Molecular Medicine

, Volume 14, Issue 5–6, pp 309–317 | Cite as

Apoptosis in Transgenic Mice Expressing the P301L Mutated Form of Human Tau

  • Rita M. Ramalho
  • Ricardo J. S. Viana
  • Rui E. Castro
  • Clifford J. Steer
  • Walter C. Low
  • Cecília M. P. Rodrigues
Research Article


The rTg4510 mouse is a tauopathy model, characterized by massive neurodegeneration in Alzheimer’s disease (AD)-relevant cortical and limbic structures, deficits in spatial reference memory, and progression of neurofibrillary tangles (NFT). In this study, we examined the role of apoptosis in neuronal loss and associated tau pathology. The results showed that DNA fragmentation and caspase-3 activation are common in the hippocampus and frontal cortex of young rTg4510 mice. These changes were associated with cleavage of tau into smaller intermediate fragments, which persist with age. Interestingly, active caspase-3 was often co-localized with cleaved tau. In vitro, fibrillar Aβ1–42 resulted in nuclear fragmentation, caspase activation, and caspase-3-induced cleavage of tau. Notably, incubation with the antiapoptotic molecule tauroursodeoxycholic acid abrogated apoptosis-mediated cleavage of tau in rat cortical neurons. In conclusion, caspase-3-cleaved intermediate tau species occurred early in rTg54510 brains and preceded cell loss in Aβ-exposed cultured neurons. These results suggest a potential role of apoptosis in neurodegeneration.



We are grateful to Karen H Ashe, University of Minnesota; Minneapolis, Minnesota, United States of America for providing the rTg4510 mice. This work was supported in part by grants POCI/SAU-MMO/57936/2004 and PTDC/SAU-FCF/67912/2006 from Fundação para a Ciência e Tecnologia (FCT), Lisbon, Portugal. R.M.R and R.S.V. were recipients of Ph.D. fellowships (SFRH/BD/12641/ 2003 and SFRH/BD/30467/2006, respectively), and R.E.C. was recipient of Postdoctoral fellowship (SFRH/BPD/30257/ 2006) from FCT.


  1. 1.
    Selkoe DJ. (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev. 81:741–66.CrossRefPubMedGoogle Scholar
  2. 2.
    Mandelkow EM, Mandelkow E. (1998) Tau in Alzheimer’s disease. Trends Cell. Biol. 8:425–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Alonso A, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K. (2001) Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc. Natl. Acad. Sci. U. S. A. 98:6923–8.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gamblin TC, Berry RW, Binder LI. (2003) Tau polymerization: role of the amino terminus. Biochemistry. 42:2252–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Su JH, Anderson AJ, Cummings BJ, Cotman CW. (1994) Immunohistochemical evidence for apoptosis in Alzheimer’s disease. Neuroreport. 5:2529–33.CrossRefGoogle Scholar
  6. 6.
    Selznick LA et al. (1999) In situ immunodetection of neuronal caspase-3 activation in Alzheimer disease. J. Neuropathol. Exp. Neurol. 58:1020–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Rissman RA et al. (2004) Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology. J. Clin. Invest. 114:121–30.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Newman J et al. (2005) Caspase-cleaved tau accumulation in neurodegenerative diseases associated with tau and alpha-synuclein pathology. Acta Neuropathol. (Berl.) 110:135–44.CrossRefGoogle Scholar
  9. 9.
    Gamblin TC et al. (2003) Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer’s disease. Proc. Natl. Acad. Sci. U. S. A. 100:10032–7.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Santacruz K et al. (2005) Tau suppression in a neurodegenerative mouse model improves memory function. Science. 309:476–81.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ramsden M et al. (2005) Age-dependent neurofib-rillary tangle formation, neuron loss, and memory impairment in a mouse model of human tauopathy (P301L). J. Neurosci. 25:10637–47.CrossRefPubMedGoogle Scholar
  12. 12.
    Spires TL et al. (2006) Region-specific dissociation of neuronal loss and neurofibrillary pathology in a mouse model of tauopathy. Am. J. Pathol. 168:1598–607.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Rodrigues CMP et al. (2000) Tauroursodeoxycholic acid partially prevents apoptosis induced by 3-nitropropionic acid: evidence for a mitochondrial pathway independent of the permeability transition. J. Neurochem. 75:2368–79.CrossRefGoogle Scholar
  14. 14.
    Rodrigues CMP, Fan G, Ma X, Kren BT, Steer CJ. (1998) A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J. Clin. Invest. 101:2790–9.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Solá S, Castro RE, Laires PA, Steer CJ, Rodrigues CMP. (2003) Tauroursodeoxycholic acid prevents amyloid-beta peptide-induced neuronal death via a phosphatidylinositol 3-kinase-dependent signaling pathway. Mol. Med. 9:226–34.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ramalho RM et al. (2006) Tauroursodeoxycholic acid modulates p53-mediated apoptosis in Alzheimer’s disease mutant neuroblastoma cells. J. Neurochem. 98:1610–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Ramalho RM et al. (2004) Inhibition of the E2F-1/p53/Bax pathway by tauroursodeoxycholic acid in amyloid beta-peptide-induced apoptosis of PC12 cells. J. Neurochem. 90:567–75.CrossRefPubMedGoogle Scholar
  18. 18.
    Keene CD et al. (2002) Tauroursodeoxycholic acid, a bile acid, is neuroprotective in a transgenic animal model of Huntington’s disease. Proc. Natl. Acad. Sci. U. S. A. 99:10671–6.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Rodrigues CMP et al. (2002) Neuroprotection by a bile acid in an acute stroke model in the rat. J. Cereb. Blood Flow Metab. 22:463–71.CrossRefGoogle Scholar
  20. 20.
    Rodrigues CMP et al. (2003) Tauroursodeoxy-cholic acid reduces apoptosis and protects against neurological injury after acute hemorrhagic stroke in rats. Proc. Natl. Acad. Sci. U. S. A. 100:6087–92.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Duan WM, Rodrigues CMP, Zhao LR, Steer CJ, Low WC. (2002) Tauroursodeoxycholic acid improves the survival and function of nigral transplants in a rat model of Parkinson’s disease. Cell Transplant. 11:195–205.CrossRefPubMedGoogle Scholar
  22. 22.
    Ved R et al. (2005) Similar patterns of mitochondrial vulnerability and rescue induced by genetic modification of alpha-synuclein, parkin, and DJ-1 in Caenorhabditis elegans. J. Biol. Chem. 280:42655–68.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Brewer GJ, Torricelli JR, Evege EK, Price PJ. (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35:567–76.CrossRefGoogle Scholar
  24. 24.
    Braak H, Braak E. (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. (Berl.). 82:239–59.CrossRefGoogle Scholar
  25. 25.
    Gotz J, Chen F, van Dorpe J, Nitsch RM. (2001) Formation of neurofibrillary tangles in P3011 tau transgenic mice induced by Abeta 42 fibrils. Science. 293:1491–5.CrossRefPubMedGoogle Scholar
  26. 26.
    Fadeel B, Orrenius S. (2005) Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J. Intern. Med. 258:479–517.CrossRefPubMedGoogle Scholar
  27. 27.
    Migheli A, Cavalla P, Marino S, Schiffer D. (1994) A study of apoptosis in normal and pathologic nervous tissue after in situ end-labeling of DNA strand breaks. J. Neuropathol. Exp. Neurol. 53:606–16.CrossRefPubMedGoogle Scholar
  28. 28.
    Dickson DW. (2004) Apoptotic mechanisms in Alzheimer neurofibrillary degeneration: cause or effect? J. Clin. Invest. 114:23–7.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Abraha A et al. (2000) C-terminal inhibition of tau assembly in vitro and in Alzheimer’s disease. J. Cell. Sci. 113 Pt 21:3737–45.PubMedGoogle Scholar
  30. 30.
    Berry RW et al. (2003) Inhibition of tau polymerization by its carboxy-terminal caspase cleavage fragment. Biochemistry. 42:8325–31.CrossRefPubMedGoogle Scholar
  31. 31.
    Berger Z et al. (2007) Accumulation of pathological tau species and memory loss in a conditional model of tauopathy. J. Neurosci. 27:3650–62.CrossRefPubMedGoogle Scholar
  32. 32.
    Park SY, Ferreira A. (2005) The generation of a 17 kDa neurotoxic fragment: an alternative mechanism by which tau mediates beta-amyloid-induced neurodegeneration. J. Neurosci. 25:5365–75.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Goedert M, Crowther RA, Spillantini MG. (1998) Tau mutations cause frontotemporal dementias. Neuron. 21:955–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Lewis J et al. (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science. 293:1487–91.CrossRefPubMedGoogle Scholar
  35. 35.
    Oddo S et al. (2007) Genetically augmenting tau levels does not modulate the onset or progression of Abeta pathology in transgenic mice. J. Neurochem. 94:1711–8.Google Scholar
  36. 36.
    David DC et al. (2005) Proteomic and functional analyses reveal a mitochondrial dysfunction in P301L tau transgenic mice. J. Biol. Chem. 280:23802–14.CrossRefPubMedGoogle Scholar
  37. 37.
    Roberson ED et al. (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science. 316:750–4.CrossRefPubMedGoogle Scholar

Copyright information

© Feinstein Institute for Medical Research 2008

Authors and Affiliations

  • Rita M. Ramalho
    • 1
  • Ricardo J. S. Viana
    • 1
  • Rui E. Castro
    • 1
  • Clifford J. Steer
    • 2
  • Walter C. Low
    • 3
    • 4
  • Cecília M. P. Rodrigues
    • 1
  1. 1.iMed.UL, Faculty of PharmacyUniversity of LisbonLisbonPortugal
  2. 2.Departments of Medicine, and Genetics, Cell Biology, and DevelopmentUniversity of Minnesota Medical SchoolMinneapolisUSA
  3. 3.Department of NeurosurgeryUniversity of Minnesota Medical SchoolMinneapolisUSA
  4. 4.Graduate Program in NeuroscienceUniversity of Minnesota Medical SchoolMinneapolisUSA

Personalised recommendations