Advertisement

Molecular Medicine

, Volume 14, Issue 11–12, pp 705–714 | Cite as

Angiogenesis and Diabetes: Different Responses to Pro-Angiogenic Factors in the Chorioallantoic Membrane Assay

  • Giovana S. Di Marco
  • Antoine Alam
  • Frédéric Dol
  • Pierre Corvol
  • Jean-Marie Gasc
  • Etienne Larger
Research Article

Abstract

Hyperglycemia induces defects in angiogenesis without alteration in the expression of major vascular growth factors in the chicken chorioallantoic membrane (CAM) model. A direct negative effect of hyperglycemia on angiogenesis may participate in failures of “therapeutic angiogenesis” trials. Here, we tested the hypothesis that the response to pro-angiogenic molecules such as angiotensin-converting enzyme (ACE), endothelin-1 (ET-1), and vascular endothelial growth factor-A (VEGF) is altered by hyperglycemia. Transfected (Chinese hamster ovary (CHO) or human embryonic kidney (HEK)) cells overexpressing ACE, ET-1, or VEGF were deposed onto the CAM of hyperglycemic or control embryos. The proangiogenic effect was evaluated 3 d later by angiography and histological analyses. Gene expression in response to these factors was assessed by in situ hybridization. Only VEGF overexpression evoked a proangiogenic response in the CAM from hyperglycemic embryos, upregulating the expression of endogenous VEGF, VEGF-R2, and Tie-2, all of them related to activation of endothelial cells. In conclusion, in a model where hyperglycemia does not alter the major vascular growth factor expression, the negative effect of diabetes on capillary density was overcome only by VEGF overexpression, whereas responses to other vasoactive peptides were practically abolished under hyperglycemic conditions.

Notes

Acknowledgments

The authors thank P Mayeux, INSERM, Paris, for the gift of the antibody to hEPO. Thanks also to M Brand, M Clemessy, and MT Morin for their excellent assistance. GS Di Marco was supported by a fellowship from the Foundation pour la Recherche Médicale (FRM), France.

References

  1. 1.
    Martin A, Komada MR, Sane DC. (2003) Abnormal angiogenesis in diabetes mellitus. Med. Res. Rev. 23:117–45.CrossRefGoogle Scholar
  2. 2.
    Waltenberger, J. (2001) Impaired collateral vessel development in diabetes: potential cellular mechanisms and therapeutic implications. Cardiovasc. Res. 49:554–60.CrossRefGoogle Scholar
  3. 3.
    Ferrara N, Kerbel RS. (2005) Angiogenesis as a therapeutic target. Nature 438:967–74.CrossRefGoogle Scholar
  4. 4.
    de Muinck ED, Simons M. (2004) Re-evaluating therapeutic neovascularization. J. Mol. Cell. Cardiol. 36:25–32.CrossRefGoogle Scholar
  5. 5.
    Norhammar A, et al. (2002) Glucose metabolism in patients with acute myocardial infarction and no previous diagnosis of diabetes mellitus: a prospective study. Lancet 359:2140–4.CrossRefGoogle Scholar
  6. 6.
    Boodhwani M, et al. (2007) Functional, cellular, and molecular characterization of the angiogenic response to chronic myocardial ischemia in diabetes. Circulation 116(11 Suppl):I–31–I–37.Google Scholar
  7. 7.
    Brownlee M. (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–25.CrossRefGoogle Scholar
  8. 8.
    Larger E, Marre M, Corvol P, Gasc JM. (2004) Hyperglycemia-induced defects in angiogenesis in the chicken chorioallantoic membrane model. Diabetes 53:752–61.CrossRefGoogle Scholar
  9. 9.
    Yonekura K, et al. (1999) UFT and its metabolites inhibit the angiogenesis induced by murine renal cell carcinoma, as determined by a dorsal air sac assay in mice. Clin. Cancer Res. 5:2185–91.PubMedGoogle Scholar
  10. 10.
    Cruz A, Parnot C, Ribatti D, Corvol P, Gasc JM. (2001) Endothelin-1, a regulator of angiogenesis in the chick chorioallantoic membrane. J. Vasc. Res. 38:536–45.CrossRefGoogle Scholar
  11. 11.
    Parnot C, et al. (1997) A live-cell assay for studying extracellular and intracellular endothelin-converting enzyme activity. Hypertension 30:837–44.CrossRefGoogle Scholar
  12. 12.
    Wei L, et al. (1991) Expression and characterization of recombinant human angiotensin I-converting enzyme. Evidence for a C-terminal transmembrane anchor and for a proteolytic processing of the secreted recombinant and plasma enzymes. J. Biol. Chem. 266:5540–6.PubMedGoogle Scholar
  13. 13.
    Sibony M, Commo F, Callard P, Gasc JM. (1995) Enhancement of mRNA in situ hybridization signal by microwave heating. Lab. Invest. 73:586–91.PubMedGoogle Scholar
  14. 14.
    Brand M, et al. (2006) Angiotensinogen modulates renal vasculature growth. Hypertension 47:1067–74.CrossRefGoogle Scholar
  15. 15.
    Kempf H, Corvol P, Gasc JM. (1999) Expression of the chicken angiotensin II receptor: atypical pattern compared to its mammalian homologues. Mech. Dev. 84:177–80.CrossRefGoogle Scholar
  16. 16.
    Favier J, Plouin PF, Corvol P, Gasc JM. (2002) Angiogenesis and vascular architecture in pheochromocytomas: distinctive traits in malignant tumors. Am. J. Pathol. 161:1235–46.CrossRefGoogle Scholar
  17. 17.
    Withy RM, et al. (1992) Growth factors produced by human embryonic kidney cells that influence megakaryopoiesis include erythropoietin, interleukin 6, and transforming growth factor-beta. J. Cell. Physiol. 153:362–72.CrossRefGoogle Scholar
  18. 18.
    Carmeliet P. (2005) Angiogenesis in life, disease and medicine. Nature 438:932–6.CrossRefGoogle Scholar
  19. 19.
    Forough R, et al. (2003) Cell-based and direct gene transfer-induced angiogenesis via a secreted chimeric fibroblast growth factor-1 (sp-FGF-1) in the chick chorioallantoic membrane (CAM). Angiogenesis 6:47–54.CrossRefGoogle Scholar
  20. 20.
    Ribatti D, et al. (1999) Human erythropoietin induces a pro-angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. Blood 93:2627–36.PubMedGoogle Scholar
  21. 21.
    Sjolie AK, Porta M, Parving HH, Bilous R, Klein R. (2005) The Diabetic Retinopathy Candesartan Trials (DIRECT) Programme: baseline characteristics. J. Renin. Angiotensin Aldosterone Syst. 6:25–32.CrossRefGoogle Scholar
  22. 22.
    Bek EL, McMillen MA, Scott P, Angus LD, Shaftan GW. (2002) The effect of diabetes on endothelin, interleukin-8 and vascular endothelial growth factor-mediated angiogenesis in rats. Clin. Sci. 103:424S–429S.CrossRefGoogle Scholar
  23. 23.
    Ebrahimian TG, et al. (2005) Dual effect of angiotensin-converting enzyme inhibition on angiogenesis in type 1 diabetic mice. Arterioscler. Thromb. Vasc. Biol. 25:65–70.CrossRefGoogle Scholar
  24. 24.
    Le Noble FA, Hekking JW, Van Straaten HW, Slaaf DW, Struyker Boudier HA. (1991) An-giotensin II stimulates angiogenesis in the chorio-allantoic membrane of the chick embryo. Eur. J. Pharmacol. 195:305–6.CrossRefGoogle Scholar
  25. 25.
    Rivard A, et al. (1999) Rescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF. Am. J. Pathol. 154:355–63.CrossRefGoogle Scholar
  26. 26.
    Li Y, et al. (2007) In mice with type 2 diabetes, a vascular endothelial growth factor (VEGF)-activating transcription factor modulates VEGF signaling and induces therapeutic angiogenesis after hindlimb ischemia. Diabetes. 56:656–65.CrossRefGoogle Scholar
  27. 27.
    Skopinski P, et al. (2001) Angiotensin-converting enzyme activity and angiomodulatory effects of sera in patients with diabetic retinopathy. Int. J. Clin. Pharmacol. Res. 21:73–8.PubMedGoogle Scholar
  28. 28.
    Williams JL, et al. (2006) Differential gene and protein expression in abluminal sprouting and intraluminal splitting forms of angiogenesis. Clin. Sci. 110:587–95.CrossRefGoogle Scholar
  29. 29.
    Pardanaud L, Eichmann A. (2006) Identification, emergence and mobilization of circulating endothelial cells or progenitors in the embryo. Development 133:2527–37.CrossRefGoogle Scholar
  30. 30.
    Ribatti D, Vacca A, Roncali L, Dammacco F. (1996) The chick embryo chorioallantoic membrane as a model for in vivo research on angiogenesis. Int. J. Dev. Biol. 40:1189–97.PubMedGoogle Scholar

Copyright information

© Feinstein Institute for Medical Research 2008

Authors and Affiliations

  • Giovana S. Di Marco
    • 1
  • Antoine Alam
    • 2
  • Frédéric Dol
    • 2
  • Pierre Corvol
    • 1
  • Jean-Marie Gasc
    • 1
  • Etienne Larger
    • 1
  1. 1.Institut National de la Santé et de la Recherche Médicale (INSERM) U833Collège de FranceParisFrance
  2. 2.Angiogenesis and Thrombosis DepartmentSanofi-Aventis R&DToulouseFrance

Personalised recommendations