Advertisement

Molecular Medicine

, Volume 14, Issue 7–8, pp 374–382 | Cite as

Genomic-Based High Throughput Screening Identifies Small Molecules That Differentially Inhibit the Antiviral and Immunomodulatory Effects of IFN-α

  • Bo Chen
  • Qin Zong
  • Ricardo Cibotti
  • Chad Morris
  • Juana Castaneda
  • Brian Naiman
  • Derong Liu
  • Anna Glodek
  • Gary P. Sims
  • Ronald Herbst
  • Stephen K. Horrigan
  • Peter A. Kiener
  • Dan Soppet
  • Anthony J. Coyle
  • Laurent Audoly
Research Article

Abstract

Multiple lines of evidence suggest that inhibition of Type I Interferons, including IFN-α, may provide a therapeutic benefit for autoimmune diseases. Using a chemical genomics approach integrated with cellular and in vivo assays, we screened a small compound library to identify modulators of IFN-α biological effects. A genomic fingerprint was developed from both ex vivo patient genomic information and in vitro gene modulation from IFN-α cell-based stimulation. A high throughput genomic-based screen then was applied to prioritize 268 small molecule inhibitors targeting 41 different intracellular signaling pathways. Active compounds were profiled further for their ability to inhibit the activation and differentiation of human monocytes using disease-related stimuli. Inhibitors targeting NF-κB or Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) signaling emerged as “dissociated inhibitors” because they did not modulate IFN-α anti-viral effects against HSV-1 but potently inhibited other immune-related functions. This work describes a novel strategy to identify small molecule inhibitors for the treatment of autoimmune disorders.

Notes

Acknowledgments

HSV-1 recombination virus with both firefly and Renilla luciferase genes in a divergent orientation from a single multiple cloning site were a gift from David A Leib (Leib Laboratory, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA).

References

  1. 1.
    Boumpas DT et al. (1995) Systemic lupus erythematosus: emerging concepts. Part 2: Dermatologic and joint disease, the antiphospholipid antibody syndrome, pregnancy and hormonal therapy, morbidity and mortality, and pathogenesis. Ann. Intern. Med. 123:42–53.Google Scholar
  2. 2.
    Pestka S, Langer JA, Zoon KC, and Samuel CE. (1987) Interferons and their actions. Annu. Rev. Biochem. 56:727–77.CrossRefGoogle Scholar
  3. 3.
    Pestka S, Krause CD, and Walter MR. (2004) Interferons, interferon-like cytokines, and their receptors. Immunol. Rev. 202:8–32.CrossRefGoogle Scholar
  4. 4.
    Stark GR, Kerr IM, Williams BR, Silverman RH, and Schreiber RD. (1998) How cells respond to interferons. Annu. Rev. Biochem. 67:227–64.CrossRefGoogle Scholar
  5. 5.
    Darnell JE Jr, Kerr IM, and Stark GR. (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 264:1415–21.CrossRefGoogle Scholar
  6. 6.
    Platanias LC. (2005) Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat. Rev. Immunol. 5:375–86.CrossRefGoogle Scholar
  7. 7.
    Pascual V, Farkas L, and Banchereau J. (2006) Systemic lupus erythematosus: all roads lead to type I interferons. Curr. Opin. Immunol. 18:676–82.CrossRefGoogle Scholar
  8. 8.
    Kirou KA et al. (2004) Coordinate overexpression of interferon-alpha-induced genes in systemic lupus erythematosus. Arthritis. Rheum. 50:3958–67.CrossRefGoogle Scholar
  9. 9.
    Baechler EC, Gregersen PK, and Behrens TW. (2004) The emerging role of interferon in human systemic lupus erythematosus. Curr. Opin. Immunol. 16:801–7CrossRefGoogle Scholar
  10. 10.
    Crow MK, Kirou KA, and Wohlgemuth J. (2003) Microarray analysis of interferon-regulated genes in SLE. Autoimmunity. 36:481–90CrossRefGoogle Scholar
  11. 11.
    Bennett L et al. (2003) Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197:711–23.CrossRefGoogle Scholar
  12. 12.
    Baechler EC et al. (2003) Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl. Acad. Sci. U. S. A. 100:2610–5.CrossRefGoogle Scholar
  13. 13.
    Ytterberg SR and Schnitzer TJ. (1982) Serum interferon levels in patients with systemic lupus erythematosus. Arthritis. Rheum. 25:401–6.CrossRefGoogle Scholar
  14. 14.
    Ronnblom L and Alm GV. (2003) Systemic lupus erythematosus and the type I interferon system. Arthritis. Res. Ther. 5:68–75.CrossRefGoogle Scholar
  15. 15.
    Mathian A, Weinberg A, Gallegos M, Banchereau J, and Koutouzov S. (2005) IFN-alpha induces early lethal lupus in preautoimmune (New Zealand Black x New Zealand White) F1 but not in BALB/c mice. J. Immunol. 174:2499–506.CrossRefGoogle Scholar
  16. 16.
    Santiago-Raber ML et al. (2003) Type-I interferon receptor deficiency reduces lupus-like disease in NZB mice. J. Exp. Med. 197:777–88.CrossRefGoogle Scholar
  17. 17.
    Banchereau J and Pascual V. (2006) Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity. 25:383–392CrossRefGoogle Scholar
  18. 18.
    Bol D and Ebner R. (2006) Gene expression profiling in the discovery, optimization and development of novel drugs: one universal screening platform. Pharmacogenomics. 7:227–35.CrossRefGoogle Scholar
  19. 19.
    Stoughton RB and Friend SH. (2005) How molecular profiling could revolutionize drug discovery. Nat. Rev. Drug. Discov. 4:345–50.CrossRefGoogle Scholar
  20. 20.
    Hieronymus H et al. (2006) Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. Cancer Cell. 10:321–30.CrossRefGoogle Scholar
  21. 21.
    Lamb J et al. (2006) The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 313:1929–35.CrossRefGoogle Scholar
  22. 22.
    Wei G et al. (2006) Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell. 10:331–42.CrossRefGoogle Scholar
  23. 23.
    Feng X et al. (2006) Association of increased interferon-inducible gene expression with disease activity and lupus nephritis in patients with systemic lupus erythematosus. Arthritis. Rheum. 54:2951–62.CrossRefGoogle Scholar
  24. 24.
    Hua J, Kirou K, Lee C, and Crow MK. (2006) Functional assay of type I interferon in systemic lupus erythematosus plasma and association with anti-RNA binding protein autoantibody. Arthritis. Rheum. 54:1906–16.CrossRefGoogle Scholar
  25. 25.
    Lit LC, Wong CK, Tam LS, Li EK, and Lam CW. (2006) Raised plasma concentration and ex vivo production of inflammatory chemokines in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 65:209–15.CrossRefGoogle Scholar
  26. 26.
    Narumi S, Takeuchi T, Kobayashi Y, and Konishi K. (2000) Serum levels of IFN-inducible PROTEIN-10 relating to the activity of systemic lupus erythematosus. Cytokine. 12:1561–5.CrossRefGoogle Scholar
  27. 27.
    Svane IM et al. (2006) Characterization of monocyte-derived dendritic cells maturated with IFN-alpha. Scand. J. Immunol. 63:217–22.CrossRefGoogle Scholar
  28. 28.
    Rider JR, Ollier WE, Lock RJ, Brookes ST, and Pamphilon DH. (1997) Human cytomegalovirus infection and systemic lupus erythematosus. Clin. Exp. Rheumatol. 15:405–9.PubMedGoogle Scholar
  29. 29.
    Harle P et al. (2001) Expression of human and macaque type I IFN-transgenes interferes with HSV-1 replication at the transcriptional and translational levels: IFN-beta is more potent than IFN-alpha 2. Virology. 290:237–48.CrossRefGoogle Scholar
  30. 30.
    Nguyen KB et al. (2002) Critical role for STAT4 activation by type 1 interferons in the interferongamma response to viral infection. Science. 297: 2063–6.CrossRefGoogle Scholar
  31. 31.
    Rothfuchs AG et al. (2006) STAT1 regulates IFN-alpha beta- and IFN-gamma-dependent control of infection with Chlamydia pneumoniae by nonhemopoietic cells. J. Immunol. 176:6982–90.CrossRefGoogle Scholar
  32. 32.
    O’Neill LA. (2006) Targeting signal transduction as a strategy to treat inflammatory diseases. Nat. Rev. Drug. Discov. 5:549–63.CrossRefGoogle Scholar
  33. 33.
    Boulares AH, Ferran MC, and Lucas-Lenard J. (1996) NF-kappaB activation Is delayed in mouse L929 cells infected with interferon suppressing, but not inducing, vesicular stomatitis virus strains. Virology. 218:71–80.CrossRefGoogle Scholar
  34. 34.
    Wei L et al. (2006) NFkappaB negatively regulates interferon-induced gene expression and antiinfluenza activity. J. Biol. Chem. 281:11678–84.CrossRefGoogle Scholar
  35. 35.
    Gregory D, Hargett D, Holmes D, Money E, and Bachenheimer SL. (2004) Efficient replication by herpes simplex virus type 1 involves activation of the IkappaB kinase-IkappaB-p65 pathway. J. Virol. 78:13582–90.CrossRefGoogle Scholar
  36. 36.
    Birrell MA et al. (2005) Ikappa-B kinase-2 inhibitor blocks inflammation in human airway smooth muscle and a rat model of asthma. Am. J. Respir. Crit. Care. Med. 172:962–71.CrossRefGoogle Scholar
  37. 37.
    Chang HM et al. (2004) Induction of interferonstimulated gene expression and antiviral responses require protein deacetylase activity. Proc. Natl. Acad. Sci. U. S. A. 101:9578–83.CrossRefGoogle Scholar
  38. 38.
    Nusinzon I and Horvath CM. (2005) Unexpected roles for deacetylation in interferon- and cytokine-induced transcription. J. Interferon. Cytokine. Res. 25:745–8.CrossRefGoogle Scholar

Copyright information

© Feinstein Institute for Medical Research 2008

Authors and Affiliations

  • Bo Chen
    • 1
  • Qin Zong
    • 2
  • Ricardo Cibotti
    • 1
  • Chad Morris
    • 1
  • Juana Castaneda
    • 2
  • Brian Naiman
    • 1
  • Derong Liu
    • 2
  • Anna Glodek
    • 2
  • Gary P. Sims
    • 1
  • Ronald Herbst
    • 1
  • Stephen K. Horrigan
    • 2
  • Peter A. Kiener
    • 1
  • Dan Soppet
    • 2
  • Anthony J. Coyle
    • 1
  • Laurent Audoly
    • 1
  1. 1.Respiratory, Inflammation and Autoimmunity DepartmentMedImmune Inc.GaithersburgUSA
  2. 2.Avalon Pharmaceuticals Inc., GermantownGermantownUSA

Personalised recommendations