Molecular Medicine

, Volume 17, Issue 11–12, pp 1179–1187 | Cite as

Overexpression of M3 Muscarinic Receptor Is a Novel Strategy for Preventing Sudden Cardiac Death in Transgenic Mice

  • Yan Liu
  • Lihua Sun
  • Zhenwei Pan
  • Yunlong Bai
  • Ning Wang
  • Jinlong Zhao
  • Chaoqian Xu
  • Zhi Li
  • Baoxin Li
  • Zhimin Du
  • Yanjie Lu
  • Xu Gao
  • Baofeng Yang
Research Article


The present study was designed to investigate the cardiac benefits of M3 muscarinic receptor (M3-mAChR) overexpression and whether these effects are related to the regulation of the inward rectifying K+ channel by microRNA-1 (miR-1) in a conditional overexpression mouse model. A cardiac-specific M3-mAChR transgenic mouse model was successfully established for the first time in this study using microinjection, and the overexpression was confirmed by both reverse transcriptase-polymerase chain reaction and Western blot techniques. We demonstrated that M3-mAChR overexpression dramatically reduced the incidence of arrhythmias and decreased the mortality in a mouse model of myocardial ischemia-reperfusion (I/R). By using whole-cell patch techniques, M3-mAChR overexpression significantly shortened the action potential duration and restored the membrane repolarization by increasing the inward rectifying K+ current. By using Western blot techniques, M3-mAChR overexpression also rescued the expression of the inward rectifying K+ channel subunit Kir2.1 after myocardial I/R injury. This result was accompanied by suppression of upregulation miR-1. We conclude that M3-mAChR overexpression reduced the incidence of arrhythmias and mortality after myocardial I/R by protecting the myocardium from ischemia in mice. This effect may be mediated by increasing the inward rectifying K+ current by downregulation of arrhythmogenic miR-1 expression, which might partially be a novel strategy for antiarrhythmias, leading to sudden cardiac death.



This study was supported in part by the National Basic Research Program (973 Program) of China (2007CB512000/2007CB512006) and the National Natural Science Foundation of China (81072639, 30973531). We thank J Robbins for the gift of the α-MHC vector.

Supplementary material

10020_2011_17111179_MOESM1_ESM.pdf (147 kb)
Supplementary material, approximately 146 KB.


  1. 1.
    Adabag AS, Luepker RV, Roger VL, Gersh BJ. (2010) Sudden cardiac death: epidemiology and risk factors. Nat. Rev. Cardiol. 7:216–25.CrossRefGoogle Scholar
  2. 2.
    Zhang S. (2009) Sudden cardiac death in China. Pacing Clin. Electrophysiol. 32:1159–62.CrossRefGoogle Scholar
  3. 3.
    Clements-Jewery H, Hearse DJ, Curtis MJ. (2005) Phase 2 ventricular arrhythmias in acute myocardial infarction: a neglected target for therapeutic antiarrhythmic drug development and for safety pharmacology evaluation. Br. J. Pharmacol. 145:551–64.CrossRefGoogle Scholar
  4. 4.
    Walker MJ. (2006) Antiarrhythmic drug research. Br. J. Pharmacol. 147Suppl 1:S222–31.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Shi H, Wang H, Wang Z. (1999) Identification and characterization of multiple subtypes of muscarinic acetylcholine receptors and their physiological functions in canine hearts. Mol. Pharmacol. 55:497–507.PubMedGoogle Scholar
  6. 6.
    Lamping KG, Wess J, Cui Y, Nuno DW, Faraci FM. (2004) Muscarinic (M) receptors in coronary circulation: gene-targeted mice define the role of M2 and M3 receptors in response to acetylcholine. Arterioscler. Thromb. Vasc. Biol. 24:1253–8.CrossRefGoogle Scholar
  7. 7.
    Shi H, Wang H, Li D, Nattel S, Wang Z. (2004) Differential alterations of receptor densities of three muscarinic acetylcholine receptor subtypes and current densities of the corresponding K+ channels in canine atria with atrial fibrillation induced by experimental congestive heart failure. Cell. Physiol. Biochem. 14:31–40.CrossRefGoogle Scholar
  8. 8.
    Pönicke K, Heinroth-Hoffmann I, Brodde OE. (2003) Demonstration of functional M3-muscarinic receptors in ventricular cardiomyocytes of adult rats. Br. J. Pharmacol. 138:156–60.CrossRefGoogle Scholar
  9. 9.
    Shi H, Wang H, Lu Y, Yang B, Wang Z. (1999) Choline modulates cardiac membrane repolarization by activating an M3 muscarinic receptor and its coupled K+ channel. J. Membr. Biol. 169:55–64.CrossRefGoogle Scholar
  10. 10.
    Yue P, et al. (2006) Ischemia impairs the association between connexin 43 and M3 subtype of acetylcholine muscarinic receptor (M3-mAChR) in ventricular myocytes. Cell. Physiol. Biochem. 17:129–36.CrossRefGoogle Scholar
  11. 11.
    Wang H, Lu Y, Wang Z. (2007) Function of cardiac M3 receptors. Auton. Autacoid Pharmacol. 27:1–11.CrossRefGoogle Scholar
  12. 12.
    Yang B, et al. (2005) Choline produces cytoprotective effects against ischemic myocardial injuries: evidence for the role of cardiac m3 subtype muscarinic acetylcholine receptors. Cell. Physiol. Biochem. 16:163–74.CrossRefGoogle Scholar
  13. 13.
    Li GR, Lau CP, Leung TK, Nattel S. (2004) Ionic current abnormalities associated with prolonged action potentials in cardiomyocytes from diseased human right ventricles. Heart Rhythm. 1:460–8.CrossRefGoogle Scholar
  14. 14.
    Diaz RJ, et al. (2004) Selective inhibition of inward rectifier K+ channels (Kir2.1 or Kir2.2) abolishes protection by ischemic preconditioning in rabbit ventricular cardiomyocytes. Circ. Res. 95:325–32.CrossRefGoogle Scholar
  15. 15.
    Xu Y, Zhang Q, Chiamvimonvat N. (2007) IK1 and cardiac hypoxia: after the long and short QT syndromes, what else can go wrong with the inward rectifier K+ currents? J. Mol. Cell. Cardiol. 43:15–7.CrossRefGoogle Scholar
  16. 16.
    Dhamoon AS, Jalife J. (2005) The inward rectifier current (IK1) controls cardiac excitability and is involved in arrhythmogenesis. Heart Rhythm. 2:316–24.CrossRefGoogle Scholar
  17. 17.
    Beuckelmann DJ, Näbauer M, Erdmann E. (1993) Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. Circ. Res. 73:379–85.CrossRefGoogle Scholar
  18. 18.
    Ravens U, Cerbai E. (2008) Role of potassium currents in cardiac arrhythmias. Europace. 10:1133–7.CrossRefGoogle Scholar
  19. 19.
    Divakaran V, Mann DL. (2008) The emerging role of microRNAs in cardiac remodeling and heart failure. Circ. Res. 103:1072–83.CrossRefGoogle Scholar
  20. 20.
    Xie X, et al. (2005) Systematic discovery of regulatory motifs in human promoters and 3′UTRs by comparison of several mammals. Nature. 434:338–45.CrossRefGoogle Scholar
  21. 21.
    Yang B, et al. (2007) The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat. Med. 13:486–91.CrossRefGoogle Scholar
  22. 22.
    Arimoto T, et al. (2006) Cardiac-specific overexpression of diacylglycerol kinase zeta prevents Gq protein-coupled receptor agonist-induced cardiac hypertrophy in transgenic mice. Circulation. 113:60–6.CrossRefGoogle Scholar
  23. 23.
    Petzelbauer P, et al. (2005) The fibrin-derived peptide Bbeta15–42 protects the myocardium against ischemia-reperfusion injury. Nat. Med. 11:298–304.CrossRefGoogle Scholar
  24. 24.
    Zhang Y, et al. (2006) Resveratrol, a natural ingredient of grape skin: antiarrhythmic efficacy and ionic mechanisms. Biochem. Biophys. Res. Commun. 340:1192–9.CrossRefGoogle Scholar
  25. 25.
    Amran MS, Hashimoto K, Homma N. (2004) Effects of sodium-calcium exchange inhibitors, KBR7943 and SEA0400, on aconitine-induced arrhythmias in guinea pigs in vivo, in vitro, and in computer simulation studies. J. Pharmacol. Exp. Ther. 310:83–9.CrossRefGoogle Scholar
  26. 26.
    Willmy-Matthes P, Leineweber K, Wangemann T, Silber RE, Brodde OE. (2003) Existence of functional M3-muscarinic receptors in the human heart. Naunyn Schmiedebergs Arch. Pharmacol. 368:316–9.CrossRefGoogle Scholar
  27. 27.
    Shi H, Wang H, Yang B, Xu D, Wang Z. (2004) The M3 receptor-mediated K(+) current (IKM3), a G(q) protein-coupled K(+) channel. J. Biol. Chem. 279:1774–2178.Google Scholar
  28. 28.
    Wang YP, et al. (2009) M3 muscarinic acetylcholine receptor is associated with beta-catenin in ventricular myocytes during myocardial infarction in the rat. Clin. Exp. Pharmacol. Physiol. 36:995–1001.CrossRefGoogle Scholar
  29. 29.
    Liu Y, et al. (2009) Role of M3 receptor in aconitine/barium-chloride-induced 1187 preconditioning against arrhythmias in rats. Naunyn Schmiedebergs Arch. Pharmacol. 379:511–5.CrossRefGoogle Scholar
  30. 30.
    Liu Y, et al. (2008) Choline produces antiarrhythmic actions in animal models by cardiac M3 receptors: improvement of intracellular Ca2+ handling as a common mechanism. Can. J. Physiol. Pharmacol. 86:860–5.CrossRefGoogle Scholar
  31. 31.
    Zhao WM, et al. (2009) The antiarrhythmic effect and possible ionic mechanisms of pilocarpine on animal models. J. Cardiovasc. Pharmacol. Ther. 14:242–7.CrossRefGoogle Scholar
  32. 32.
    de Bakker JM, van Rijen HV. (2007) Electrocardiographic manifestation of anatomical substrates underlying post-myocardial infarction tachycardias. J. Electrocardiol. 40:21–5.CrossRefGoogle Scholar
  33. 33.
    Panama BK, McLerie M, Lopatin AN. (2007) Heterogeneity of IK1 in the mouse heart. Am. J. Physiol. Heart Circ. Physiol. 293:3558–67.CrossRefGoogle Scholar
  34. 34.
    Fauconnier J, Lacampagne A, Rauzier JM, Vassort G, Richard S. (2005) Ca2+-dependent reduction of IK1 in rat ventricular cells: a novel paradigm for arrhythmia in heart failure? Cardiovasc. Res. 68:204–12.CrossRefGoogle Scholar
  35. 35.
    Domenighetti AA, Boixel C, Cefai D, Abriel H, Pedrazzini T. (2007) Chronic angiotensin II stimulation in the heart produces an acquired long QT syndrome associated with IK1 potassium current downregulation. J. Mol. Cell. Cardiol. 42:63–70.CrossRefGoogle Scholar
  36. 36.
    Tomaselli GF, Marbán E. (1999) Electrophysiological remodeling in hypertrophy and heart failure. Cardiovasc. Res. 42:270–83.CrossRefGoogle Scholar
  37. 37.
    Chen JF, et al. (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 38:228–33.CrossRefGoogle Scholar

Copyright information

© The Feinstein Institute for Medical Research 2011

Authors and Affiliations

  • Yan Liu
    • 1
  • Lihua Sun
    • 1
  • Zhenwei Pan
    • 1
  • Yunlong Bai
    • 1
  • Ning Wang
    • 1
  • Jinlong Zhao
    • 2
  • Chaoqian Xu
    • 1
  • Zhi Li
    • 1
  • Baoxin Li
    • 1
  • Zhimin Du
    • 2
  • Yanjie Lu
    • 1
  • Xu Gao
    • 3
  • Baofeng Yang
    • 1
  1. 1.Department of PharmacologyState-Province Key Laboratories of Biomedicine and PharmaceuticsHarbin, HeilongjiangChina
  2. 2.Institute of Clinical Pharmacology of the Second HospitalHarbin Medical UniversityHarbin, HeilongjiangChina
  3. 3.Department of Biochemistry and Molecular BiologyHarbin Medical UniversityHarbin, HeilongjiangChina

Personalised recommendations