) Post-activation turn-off of NF-kappa B-dependent transcription is regulated by acetylation of p65. J. Biol. Chem. 278:2758–66.CrossRefGoogle Scholar
  50. 50.
    Bode KA, et al. (2007) Histone deacetylase inhibitors decrease Toll-like receptor-mediated activation of proinflammatory gene expression by impairing transcription factor recruitment. Immunology. 122:596–606.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Cao W, Bao C, Padalko E, Lowenstein CJ. (2008) Acetylation of mitogen-activated protein kinase phosphatase-1 inhibits Toll-like receptor signaling. J. Exp. Med. 205:1491–503.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Carta S, et al. (2006) Histone deacetylase inhibitors prevent exocytosis of interleukin-1beta-containing secretory lysosomes: role of micro-tubules. Blood. 108:1618–26.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Martinon F, Mayor A, Tschopp J. (2009) The in-flammasomes: guardians of the body. Annu. Rev. Immunol. 27:229–65.PubMedCrossRefGoogle Scholar
  54. 54.
    Into T, Inomata M, Niida S, Murakami Y, Shibata K. (2010) Regulation of MyD88 aggregation and the MyD88-dependent signaling pathway by sequestosome 1 and histone deacetylase 6. J. Biol. Chem. 285:35759–69.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Li Y, et al. (2010) Surviving lethal septic shock without fluid resuscitation in a rodent model. Surgery. 148:246–54.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Brogdon JL, et al. (2007) Histone deacetylase activities are required for innate immune cell control of Th1 but not Th2 effector cell function. Blood. 109:1123–30.CrossRefGoogle Scholar
  57. 57.
    Roger T, et al. (2011) Histone deacetylase in hibitors impair innate immune responses to Tolllike receptor agonists and to infection. Blood. 117:1205–17.PubMedCrossRefGoogle Scholar
  58. 58.
    Ramirez-Carrozzi VR, et al. (2006) Selective and antagonistic functions of SWI/SNF and Mi-2beta nucleosome remodeling complexes during an inflammatory response. Genes Dev. 20:282–96.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Calabrese F, et al. (2008) IL-32, a novel proinflammatory cytokine in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 178:894–901.PubMedCrossRefGoogle Scholar
  60. 60.
    Ito K, et al. (2005) Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N. Engl. J. Med. 352:1967–76.PubMedCrossRefGoogle Scholar
  61. 61.
    Mizuno S, et al. (2010) Inhibition of histone deacetylase causes emphysema. Am. J. Physiol. Lung Cell Mol. Physiol. 300:L402–13.PubMedCrossRefGoogle Scholar
  62. 62.
    Dinarello CA. (2005) Differences between antitumor necrosis factor-alpha monoclonal antibodies and soluble TNF receptors in host defense impairment. J. Rheumatol. Suppl. 74:40–7.Google Scholar
  63. 63.
    McKinsey TA. (2011) Targeting inflammation in heart failure with histone deacetylase inhibitors. Mol. Med. 17:434–441.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Abbate A, et al. (2010) Interleukin-1beta modulation using a genetically engineered antibody prevents adverse cardiac remodelling following acute myocardial infarction in the mouse. Eur. J. Heart Fail. 12:319–22.CrossRefGoogle Scholar
  65. 65.
    Abbate A, et al. (2010) Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction. Am. J. Cardiol. 105:1371–7.CrossRefGoogle Scholar
  66. 66.
    Deswal A, et al. (1999) Safety and efficacy of a soluble P75 tumor necrosis factor receptor (Enbrel, etanercept) in patients with advanced heart failure. Circulation. 99:3224–6.CrossRefGoogle Scholar
  67. 67.
    Mann DL. (2002) Inflammatory mediators and the failing heart: past, present, and the foreseeable future. Circ. Res. 91:988–98.PubMedCrossRefGoogle Scholar
  68. 68.
    Di Iorio A, et al. (2003) Serum IL-1beta levels in health and disease: a population-based study: “The InCHIANTI study.” Cytokine. 22:198–205.PubMedCrossRefGoogle Scholar
  69. 69.
    Abbate A, et al. (2008) Anakinra, a recombinant human interleukin-1 receptor antagonist, inhibits apoptosis in experimental acute myocardial infarction. Circulation. 117:2670–83.CrossRefGoogle Scholar
  70. 70.
    Joosten LA, et al. (1999) IL-1 alpha beta blockade prevents cartilage and bone destruction in murine type II collagen-induced arthritis, whereas TNF-alpha blockade only ameliorates joint inflammation. J. Immunol. 163:5049–55.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Reddy P, et al. (2004) Histone deacetylase inhibitor suberoylanilide hydroxamic acid reduces acute graft-versus-host disease and preserves graft-versus-leukemia effect. Proc. Natl. Acad. Sci. U. S. A. 101:3921–6.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Sun Y, et al. (2009) Cutting edge: negative regulation of dendritic cells through acetylation of the nonhistone protein STAT-3. J. Immunol. 182:5899–903.CrossRefGoogle Scholar
  73. 73.
    Bodar EJ, Simon A, van der Meer JWM. (2011) Effects of the histone deacetylase inhibitor ITF2357 in autoinflammatory syndromes. Mol. Med. 17:363–368.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Glauben R, Siegmund B. (2011) Inhibition of histone deacetylases in inflammatory bowel diseases. Mol. Med. 17:426–433.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Reilly CM, Regna N, Mishra N. (2011) HDAC inhibition in lupus models. Mol. Med. 17:417–425.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Faraco G, Cavone L, Chiarugi A. (2011) The therapeutic potential of HDAC inhibitors in the treatment of multiple sclerosis. Mol. Med. 17:442–447.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Shein NA, Shohami E. (2011) Histone deacetylase inhibitors as therapeutic agents for acute central nervous system injuries. Mol. Med. 17:448–456.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Consalvi S, et al. (2011) Histone deacetylase inhibitors in the treatment of muscular dystrophies: epigenetic drugs for genetic diseases. Mol. Med. 17:457–465.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Halili MA, Andrews MR, Sweet MJ, Fairlie DP. (2009) Histone deacetylase inhibitors in inflammatory disease. Curr. Top. Med. Chem. 9:309–19.CrossRefGoogle Scholar
  80. 80.
    Choi JH, et al. (2005) Trichostatin A exacerbates atherosclerosis in low density lipoprotein receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 25:2404–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Halili MA, et al. (2010) Differential effects of selective HDAC inhibitors on macrophage inflammatory responses to the Toll-like receptor 4 agonist LPS. J. Leukoc. Biol. 87:1103–14.PubMedCrossRefGoogle Scholar
  82. 82.
    Zayed N, et al. (2008) Inhibition of interleukin-1beta-induced matrix metalloproteinases 1 and 13 production in human osteoarthritic chondrocytes by prostaglandin D2. Arthritis Rheum. 58:3530–40.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Yamaguchi K, Lantowski A, Dannenberg AJ, Subbaramaiah K. (2005) Histone deacetylase inhibitors suppress the induction of c-Jun and its target genes including COX-2. J. Biol. Chem. 280:32569–77.PubMedCrossRefGoogle Scholar
  84. 84.
    Aung HT, et al. (2006) LPS regulates proinflam- matory gene expression in macrophages by altering histone deacetylase expression. FASEB J. 20:1315–27.CrossRefGoogle Scholar
  85. 85.
    Garcia-Manero G, et al. (2008) Phase 1 study of the histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and myelodysplastic syndromes. Blood. 111:1060–6.CrossRefGoogle Scholar
  86. 86.
    O’Connor OA, et al. (2006) Clinical experience with intravenous and oral formulations of the novel histone deacetylase inhibitor suberoylanilide hydroxamic acid in patients with advanced hematologic malignancies. J. Clin. Oncol. 24:166–73.CrossRefGoogle Scholar
  87. 87.
    Furlan A, et al. (2011) Pharmacokinetics, safety and inducible cytokine responses during a phase 1 trial of the oral histone deacetylase inhibitor ITF2357 (givinostat). Mol. Med. 17:353–362.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Lin T, et al. (2006) Cardiac histones are substrates of histone deacetylase activity in hemorrhagic shock and resuscitation. Surgery. 139:365–76.PubMedCrossRefGoogle Scholar
  89. 89.
    Sailhamer EA, et al. (2008) Acetylation: a novel method for modulation of the immune response following trauma/hemorrhage and inflammatory second hit in animals and humans. Surgery. 144:204–16.PubMedCrossRefGoogle Scholar
  90. 90.
    Terkeltaub R, et al. (2009) The interleukin 1 inhibitor rilonacept in treatment of chronic gouty arthritis: results of a placebo-controlled, monosequence crossover, non-randomised, single-blind pilot study. Ann. Rheum. Dis. 68:1613–7.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    So A, De Smedt T, Revaz S, Tschopp J. (2007) A pilot study of IL-1 inhibition by anakinra in acute gout. Arthritis Res. Ther. 9:R28.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    So A, et al. (2010) Canakinumab for the treatment of acute flares in difficult-to-treat gouty arthritis: results of a multicenter, phase II, doseranging study. Arthritis Rheum. 62:3064–76.CrossRefGoogle Scholar
  93. 93.
    Shein NA, et al. (2009) Histone deacetylase inhibitor ITF2357 is neuroprotective, improves functional recovery, and induces glial apoptosis following experimental traumatic brain injury. FASEB J. 23:4266–75.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Kozikowski AP, et al. (2009) Searching for disease modifiers-PKC activation and HDAC inhibition: a dual drug approach to Alzheimer’s disease that decreases Abeta production while blocking oxidative stress. Chem. Med. Chem. 4:1095–105.PubMedCrossRefGoogle Scholar
  95. 95.
    Ona VO, et al. (1999) Inhibition of caspase-1 slows disease progression in a mouse model of Huntington’s disease. Nature 399:263–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Hockly E, et al. (2003) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc. Natl. Acad. Sci. U. S. A. 100:2041–6.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Benn CL, et al. (2009) Genetic knock-down of HDAC7 does not ameliorate disease pathogenesis in the R6/2 mouse model of Huntington’s disease. PLoS One. 4:e5747.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Chuang DM. (2005) The antiapoptotic actions of mood stabilizers: molecular mechanisms and therapeutic potentials. Ann. N. Y. Acad. Sci. 1053:195–204.PubMedCrossRefGoogle Scholar
  99. 99.
    Dompierre JP, et al. (2007) Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J. Neurosci. 27:3571–83.PubMedCrossRefGoogle Scholar
  100. 100.
    Meissner F, Molawi K, Zychlinsky A. (2010) Mutant superoxide dismutase 1-induced IL-1beta accelerates ALS pathogenesis. Proc. Natl. Acad. Sci. U. S. A. 107:13046–50.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    van der Meer JW, Simon A. (2010) Blocking IL-1beta to slow down progression of ALS? Proc. Natl. Acad. Sci. U. S. A. 107:12741–2.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Lust JA, et al. (2009) Induction of a chronic disease state in patients with smoldering or indolent multiple myeloma by targeting interleukin 1ta-induced interleukin 6 production and the myeloma proliferative component. Mayo Clin. Proc. 84:114–22.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Dinarello CA. (2009) Targeting the pathogenic role of interleukin 1beta in the progression of smoldering/indolent myeloma to active disease. Mayo Clin. Proc. 84:105–7.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Golay J, et al. (2007) The histone deacetylase inhibitor ITF2357 has anti-leukemic activity in vitro and in vivo and inhibits IL-6 and VEGF production by stromal cells. Leukemia. 21:1892–900.PubMedCrossRefGoogle Scholar
  105. 105.
    Rambaldi A, et al. (1991) Modulation of cell proliferation and cytokine production in acute myeloblastic leukemia by interleukin-1 receptor antagonist and lack of its expression by leukemic cells. Blood. 78:3248–53.PubMedGoogle Scholar
  106. 106.
    Lust JA, Donovan KA. (1999) The role of interleukin-1 beta in the pathogenesis of multiple myeloma. Hematol. Oncol. Clin. North Am. 13:1117–25.CrossRefGoogle Scholar
  107. 107.
    Galli M, et al. (2010) A phase II multiple dose clinical trial of histone deacetylase inhibitor ITF2357 in patients with relapsed or progressive multiple myeloma. Ann. Hematol. 89:185–90.CrossRefGoogle Scholar
  108. 108.
    Todoerti K, et al. (2010) Pleiotropic anti-myeloma activity of ITF2357: inhibition of interleukin-6 receptor signaling and repression of miR-19a and miR-19b. Haematologica. 95:260–9.PubMedCrossRefGoogle Scholar
  109. 109.
    Rambaldi A, et al. (2010) A pilot study of the histone-deacetylase inhibitor givinostat in patients with JAK2V617F positive chronic myeloproliferative neoplasms. Br. J. Haematol. 150:446–55.PubMedGoogle Scholar
  110. 110.
    Guerini V, et al. (2008) The histone deacetylase inhibitor ITF2357 selectively targets cells bearing mutated JAK2(V617F). Leukemia. 22:740–7.CrossRefGoogle Scholar
  111. 111.
    Hansen ER, Vejlsgaard GL, Lisby S, Heidenheim M, Baadsgaard O. (1991) Epidermal interleukin 1 alpha functional activity and interleukin 8 immunoreactivity are increased in patients with cutaneous T-cell lymphoma. J. Invest. Dermatol. 97:818–23.PubMedCrossRefGoogle Scholar
  112. 112.
    Bladon J, Taylor PC. (2006) The down-regulation of IL1alpha and IL6, in monocytes exposed to extracorporeal photopheresis (ECP)-treated lymphocytes, is not dependent on lymphocyte phosphatidylserine externalization. Transpl. Int. 19:319–24.PubMedCrossRefGoogle Scholar
  113. 113.
    Tilg H, et al. (1993) Induction of circulating IL-1 receptor antagonist by IFN treatment. J. Immunol. 150:4687–92.PubMedGoogle Scholar
  114. 114.
    Gerstner T, Bell N, Konig S. (2008) Oral valproic acid for epilepsy: long-term experience in therapy and side effects. Expert Opin. Pharmacother. 9:285–92.CrossRefGoogle Scholar
  115. 115.
    Ren M, Leng Y, Jeong M, Leeds PR, Chuang DM. (2004) Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J. Neurochem. 89:1358–67.CrossRefGoogle Scholar
  116. 116.
    Archin NM, et al. (2008) Valproic acid without intensified antiviral therapy has limited impact on persistent HIV infection of resting CD4+ T cells. AIDS. 22:1131–5.PubMedCrossRefGoogle Scholar
  117. 117.
    Atweh GF, Schechter AN. (2001) Pharmacologic induction of fetal hemoglobin: raising the therapeutic bar in sickle cell disease. Curr. Opin. Hematol. 8:123–30.CrossRefGoogle Scholar
  118. 118.
    Bodar EJ, Simon A, van der Meer JWM. (2011) Effects of the histone deacetylase inhibitor ITF2357 in autoinflammatory syndromes. Mol. Med. 17:363–368.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Mishra N, Reilly CM, Brown DR, Ruiz P, Gilkeson GS. (2003) Histone deacetylase inhibitors modulate renal disease in the MRL-lpr/lpr mouse. J. Clin. Invest. 111:539–52.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Reilly CM, et al. (2004) Modulation of renal disease in MRL/lpr mice by suberoylanilide hydroxamic acid. J. Immunol. 173:4171–8.CrossRefGoogle Scholar
  121. 121.
    Robert T, et al. (2011) HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature. 471:74–9.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Hur KY, Jung HS, Lee MS. (2010) Role of autophagy in beta-cell function and mass. Diabetes Obes. Metab. 12 Suppl 2:20–26.PubMedCrossRefGoogle Scholar
  123. 123.
    Vanhorebeek I, et al. (2011) Insufficient activation of autophagy allows cellular damage to accumulate in critically ill patients. J. Clin. Endocrinol. Metab. 96:E633–45.PubMedCrossRefGoogle Scholar
  124. 124.
    Cao DJ, et al. (2011) Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proc. Natl. Acad. Sci. U. S. A. 108:4123–8.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Bogaard HJ, et al. (2011) Suppression of histone deacetylases worsens right ventricular dysfunction after pulmonary artery banding in rats. Am. J. Respir. Crit. Care Med. 2011, Feb 4 [Epubahead of print].Google Scholar
  126. 126.
    Daosukho C, et al. (2007) Phenylbutyrate, a histone deacetylase inhibitor, protects against Adriamycin-induced cardiac injury. Free Radic. Biol. Med. 42:1818–25.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Granger A, et al. (2008) Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice. FASEB J. 22:3549–60.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Davey RT Jr, et al. (1999) HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. Proc. Natl. Acad. Sci. U. S. A. 96:15109–14.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Chun TW, et al. (2005) HIV-infected individuals receiving effective antiviral therapy for extended periods of time continually replenish their viral reservoir. J. Clin. Invest. 115:3250–5.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Richman DD, et al. (2009) The challenge of finding a cure for HIV infection. Science. 323:1304–7.PubMedCrossRefGoogle Scholar
  131. 131.
    Archin NM, et al. (2010) Antiretroviral intensification and valproic acid lack sustained effect on residual HIV-1 viremia or resting CD4+ cell infection. PLoS One. 5:e9390.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Archin NM, et al. (2009) Expression of latent human immunodeficiency type 1 is induced by novel and selective histone deacetylase inhibitors. AIDS. 23:1799–806.PubMedCrossRefGoogle Scholar
  133. 133.
    Archin NM, et al. (2009) Expression of latent HIV induced by the potent HDAC inhibitor suberoylanilide hydroxamic acid. AIDS Res. Hum. Retroviruses. 25:207–12.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Bishton MJ, et al. (2011) Deciphering the molecular and biological processes that mediate histone deacetylase inhibitor-induced thrombocytopenia. Blood. 117:3658–68.PubMedCrossRefGoogle Scholar
  135. 135.
    Whittaker SJ, et al. (2010) Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J. Clin. Oncol. 28:4485–91.PubMedCrossRefGoogle Scholar
  136. 136.
    Choi Y, et al. (2008) Histone deacetylase inhibitor KBH-A42 inhibits cytokine production in RAW 264.7 macrophage cells and in vivo endotoxemia model. Exp. Mol. Med. 40:574–81.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Inoue K, et al. (2006) Histone deacetylase inhibitor reduces monocyte adhesion to endothelium through the suppression of vascular cell adhesion molecule-1 expression. Arterioscler. Thromb. Vasc. Biol. 26:2652–9.PubMedCrossRefGoogle Scholar
  138. 138.
    Su RC, Becker AB, Kozyrskyj AL, Hayglass KT. (2008) Epigenetic regulation of established human type 1 versus type 2 cytokine responses. J. Allergy Clin. Immunol. 121:57–63. e3.PubMedCrossRefGoogle Scholar
  139. 139.
    Choi JC, Holtz R, Murphy SP. (2009) Histone deacetylases inhibit IFN-gamma-inducible gene expression in mouse trophoblast cells. J. Immunol. 182:6307–15.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Chabane N, et al. (2008) Histone deacetylase inhibitors suppress interleukin-1beta-induced nitric oxide and prostaglandin E2 production in human chondrocytes. Osteoarthritis Cartilage. 16:1267–74.PubMedCrossRefGoogle Scholar
  141. 141.
    Crosson CE, Mani SK, Husain S, Alsarraf O, Menick DR. (2010) Inhibition of histone deacetylase protects the retina from ischemic injury. Invest. Ophthalmol. Vis. Sci. 51:3639–45.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Iwata K, et al. (2002) Trichostatin A, a histone deacetylase inhibitor, down-regulates interleukin-12 transcription in SV-40-transformed lung epithelial cells. Cell Immunol. 218:26–33.PubMedCrossRefGoogle Scholar
  143. 143.
    Glauben R, et al. (2008) Histone deacetylases: novel targets for prevention of colitis-associated cancer in mice. Gut. 57:613–22.CrossRefGoogle Scholar
  144. 144.
    Glauben R, et al. (2006) Histone hyperacetylation is associated with amelioration of experimental colitis in mice. J. Immunol. 176:5015–22.CrossRefGoogle Scholar
  145. 145.
    de Zoeten EF, Wang L, Sai H, Dillmann WH, Hancock WW. (2010) Inhibition of HDAC9 increases T regulatory cell function and prevents colitis in mice. Gastroenterology. 138:583–94.CrossRefGoogle Scholar
  146. 146.
    Tong X, Yin L, Giardina C. (2004) Butyrate suppresses Cox-2 activation in colon cancer cells through HDAC inhibition. Biochem. Biophys. Res. Commun. 317:463–71.PubMedCrossRefGoogle Scholar
  147. 147.
    Leng C, et al. (2006) Reduction of graft-versushost disease by histone deacetylase inhibitor suberonylanilide hydroxamic acid is associated with modulation of inflammatory cytokine milieu and involves inhibition of STAT1. Exp. Hematol. 34:776–87.CrossRefGoogle Scholar
  148. 148.
    Tao R, et al. (2007) Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat. Med. 13:1299–307.CrossRefGoogle Scholar
  149. 149.
    Wang L, Tao R, Hancock WW. (2009) Using histone deacetylase inhibitors to enhance Foxp3(+) regulatory T-cell function and induce allograft tolerance. Immunol. Cell Biol. 87:195–202.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Edens RE, Dagtas S, Gilbert KM. (2006) Histone deacetylase inhibitors induce antigen specific anergy in lymphocytes: a comparative study. Int. Immunopharmacol. 6:1673–81.CrossRefGoogle Scholar
  151. 151.
    Tao R, et al. (2007) Histone deacetylase inhibitors and transplantation. Curr. Opin. Immunol. 19:589–95.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Camelo S, et al. (2005) Transcriptional therapy with the histone deacetylase inhibitor trichostatin A ameliorates experimental autoimmune encephalomyelitis. J. Neuroimmunol. 164:10–21.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Jung ID, et al. (2009) Apicidin, the histone deacetylase inhibitor, suppresses Th1 polarization of murine bone marrow-derived dendritic cells. Int. J. Immunopathol. Pharmacol. 22:501–15.CrossRefGoogle Scholar
  154. 154.
    Matsuoka H, Fujimura T, Mori H, Aramori I, Mutoh S. (2007) Mechanism of HDAC inhibitor FR235222-mediated IL-2 transcriptional repression in Jurkat cells. Int. Immunopharmacol. 7:1422–32.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Matsuoka H, et al. (2007) Disruption of HDAC4/N-CoR complex by histone deacetylase inhibitors leads to inhibition of IL-2 gene expression. Biochem. Pharmacol. 74:465–76.PubMedCrossRefGoogle Scholar
  156. 156.
    Moreira JM, Scheipers P, Sorensen P. (2003) The histone deacetylase inhibitor trichostatin A modulates CD4+ T cell responses. BMC Cancer. 3:30.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Skov S, et al. (2003) Histone deacetylase inhibitors: a new class of immunosuppressors targeting a novel signal pathway essential for CD154 expression. Blood. 101:1430–8.CrossRefGoogle Scholar
  158. 158.
    Lin HS, et al. (2007) Anti-rheumatic activities of histone deacetylase (HDAC) inhibitors in vivo in collagen-induced arthritis in rodents. Br. J. Pharmacol. 150:862–72.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Saouaf SJ, et al. (2009) Deacetylase inhibition increases regulatory T cell function and decreases incidence and severity of collagen-induced arthritis. Exp. Mol. Pathol. 87:99–104.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Choo QY, Ho PC, Tanaka Y, Lin HS. (2010) Histone deacetylase inhibitors MS-275 and SAHA induced growth arrest and suppressed lipopolysaccharide-stimulated NF-kappaB p65 nuclear accumulation in human rheumatoid arthritis synovial fibroblastic E11 cells. Rheumatology (Oxford). 49:1447–60.CrossRefGoogle Scholar
  161. 161.
    Guo W, Shan B, Klingsberg RC, Qin X, Lasky JA. (2009) Abrogation of TGF-beta1-induced fibroblast-myofibroblast differentiation by histone deacetylase inhibition. Am. J. Physiol. Lung Cell Mol. Physiol. 297:L864–70.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Wang X, Song Y, Jacobi JL, Tuan RS. (2009) Inhibition of histone deacetylases antagonized FGF2 and IL-1beta effects on MMP expression in human articular chondrocytes. Growth Factors. 27:40–9.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Kook H, et al. (2003) Cardiac hypertrophy and histone deacetylase-dependent transcriptional repression mediated by the atypical homeodomain protein Hop. J. Clin. Invest. 112:863–71.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Zhang CL, et al. (2002) Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell. 110:479–88.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Colussi C, et al. (2011) The histone deacetylase inhibitor suberoylanilide hydroxamic acid reduces cardiac arrhythmias in dystrophic mice. Cardiovasc. Res. 87:73–82.CrossRefGoogle Scholar
  166. 166.
    Chen PS, et al. (2007) Valproic acid and other histone deacetylase inhibitors induce microglial apoptosis and attenuate lipopolysaccharide-in-duced dopaminergic neurotoxicity. Neuroscience. 149:203–12.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Faraco G, et al. (2006) Pharmacological inhibition of histone deacetylases by suberoylanilide hydroxamic acid specifically alters gene expression and reduces ischemic injury in the mouse brain. Mol. Pharmacol. 70:1876–84.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Kim HJ, et al. (2007) Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J. Pharmacol. Exp. Ther. 321:892–901.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Anne-Laurence B, Caroline R, Irina P, JeanPhilippe L. (2007) Chromatin acetylation status in the manifestation of neurodegenerative diseases: HDAC inhibitors as therapeutic tools. Subcell. Biochem. 41:263–93.PubMedGoogle Scholar
  170. 170.
    Janssen C, et al. (2010) Differential histone deacetylase mRNA expression patterns in amyotrophic lateral sclerosis. J. Neuropathol. Exp. eurol. 69:573–81.CrossRefGoogle Scholar
  171. 171.
    Susick L, Senanayake T, Veluthakal R, Woster PM, Kowluru A. (2009) A novel histone deacetylase inhibitor prevents IL-1beta induced metabolic dysfunction in pancreatic beta-cells. J. Cell Mol. Med. 3:1877–85.CrossRefGoogle Scholar
  172. 172.
    Kinugasa F, et al. (2010) Prevention of renal interstitial fibrosis via histone deacetylase inhibition in rats with unilateral ureteral obstruction. Transpl. Immunol. 23:18–23.PubMedCrossRefGoogle Scholar
  173. 173.
    Marumo T, Hishikawa K, Yoshikawa M, Fujita T. (2008) Epigenetic regulation of BMP7 in the egenerative response to ischemia. J. Am. Soc. Nephrol. 19:1311–20.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Marumo T, et al. (2011) Histone deacetylase modulates the proinflammatory and -fibrotic changes in tubulointerstitial injury. Am. J. Physiol. Renal Physiol. 298:F133–41.CrossRefGoogle Scholar
  175. 175.
    Mie Lee Y, et al. (2003) Inhibition of hypoxiainduced angiogenesis by FK228, a specific histone deacetylase inhibitor, via suppression of HIF-1alpha activity. Biochem. Biophys. Res. Commun. 300:241–6.CrossRefGoogle Scholar
  176. 176.
    Noh H, et al. (2009) Histone deacetylase-2 is a key regulator of diabetes- and transforming growth factor-beta1-induced renal injury. Am. J. hysiol. Renal Physiol. 297:F729–39.CrossRefGoogle Scholar
  177. 177.
    Yoshikawa M, Hishikawa K, Marumo T, Fujita T. (2007) Inhibition of histone deacetylase activity suppresses epithelial-to-mesenchymal transition induced by TGF-beta1 in human renal epithelial cells. J. Am. Soc. Nephrol. 18:58–65.PubMedCrossRefGoogle Scholar

Copyright information

© The Feinstein Institute for Medical Research 2011

Authors and Affiliations

  • Charles A. Dinarello
    • 1
    • 2
  • Gianluca Fossati
    • 3
  • Paolo Mascagni
    • 3
  1. 1.Department of Medicine, Division of Infectious DiseasesUniversity of Colorado DenverAuroraUSA
  2. 2.Department of MedicineRadboud University Nijmegen Medical CenterNijmegenthe Netherlands
  3. 3.Centre for ResearchItalfarmaco, S.p.A.Cinisello BalsamoItaly

Personalised recommendations