Molecular Medicine

, Volume 17, Issue 9–10, pp 1075–1083 | Cite as

Peripheral Administration of Human Adrenomedullin and Its Binding Protein Attenuates Stroke-Induced Apoptosis and Brain Injury in Rats

  • Wayne W. Chaung
  • Rongqian Wu
  • Youxin Ji
  • Zhimin Wang
  • Weifeng Dong
  • Cletus Cheyuo
  • Lei Qi
  • Xiaoling Qiang
  • Haichao Wang
  • Ping Wang
Research Article


Stroke is a leading cause of death and the primary medical cause of acquired adult disability worldwide. The progressive brain injury after acute stroke is partly mediated by ischemia-elicited inflammatory responses. The vasoactive hormone adrenomedullin (AM), upregulated under various inflammatory conditions, counterbalances inflammatory responses. However, regulation of AM activity in ischemic stroke remains largely unknown. Recent studies have demonstrated the presence of a specific AM binding protein (that is, AMBP-1) in mammalian blood. AMBP-1 potentiates AM biological activities. Using a rat model of focal cerebral ischemia induced by permanent middle cerebral artery occlusion (MCAO), we found that plasma levels of AM increased significantly, whereas plasma levels of AMBP-1 decreased significantly after stroke. When given peripherally early after MCAO, exogenous human AM in combination with human AMBP-1 reduced brain infarct volume 24 and 72 h after MCAO, an effect not observed after the treatment by human AM or human AMBP-1 alone. Furthermore, treatment of human AM/AMBP-1 reduced neuron apoptosis and morphological damage, inhibited neutrophil infiltration in the brain and decreased serum levels of S100B and lactate. Thus, human AM/AMBP-1 has the ability to reduce stroke-induced brain injury in rats. AM/AMBP-1 can be developed as a novel therapeutic agent for patients with ischemic stroke.



This study was supported by NIH grants R01 HL076179, R01 GM057468 and R01 GM053008 (to P Wang).


  1. 1.
    Thom T, et al. (2006) Heart disease and stroke statistics: 2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 113:e85–151.PubMedGoogle Scholar
  2. 2.
    Broderick JP. (2004) William M. Feinberg Lecture: stroke therapy in the year 2025: burden, breakthroughs, and barriers to progress. Stroke. 35:205–11.CrossRefPubMedGoogle Scholar
  3. 3.
    Goldstein LB. (2007) Acute ischemic stroke treatment in 2007. Circulation. 116:1504–14.CrossRefPubMedGoogle Scholar
  4. 4.
    Chacon MR, Jensen MB, Sattin JA, Zivin JA. (2008) Neuroprotection in cerebral ischemia: emphasis on the SAINT trial. Curr. Cardiol. Rep. 10:37–42.CrossRefPubMedGoogle Scholar
  5. 5.
    Switzer JA, Hess DC. (2008) Development of regional programs to speed treatment of stroke. Curr. Neurol. Neurosci. Rep. 8:35–42.CrossRefPubMedGoogle Scholar
  6. 6.
    Kitamura K, et al. (1993) Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem. Biophys. Res. Commun. 192:553–60.CrossRefPubMedGoogle Scholar
  7. 7.
    Isumi Y, Kubo A, Katafuchi T, Kangawa K, Minamino N. (1999) Adrenomedullin suppresses interleukin-1α-induced tumor necrosis factor-β production in Swiss 3T3 cells. FEBS Lett. 463:110–14.CrossRefPubMedGoogle Scholar
  8. 8.
    Kubo A, et al. (1998) Production of adrenomedullin in macrophage cell line and peritoneal macrophage. J Biol. Chem. 273:16730–16738.CrossRefPubMedGoogle Scholar
  9. 9.
    Iwamoto M, et al. (2003) Adrenomedullin inhibits pressure-induced mesangial MCP-1 expression through activation of protein kinase A. J. Nephrol. 16:673–81.PubMedGoogle Scholar
  10. 10.
    Gonzalez-Rey E, Chorny A, Varela N, Robledo G, Delgado M. (2006) Urocortin and adrenomedullin prevent lethal endotoxemia by down-regulating the inflammatory response. Am. J. Pathol. 168:1921–30.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Elsasser TH, et al. (1999) Adrenomedullin binding protein in the plasma of multiple species: characterization by radioligand blotting. Endocrinology. 140:4908–11.CrossRefPubMedGoogle Scholar
  12. 12.
    Pio R, et al. (2001) Complement factor H is a serum binding protein for adrenomedullin: the resulting complex modulates the bioactivities of both partners. J. Biol. Chem. 276:12292–300.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhou M, Ba ZF, Chaudry IH, Wang P. (2002) Adrenomedullin binding protein-1 modulates vascular responsiveness to adrenomedullin in late sepsis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283:R553–60.CrossRefPubMedGoogle Scholar
  14. 14.
    Wu R, Zhou M, Wang P. (2003) Adrenomedullin and adrenomedullin binding protein-1 downregulate TNF-alpha in macrophage cell line and rat Kupffer cells. Regul. Pept. 112:19–26.CrossRefPubMedGoogle Scholar
  15. 15.
    Xia CF, Yin H, Borlongan CV, Chao J, Chao L. (2004) Adrenomedullin gene delivery protects against cerebral ischemic injury by promoting astrocyte migration and survival. Hum. Gene Ther. 15:1243–54.CrossRefPubMedGoogle Scholar
  16. 16.
    Miyashita K, et al. (2006) The neuroprotective and vasculo-neuro-regenerative roles of adreno-medullin in ischemic brain and its therapeutic potential. Endocrinology. 147:1642–53.CrossRefPubMedGoogle Scholar
  17. 17.
    Tixier E, et al. (2008) Adrenomedullin protects neurons against oxygen glucose deprivation stress in an autocrine and paracrine manner. J. Neurochem. 106:1388–403.CrossRefPubMedGoogle Scholar
  18. 18.
    Hanabusa K, et al. (2005) Adrenomedullin enhances therapeutic potency of mesenchymal stem cells after experimental stroke in rats. Stroke. 36:853–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Yang S, Zhou M, Chaudry IH, Wang P. (2002) Novel approach to prevent the transition from the hyperdynamic phase to the hypodynamic phase of sepsis: role of adrenomedullin and adrenomedullin binding protein-1. Ann. Surg. 236:625–33.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Carrizo GJ, et al. (2007) Adrenomedullin and adrenomedullin-binding protein-1 downregulate inflammatory cytokines and attenuate tissue injury after gut ischemia-reperfusion. Surgery. 141:245–53.CrossRefPubMedGoogle Scholar
  21. 21.
    Wu R, et al. (2005) Mechanisms responsible for vascular hyporesponsiveness to adrenomedullin after hemorrhage: the central role of adrenomedullin binding protein-1. Ann. Surg. 242:115–23.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wang SM, Yang WL. (2009) Circulating hormone adrenomedullin and its binding protein protect neural cells from hypoxia-induced apoptosis. Biochim. Biophys. Acta. 1790:361–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Wang H, et al. (2010) Peripheral administration of fetuin-A attenuates early cerebral ischemic injury in rats. J. Cereb. Blood Flow Metab. 30:493–504.CrossRefPubMedGoogle Scholar
  24. 24.
    Dwivedi AJ, et al. (2007) Adrenomedullin and adrenomedullin binding protein-1 prevent acute lung injury after gut ischemia-reperfusion. J. Am. Coll. Surg. 205:284–93.CrossRefPubMedGoogle Scholar
  25. 25.
    Yang J, et al. (2009) Human adrenomedullin and its binding protein attenuate organ injury and reduce mortality after hepatic ischemia-reperfusion. Ann. Surg. 249:310–7.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Qiang X, Wu R, Ji Y, Zhou M, Wang P. (2008) Purification and characterization of human adrenomedullin binding protein-1. Mol. Med. 14:443–50.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Cui X, et al. (2005) Adrenomedullin and its binding protein attenuate the proinflammatory response after hemorrhage. Crit. Care Med. 33:391–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Zhou M, Simms HH, Wang P. (2004) Adrenomedullin and adrenomedullin binding protein-1 attenuate vascular endothelial cell apoptosis in sepsis. Ann. Surg. 240:321–30.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wu R, et al. (2008) Orexigenic hormone ghrelin attenuates local and remote organ injury after intestinal ischemia-reperfusion. PLoS. ONE. 3:e2026.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lynch JR, et al. (2004) Novel diagnostic test for acute stroke. Stroke 35:57–63.CrossRefPubMedGoogle Scholar
  31. 31.
    Dogan A, et al. (1997) Intravenous infusion of adrenomedullin and increase in regional cerebral blood flow and prevention of ischemic brain injury after middle cerebral artery occlusion in rats. J. Cereb. Blood Flow Metab. 17:19–25.CrossRefPubMedGoogle Scholar
  32. 32.
    Hosomi N, et al. (2004) Plasma adrenomedullin and carotid atherosclerosis in atherothrombotic ischemic stroke. J. Hypertens. 22:1945–51.CrossRefPubMedGoogle Scholar
  33. 33.
    Shimosawa T, Fujita T. (2005) Adrenomedullin and its related peptide. Endocr. J. 52:1–10.CrossRefPubMedGoogle Scholar
  34. 34.
    Martinez A, et al. (2004) Matrix metalloproteinase-2 cleavage of adrenomedullin produces a vasoconstrictor out of a vasodilator. Biochem. J. 383:413–8.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Naked GM, et al. (2000) Deficiency of human complement factor I associated with lowered factor H. Clin. Immunol. 96:162–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Menzies SA, Betz AL, Hoff JT. (1993) Contributions of ions and albumin to the formation and resolution of ischemic brain edema. J. Neurosurg. 78:257–66.CrossRefPubMedGoogle Scholar
  37. 37.
    Pan W, Kastin AJ. (2007) Tumor necrosis factor and stroke: role of the blood-brain barrier. Prog. Neurobiol. 83:363–74.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Muir KW, Tyrrell P, Sattar N, Warburton E. (2007) Inflammation and ischaemic stroke. Curr. Opin. Neurol. 20:334–42.CrossRefPubMedGoogle Scholar
  39. 39.
    Liu T, et al. (1994) Tumor necrosis factor-alpha expression in ischemic neurons. Stroke. 25:1481–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Liu T, et al. (1993) Interleukin-1 beta mRNA expression in ischemic rat cortex. Stroke. 24:1746–50.CrossRefPubMedGoogle Scholar
  41. 41.
    Wang X, Yue TL, Young PR, Barone FC, Feuerstein GZ. (1995) Expression of interleukin-6, c-fos, and zif268 mRNAs in rat ischemic cortex. J. Cereb. Blood Flow Metab. 15:166–71.CrossRefPubMedGoogle Scholar
  42. 42.
    Emsley HC, et al. (2007) Clinical outcome following acute ischaemic stroke relates to both activation and autoregulatory inhibition of cytokine production. BMC Neurol. 7:5.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Jacob A, et al. (2007) Pro-inflammatory cytokines from Kupffer cells downregulate hepatocyte expression of adrenomedullin binding protein-1. Biochim. Biophys. Acta. 1772:766–72.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Graham SH, Chen J. (2001) Programmed cell death in cerebral ischemia. J. Cereb. Blood Flow Metab. 21:99–109.CrossRefPubMedGoogle Scholar
  45. 45.
    Northington FJ, Ferriero DM, Flock DL, Martin LJ. (2001) Delayed neurodegeneration in neonatal rat thalamus after hypoxia-ischemia is apoptosis. J. Neurosci. 21:1931–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Kato H, Kogure K. (1999) Biochemical and molecular characteristics of the brain with developing cerebral infarction. Cell Mol. Neurobiol. 19:93–108.CrossRefPubMedGoogle Scholar
  47. 47.
    Newcomb JD, et al. (2006) Timing of cord blood treatment after experimental stroke determines therapeutic efficacy. Cell Transplant. 15:213–23.CrossRefPubMedGoogle Scholar
  48. 48.
    Ferrer I. (2006) Apoptosis: future targets for neuroprotective strategies. Cerebrovasc. Dis. 21 Suppl 2:9–20.CrossRefPubMedGoogle Scholar
  49. 49.
    Jordan J, Ikuta I, Garcia-Garcia J, Calleja S, Segura T. (2007) Stroke pathophysiology: management challenges and new treatment advances. J. Physiol. Biochem. 63:261–77.CrossRefPubMedGoogle Scholar
  50. 50.
    Matsuo Y, et al. (1994) Correlation between myeloperoxidase-quantified neutrophil accumulation and ischemic brain injury in the rat: effects of neutrophil depletion. Stroke. 25:1469–75.CrossRefGoogle Scholar
  51. 51.
    Chen H, et al. (1994) Anti-CD11b monoclonal antibody reduces ischemic cell damage after transient focal cerebral ischemia in rat. Ann. Neurol. 35:458–63.CrossRefPubMedGoogle Scholar
  52. 52.
    Saito Y, Nakagawa C, Uchida H, Sasaki F, Sakakibara H. (2001) Adrenomedullin suppresses fMLP-induced upregulation of CD11b of human neutrophils. Inflammation. 25:197–201.CrossRefPubMedGoogle Scholar
  53. 53.
    Sakata J, et al. (1993) Molecular cloning and biological activities of rat adrenomedullin, a hypotensive peptide. Biochem. Biophys. Res. Commun. 195:921–7.CrossRefPubMedGoogle Scholar
  54. 54.
    Hurtado O, et al. (2010) Lack of adrenomedullin, but not complement factor H, results in larger infarct size and more extensive brain damage in a focal ischemia model. Neuroscience. 171:885–92.CrossRefPubMedGoogle Scholar

Copyright information

© The Feinstein Institute for Medical Research 2011

Authors and Affiliations

  • Wayne W. Chaung
    • 1
    • 2
  • Rongqian Wu
    • 1
    • 2
  • Youxin Ji
    • 1
    • 2
  • Zhimin Wang
    • 1
    • 2
  • Weifeng Dong
    • 1
    • 2
  • Cletus Cheyuo
    • 1
    • 2
  • Lei Qi
    • 1
    • 2
  • Xiaoling Qiang
    • 1
    • 2
  • Haichao Wang
    • 1
    • 2
  • Ping Wang
    • 1
    • 2
  1. 1.Laboratory of Surgical ResearchThe Feinstein Institute for Medical ResearchManhassetUSA
  2. 2.Department of SurgeryNorth Shore University Hospital and Long Island Jewish Medical CenterManhassetUSA

Personalised recommendations